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Abstract

We consider the K-ε model describing an expansion of a free turbulent

jet. Due to the nonlinear nature of turbulent diffusion the turbulent area

has a sharp boundary. We seek solutions for the energy, dissipation and

momentum as power series in spatial coordinate across the jet with time-

dependent coefficients. The coefficients obey a dynamical system with clearly

identifiable slow and fast variables. The system is not in a standard form,

which excludes rigorous methods of analysis such as centre manifold methods.

We put forward a hypothesis that there exists an attracting invariant manifold

for trajectories based on a few slow variables. The hypothesis is supported

numerically.

1 The K-ε model of a turbulent jet

We consider the dynamics of a turbulent jet developing in an unbounded motionless
fluid from an initially narrow plane layer. Statistically, the jet is uniform down-
stream, so that the ensemble-averaged turbulent energy, momentum and other char-
acteristics depend only on the coordinate across (but not along) the jet and time.

The velocity shear between the jet and surrounding fluid generates kinetic energy
of turbulent pulsations K. The turbulent volume expands and, in the long-term,
the turbulent energy decays due to the geometric effect of expansion and the loss
into heat caused by intersections of vortices. The latter effect is expressed by the
energy dissipation rate ε.

The expansion is driven by the turbulent diffusion which is essentially nonlinear.
Due to the nonlinearity there exists a sharp boundary—front—between the jet and
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surrounding fluid. This property is analogous to confinement of solutions of a single
diffusion equation with the diffusion coefficient depending on the function of inter-
est [1] (for other examples see, e.g, [2]). For example, the equation ∂tf = ∂x(f∂xf)

has the well-known similarity solution f(x, t) = α/t1/3

(

1 − βx2/t2/3

)

, where α and

β are constants. The point in space where f(x, t) turns into zero defines the position
of the front: 1−βx2/t2/3 = 0 gives x = h(t) = t1/3

√
β. Importantly, such a solution

is an attractor for solutions evolving from different initial conditions.

For the turbulent jet, we have several coupled variables subject to nonlinear
diffusion. Consider the K–ε model [3, 4] describing the dynamics of the turbulent
kinetic energy K, its dissipation rate ε and momentum u:

∂tK = α1∂x

(

K2

ε
∂xK

)

+ α2

K2

ε
(∂xu)2 − α3ε ,

∂tε = β1∂x

(

K2

ε
∂xε

)

+ β2K (∂xu)2 − β3

ε2

K
,

∂tu = χ∂x

(

K2

ε
∂xu

)

.

(1)

The coordinate x is directed across the turbulent layer starting in its middle. The
layer is infinite and uniform in the y and z directions. In (1) α1,2,3, β1,2,3 and χ
are non-dimensional constants. The system (1) is non-dimensional, obtained from
the dimensional form by using some useful scales, for example, the average initial
velocity across the jet, U , as the velocity scale; the initial width of the jet, 2h, as the
length scale; U2 as the turbulent energy scale; U3/h as the dissipation rate scale;
and h/U as the time scale.

The initial profiles for K, ε and u across the turbulent layer are supposed to be
dome-like and symmetric with respect to the middle of the layer. On the edge, or
front, of the jet the functions of interest turn into zero and remain zero beyond the
front.

2 Dynamical system approach

We look for solutions of (1) as power series in x:

K = A(t) [1 − B2(t)x
2 − B4(t)x

4 − B6(t)x
6 − ...] ,

ε = P (t) [1 − R2(t)x
2 − R4(t)x

4 − R6(t)x
6 − ...] ,

u = M(t) [1 − N2(t)x
2 − N4(t)x

4 − N6(t)x
6 − ...] .

(2)

Here A, P and M are the values of the functions K(x, t), ε(x, t) and u(x, t) in the
middle of the layer, x = 0. The structure functions in the square brackets describe
dome-like profiles descending to zero at some finite x, the coordinate of the front.

Substituting the series (2) into the dynamic equations (1) and collecting terms
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with same powers of x gives the system of ODEs

Ȧ = −α1

2A3B2

P
− α3P ,

Ṗ = −β12A
2R2 − β3

P 2

A
,

Ṁ = −χ
2A2MN2

P
,

Ḃ2 = −α1

10A2B2

2

P
+ α3

PB2

A
+ α1

6A2B2R2

P
+ α1

12A2B4

P

−α2

4AM2N2

2

P
− α3

PR2

A
,

Ṙ2 = −β1

12A2B2R2

P
+ β1

8A2R2

2

P
− β3

PR2

A
+ β1

12A2R4

P

−β2

4AM2N2

2

P
+ β3

PB2

A
,

Ṅ2 = −χ
12A2B2N2

P
+ χ

2A2N2

2

P
+ χ

6A2N2R2

P
+ χ

12A2N4

P
,

(3)

Ḃ4 = −α1

58A2B2B4

P
+ α3

PB4

A
+ α1

10A2B3

2

P
− α1

20A2B2

2
R2

P

+α1

10A2B2R
2

2

P
+ α1

10A2B2R4

P
+ α1

20A2B4R2

P
+ α1

30A2B6

P

+α2

8AB2M
2N2

2

P
− α2

4AM2N2

2
R2

P
− α2

16AM2N2N4

P
− α3

PR4

A
,

Ṙ4 = −β1

40A2B2R4

P
+ β1

2A2R2R4

P
− β3

PR4

A
+ β1

10A2B2

2
R2

P

−β1

20A2B2R
2

2

P
− β1

20A2B4R2

P
+ β1

10A2R3

2

P
+ β1

30A2R2R4

P

+β1

30A2R6

P
+ β2

4AB2M
2N2

2

P
− β2

16AM2N2N4

P
+ β3

B2

2
P

A

−β3

2B2PR2

A
+ β3

B4P

A
+ β3

PR2

2

A
,

Ṅ4 = −χ
40A2B2N4

P
+ χ

2A2N2N4

P
+ χ

10A2B2

2
N2

P
− χ

20A2B2N2R2

P

−χ
20A2B4N2

P
+ χ

10A2N2R
2

2

P
+ χ

10A2N2R4

P
+ χ

20A2N4R2

P

+χ
30A2N6

P
,

. . .

(4)

A solution consistent with physics of diffusion can only be obtained if the system
(3)–(4) is coupled with the explicit requirement that the fronts of the turbulent
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energy, dissipation rate and velocity coincide. As we saw in the experiments, in
absence of this requirement the fronts diverge from each other, which is unphysical.

Thus, K, ε and u turn into zero at the same point x = h(t). Taking into account
the terms up to the fourth-order in the power series (2) we require

1 − B2h
2 − B4h

4 = 0 ,

1 − R2h
2 − R4h

4 = 0 ,

1 − N2h
2 − N4h

4 = 0 .

(5)

The front equations (5) are complemented by the truncated dynamic equations (3),

Ȧ = −α1

2A3B2

P
− α3P ,

Ṗ = −β12A
2R2 − β3

P 2

A
,

Ṁ = −χ
2A2MN2

P
,

Ḃ2 = −α1

10A2B2

2

P
+ α3

PB2

A
+ α1

6A2B2R2

P
+ α1

12A2B4

P

−α2

4AM2N2

2

P
− α3

PR2

A
,

Ṙ2 = β1

8A2R2

2

P
− β3

PR2

A
− β1

12A2B2R2

P
+ β1

12A2R4

P

−β2

4AM2N2

2

P
+ β3

PB2

A
,

Ṅ2 = χ
2A2N2

2

P
− χ

12A2B2N2

P
+ χ

6A2N2R2

P
+ χ

12A2N4

P
,

Ḃ4 = −α1

58A2B2B4

P
+ α3

PB4

A
+ α1

10A2B3

2

P
− α1

20A2B2

2
R2

P

+α1

10A2B2R
2

2

P
+ α1

10A2B2R4

P
+ α1

20A2B4R2

P
+ α1

30A2B6

P

+α2

8AM2N2

2
B2

P
− α2

4AM2N2

2
R2

P
− α2

16AM2N2N4

P
− α3

P 2R4

AP
.

(6)

The system (5)–(6) contains 10 equations with respect to 10 unknowns: A, P , M ,
B2, R2, N2, B4, R4, N4 and h, all depending on t.

Introduce the new time by

d

(A2B2/P ) dt
=

d

dτ
≡ ()′ (7)

and divide (6) by A2B2/P . This conveniently converts (6) to the form with linear
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Figure 1: Trajectories (different views) in the space of the energy variables.

terms:

A ′ = −α12A − α3

P 2

A2B2

,

P ′ = −β1

2R2P

B2

− β3

P 3

A3B2

,

M ′ = −χ
2MN2

B2

,

B2
′ = −α110B2 + α3

P 2

A3
+ α16R2 + α1

12B4

B2

−α2

4M2N2

2

AB2

− α3

P 2R2

A3B2

,

R2
′ = −β112R2 + β1

8R2

2

B2

− β3

P 2R2

A3B2

+ β1

12R4

B2

−β2

4M2N2

2

AB2

+ β3

P 2

A3
,

N2
′ = −χ12N2 + χ

2N2

2

B2

+ χ
6N2R2

B2

+ χ
12N4

B2

,

B4
′ = −α158B4 + α3

P 2B4

A3B2

+ α110B2

2
− α120B2R2

+α110R2

2
+ α110R4 + α1

20B4R2

B2

+ α1

30B6

B2

+α2

8M2N2

2

A
− α2

4M2N2

2
R2

AB2

− α2

16M2N2N4

AB2

− α3

P 2R4

A3B2

.

(8)

Numerical solutions of the system (5), (8) are displayed in Fig. 1–3. We used
α1 = 0.09, α2 = 0.09, α3 = 1, β1 = 0.07, β2 = 0.13, β3 = 1.92, χ = 0.09.

One can easily distinguish fast and slow variables. See that the amplitudes
A and P decay rapidly in comparison to B2 and R2; this decay is largely due to
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Figure 2: Trajectories (different views) in the space of the dissipation-rate variables.
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Figure 3: Trajectories (different views) in the space of the velocity variables.

the terms with α3 and β3, that is the terms associated with the turbulent energy
dissipation rate. The velocity amplitude, M , in comparison to N2, decays not so
rapidly. The variables B4, R4 and N4 (and higher-order variables) too decay rapidly
when compared to B2, R2 and N2. Thus, the variables B2, R2 and N2 are slow and
variables Bi, Ri and Ni for i = 4, 6, . . . are fast.

It is convenient to transform the system to a form close to standard, which is the
one comprising a few dynamic equations for slow variables followed by an infinite
sequence of dynamic equations for rapid variables. This can be done when we notice
that, except in the amplitude equations (8) the variables A, P and M appear in the
right-hand sides only in combinations P 2/A3 and A/M2. We anticipate and later
confirm that, despite P and A change rapidly, those ratios are slow. We define

E =
P 2

A3
, S =

A

M2
. (9)

Differentiating (9) and using the derivatives A ′, P ′ and M ′ from (8) we deduce
the dynamic equations for E and S. Also, we add the dynamic equation for N4

so that all the 4th-order coefficients, B4, R4 and N4, now evolve according to their
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respective dynamic laws. As a result, we get the equations

S ′ = −α12S − α3

ES

B2

+ χ4
SN2

B2

,

E ′ = −β14
R2E

B2

+ α16E + (3α3 − 2β3)
E2

B2

,

B2
′ = −α110B2 + α3E + α16R2 + α1

12B4

B2

−α2

4N2

2

SB2

− α3

ER2

B2

,

R2
′ = −β112R2 + β1

8R2

2

B2

+ β3

ER2

B2

+ β1

12R4

B2

−β2

4N2

2

SB2

+ β3E − β3

2ER2

B2

,

N2
′ = −χ12N2 + χ

2N2

2

B2

+ χ
6N2R2

B2

+ χ
12N4

B2

,

B4
′ = −α158B4 + α3

EB4

B2

+ α110B2

2
− α120B2R2

+α110R2

2
+ α110R4 + α1

20B4R2

B2

+ α1

30B6

B2

+α2

8N2

2

S
− α2

4N2

2
R2

SB2

− α2

16N2N4

SB2

− α3

ER4

B2

,

R4
′ = −β140R4 + β12

R2R4

B2

+ β3

ER4

B2

+ β110B2R2 − 20β1R
2

2

−β120
R2B4

B2

+ β110
R3

2

B2

+ β130
R2R4

B2

+ β130
R6

B2

+β24
N2

2

S
− β216

N2N4

SB2

+ β3EB2 − β32ER2

+β3

EB4

B2

+ β3

ER2

2

B2

− β32
ER4

B2

,

N4
′ = −χ40N4 + χ2

N2N4

B2

+ χ10B2N2 − χ20N2R2

−χ20
N2B4

B2

+ χ10
N2R

2

2

B2

+ χ10
N2R4

B2

+ χ20
R2N4

B2

.

(10)

The dynamical system (10) is complemented to the closed form by the front equa-
tions

1 − B2h
2 − B4h

4 − B6h
6 = 0 ,

1 − R2h
2 − R4h

4 − R6h
6 = 0 ,

1 − N2h
2 − N4h

4 = 0 .

(11)

That the variables E, S and B2 are indeed slow is demonstrated in Fig. 4. It
shows that none of these variables decays faster than the other two.
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Figure 4: The behaviour of the slow variables.

Notice a spectral gap between the linear decay rates in (10) (and of course in
(8)): the coefficient at B4, (−58α1), is 5÷ 6 times larger than the coefficient at B2,
(−10α1), at R2, (−12β1) and at N2, (−12χ).

The numerical experiments show that the linear terms dominate on early stages
of the dynamics. Hence, the fast variables quickly drop to levels where the linear
terms are small enough to become of the same order as nonlinear.

3 Attracting manifolds: examples

This resembles a mechanism typical for centre manifolds and invariant manifolds.
The centre manifold in an attractor for trajectories of a dynamical system where
some (slow) variables have zero linear decay rates, while the other (fast) variables
have negative linear decay rates [5]. We illustrate this by a simple example from [6]:

ẋ = −px − xy ,

ẏ = −y + x2 − 2y2 .
(12)

If p = 0 we have a standard centre manifold case, and the attractor for all trajectories
is

y = x2 . (13)

This is also an exact solution of (12) (with x evolving according to ẋ = −x3).
Generally, any trajectory is asymptotically representable as power series in x with
the leading term given by (13). Driven by the linear term (−y), a trajectory quickly
falls onto the manifold (13), on which the nonlinear term x2 in (12) is comparable
to the linear term (−y). On the manifold the variable y depends on t only via x.

When p is positive but relatively small, the attracting manifold can be found as
a perturbation of (13). This case is similar to our situation in (10).



Dynamical system approach and attracting manifolds 943

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

τ

 B
4

6 6.5 7 7.5 8 8.5 9 9.5
0

0.2

0.4

0.6

0.8

1
x 10

-3

τ

 B
4

Figure 5: Actual behaviour of B4 (solid line) and its projection onto the attractor.
End part of the curve is zoomed.

Note that in the unperturbed case p = 0 the attractor (13) can be obtained
by simply replacing the time derivative ẏ by zero: 0 = −y + x2 − 2y2 giving y =
x2 + o(x2) → x2 when x → 0.

If p > 0, this rule does not apply and the derivative ẏ must be taken into account
in order to get correct expression for the leading term of the attracting manifold.
As an elementary example consider the purely linear system ẋ = −px, ẏ = −y + x,
from where x(t) = x(0)e−pt and y(t) = ae−t + be−pt → be−pt when t ≫ 1. From
the dynamic equation −pb = −b + x(0) we find b = x(0)/(1 − p), and therefore the
attractor is y → [x(0)e−pt]/(1 − p) = x/(1 − p). Apparently if we replace ẏ by zero
in the dynamic equation, we get an incorrect form of the attractor: y = x. However,
this is almost a correct answer when p is small enough. The greater the spectral
gap between the linear decay rate 1 of y and p of x, the better the approximation
y = x of the actual attractor.

4 Attractor for the turbulent jet

In this section we exercise a similar trick in our turbulence problem aiming to find
an approximate form of the attractor. In (10)–(11) we replace by zeroes the time
derivatives in the dynamic equations for B4, R4 and N4. This gives 6 algebraic
equations to determine the 5 variables B4, R4, N4, B6, R6 and h in terms of the
slow variables E, S, B2, R2 and N2. The algebraic equations are easily solvable
numerically.

We compare two typical trajectories: one obtained from the full system (10)–(11)
and the other obtained using the algebraic system as a source of the fast variable
values in terms of the slow ones. The values of the slow variables in the latter case are
taken the same as in the solution of the full system. The latter trajectory, therefore,
represents an orthogonal projection of the actual trajectory onto a manifold which
we hope can be a useful approximation of the attractor.

The comparison is shown in Fig. 5, 6, 7. For the energy and dissipation rate
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Figure 6: Actual behaviour of R4 (solid line) and its projection.
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Figure 7: Actual behaviour of N4 (solid line) and its projection.

variables the curves become very close at large times. For the velocity variables
the curves are also close although to a lesser extent. Overall, the approach gives a
reasonably accurate approximation.

5 Conclusions

We analyzed the K–ε model of expanding turbulence shaped as a plane jet. Profiles
of energy, dissipation rate and velocity across the jet are sought in the form of
power series. The approach allows to naturally define the position of the front of
turbulence. The series coefficients satisfy a nonlinear dynamical system with a few
slow variables. Based on these variables, we approximately found an attractor in
the form of a system of algebraic equations linking fast and slow variables:
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1 − B2h
2 − B4h

4 − B6h
6 = 0 ,

1 − R2h
2 − R4h

4 − R6h
6 = 0 ,

1 − N2h
2 − N4h

4 = 0 ,

0 = −α158B4 + α3

EB4

B2

+ α110B2

2
− α120B2R2

+α110R2

2
+ α110R4 + α1

20B4R2

B2

+ α1

30B6

B2

+α2

8N2

2

S
− α2

4N2

2
R2

SB2

− α2

16N2N4

SB2

− α3

ER4

B2

,

0 = −β140R4 + β12
R2R4

B2

+ β3

ER4

B2

+ β110B2R2 − 20β1R
2

2

−β120
R2B4

B2

+ β110
R3

2

B2

+ β130
R2R4

B2

+ β130
R6

B2

+β24
N2

2

S
− β216

N2N4

SB2

+ β3EB2 − β32ER2

+β3

EB4

B2

+ β3

ER2

2

B2

− β32
ER4

B2

,

0 = −χ40N4 + χ2
N2N4

B2

+ χ10B2N2 − χ20N2R2

−χ20
N2B4

B2

+ χ10
N2R

2

2

B2

+ χ10
N2R4

B2

+ χ20
R2N4

B2

.

A satisfactory agreement between the actual trajectories and their projections onto
the attractor is demonstrated.
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