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Abstract

In [7] we proved that a system consisting of two brusselators linearly cou-
pled by diffusion contains strange attractors. In this paper we will give nu-
merical examples of the chaotic behaviour predicted by the theoretical results.
Some details about error analysis, not included in [7], will be supplied here.

1 Introduction

Physics, chemistry and biology are sciences where it is very common to find models
reflecting the interaction between dynamical systems. The behaviour of each system
as an isolated object can be identical or not and the interaction mechanisms can be
very varied. Usually these models are referred to as coupled systems.

Certainly many different questions arise in this context. For instance, there is
a great interest in the dynamical properties which depend on the architecture of
the coupling, more than on the internal behaviour of each element. Synchronization
problems are also of the highest interest and the literature related with this topic is
very extensive.

We are particularly concerned about the possibility of creating complexity by
coupling, with elementary interaction rules, systems exhibiting simple dynamics:
either stationary or periodic. One can find many examples in the literature showing
numerically how indeed chaotic behaviour can arise by simple coupling of simple
systems (see for instance [2, 4, 18, 19, 24]).

As already mentioned, the term “coupling system” can refer to many different
types of interaction. We consider specifically a general model of identical ordinary
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differential equations linearly coupled by diffusion:

u
′

i = F (ui) +
m
∑

j=1

aijD(uj − ui), i = 1, . . . , m, (1.1)

where ui ∈ R
k for each i = 1, . . . , m, D is a k × k diagonal matrix with positive

entries and coefficients aij can be either 0 or 1 and satisfy that aij = aji. Moreover,
F is a C∞ vector field in R

k, maybe depending on some fixed parameters.
The seminal work of Alan Turing [25], where he studied the arising of oscillatory

behaviour in a ring of diffusively coupled linear systems, led Smale [23] to wonder
whether globally attracting periodic orbits could be generated in a coupling of the
type (1.1) when the internal dynamics reduces to a globally attracting equilibrium
point. He provided a concrete example with m = 2 (two interacting systems) and
k = 4. Examples, again with m = 2, with k = 3 and k = 2 were obtained in [13]
and [1], respectively.

With this motivation it is very natural to wonder which other behaviour can
be generated when elementary dynamics (globally attracting stationary or periodic
orbits) are coupled by diffusion. In particular it is interesting to know whether chaos
can emerge with such assumptions. Positive answers based on numerical simulations
are present in the literature (see [2, 4, 18, 24]). Particularly, the numerical evidences
supplied in [2, 24] correspond to a model consisting of two brusselators linearly
coupled by diffusion:



















x′

1
= A − (B + 1)x1 + x2

1
y1 + λ1(x2 − x1),

y′

1
= Bx1 − x2

1
y1 + λ2(y2 − y1),

x′

2
= A − (B + 1)x2 + x2

2
y2 + λ1(x1 − x2),

y′

2
= Bx2 − x2

2
y2 + λ2(y1 − y2).

(1.2)

In the sequel we will refer to the above system as the two-coupled brusselators model.
Note that when λ1 = λ2 = 0 we have indeed two uncoupled copies of the system
which is known in the literature as “the brusselator”. It models a chemical reaction
and due to that reason only the phase portrait restricted to the first quadrant is of
interest. It can be proven that such region is invariant for the forward flow and only
contains bounded orbits. On the other hand, parameters A and B are both strictly
positive. A Hopf bifurcation takes place when B = A2 + 1. In the first quadrant
there is a unique globally attracting equilibrium point if B < A2 + 1 and a unique
globally attracting periodic orbit if B > A2 + 1.

In [7] we proved, with analytical arguments, that the two-coupled brusselators
model contains strange attractors. More precisely, the following result was obtained:

Theorem 1.1. There exists a point (Â, B̂, λ̂1, λ̂2) in the parameter space such that,
arbitrarily nearby, there are values (A, B, λ1, λ2) for which, restricted to a normally
attracting 3-dimensional invariant manifold, system (1.2) has Shil’nikov homoclinic
orbits and hence strange attractors.

The main goal of this paper is to provide examples of the chaotic behaviour
predicted by the theoretical results.

Analytical results showing the existence of chaotic behaviour in a given system
are very rare in the literature. It is certainly well known that, under generic assump-
tions, the occurrence of some global configuration implies the existence of strange
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attractors. The most simple of such configurations is a Shil’nikov homoclinic orbit
(see [12], [21] and [22]). Unfortunately, the detection of such configuration in a given
system is again a very involved task. However, it is known that when certain singu-
larities are generically unfolded by a given family of vector fields, then Shil’nikov
homoclinic orbits are generically unfolded too (see [14] and [15]). Therefore, the
detection of the appropriate singularities turns into the most simple tool to prove
analytically the existence of strange attractors and consequently of chaos.

To be more precise, in [15] it was proved that Shil’nikov configurations occur in
any generic unfolding of the nilpotent singularity of codimension three in R

3, that
is, any singularity that can be reduced to the following normal form:

y
∂

∂x
+ z

∂

∂y
+ (ax2 + bxy + cxz + dy2 + O(‖(x, y, z)‖3))

∂

∂z
,

with a 6= 0.

Remark 1.2. A 3-dimensional nilpotent singularity of codimension 3 involves much
more dynamical richness than that mentioned in this paper (see [9] and [10]). It
should be noticed that, in fact, many aspects of its bifurcation diagram remain still
unexplained.

The point (Â, B̂, λ̂1, λ̂2) given in Theorem 1.1 corresponds to values where system
(1.2) has a 4-dimensional nilpotent singularity of codimension 4 which is generi-
cally unfolded inside the family. After proving that any generic unfolding of an
n-dimensional nilpotent singularity of codimension n contains generic unfoldings of
(n−1)-dimensional nilpotent singularities of codimension n−1, Theorem 1.1 follows.

Remark 1.3. The search for more singularities unfolding chaotic dynamics is still
in progress (see [5, 6, 11] for the case of the Hopf-zero singularity). On the other
hand their appearance as organizing center in systems arising from applications is
common in the literature. Nevertheless they are rarely used when working with
coupled systems. In this sense we believe that more examples, and also canonical
models, have to be studied to show, in that context, the role of singularities to
explain chaotic dynamics and even synchronization phenomena.

In Section 2 we will recall the generic conditions described in [7] with the aim
to supply here an error analysis. The point (Â, B̂, λ̂1, λ̂2) given in Theorem 1.1,
although algebraically determined by two equations, has to be estimated by a nu-
merical method. Hence generic conditions are only checked up to some small error,
whose analysis was not included in [7]. In Section 3 we will provide a numerical
study of a region of chaotic dynamics linked to our theoretical results.
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2 Singularities in the two coupled brusselators model

To study (1.2) it is more convenient to introduce the following variables:

ξ1 = (x2 − x1)/2, ξ2 = (y2 − y1)/2, η1 = (x2 + x1)/2 and η2 = (y2 + y1)/2.

In the new coordinates (1.2) takes the form



















ξ′
1

= −(B + 1)ξ1 + (η2

1
+ ξ2

1
)ξ2 + 2η1η2ξ1 − 2λ1ξ1,

ξ′
2

= Bξ1 − (η2

1
+ ξ2

1
)ξ2 − 2η1η2ξ1 − 2λ2ξ2,

η′

1
= A − (B + 1)η1 + (η2

1
+ ξ2

1
)η2 + 2ξ1ξ2η1,

η′

2
= Bη1 − (η2

1
+ ξ2

1
)η2 − 2ξ1ξ2η1.

(2.1)

Note that the flow is invariant under the symmetry

(ξ1, ξ2, η1, η2) → (−ξ1,−ξ2, η1, η2).

On the invariant plane {ξ1 = 0, ξ2 = 0} the restricted system is given by the brusse-
lator equations. Therefore, for all parameter values, there is a unique equilibrium
point at (0, 0, A, B/A) on that plane which undergoes a Hopf bifurcation when B =
A2 + 1. We refer to that point as the trivial singularity.

It easily follows (see [7] for details) that for every equilibrium point of the system
the following relations hold

ξ2 = −(1 + 2λ1)ξ1/2λ2, η1 = A, η2 = (AB − 2Aξ1ξ2)/(A2 + ξ2

1
)

and the ξ1 coordinate is a solution of the equation:

ξ1 [(A2 + ξ2

1
)2 + (A2 + ξ2

1
)p + q] = 0,

with
p = [2λ2(B + 2λ1 + 1) − 4A2(1 + 2λ1)]/(1 + 2λ1)

and
q = [4A2(A2(1 + 2λ1) − Bλ2)]/(1 + 2λ1).

Saddle-node bifurcations occur when ξ1 = ±
√

−p/2 − A2 and p2−4q = 0. Com-
puting the characteristic polynomial of the Jacobian at a saddle-node bifurcation
point we get

r4 + c3r
3 + c2r

2 + c1r

with:

c1 = 4(A + 2λ1)
2
[

−B3 + B2(−1 + 2λ1) + (1 + 2λ1)
2(1 + 6λ1)

+B(1 + 8A2 + 12λ1 + 20λ2

1
)
]

/(1 + B + 2λ1)
3,

c2 =
[

32A4B(1 + 2λ1)
2 + (1 + B + 2λ1)

4 (1 + 3λ1)

−8A2
(

B3λ1 + (1 + 2λ1)
3 (2 + 5λ1) + B(1 + 2λ1)

2 (4 + 9λ1)

+B2
(

2 + 9λ1 + 10λ1

2
))]

/ (1 + B + 2λ1)
3 ,

c3 =
[

− (1 + B + 2λ1)
2 (1 + B + 4λ1)

+4A2
(

B2 + (1 + 2λ1)
2
)]

/ (1 + B + 2λ1)
2 .
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From the saddle-node condition and from the equation c1 = 0 we easily get

λ2 =

(

2A(1 + 2λ1)

1 + B + 2λ1

)2

, A =

√
−1 + B − 6 λ1 (1 + B + 2 λ1)

2
√

2
√

B
. (2.2)

After substituting A and λ2 as given above, one can see that there is a unique
solution (B̂, λ̂1) for the system given by c2 = c3 = 0. We compute such solution
with the Newton method and obtain that, for the parameter values

Â = 2.6021429374428± 3.e−13,

B̂ = 11.2982916303634± 1.e−13,

λ̂1 = 1.2506765845779± 1.e−13,

λ̂2 = 1.5159732649714± 2.e−13,

the two coupled-brusselator model has a four dimensional nilpotent singularity at
the point

x̂1 = 1.99933463252094± 4.e−14,

ŷ1 = 5.12301336349842± 1.2e−13,

x̂2 = 3.2049512423647± 6.e−13,

ŷ2 = 3.7307429207399± 6.e−13.

It was checked in [7] that the linear part at the singularity is linearly conjugate
to

u2

∂

∂u1

+ u3

∂

∂u2

+ u4

∂

∂u3

.

It was also proved that, after translating the singularity at the origin and in the
appropriate coordinates, any vector field with such singularity could be written as

u2

∂

∂u1

+ u3

∂

∂u2

+ u4

∂

∂u3

+ f(u)
∂

∂u4

,

with u = (u1, u2, u3, u4) and f(u) = O(‖u‖2). If

∂2f

∂u2
1

(0) 6= 0 (2.3)

the singularity is of codimension four. In such a case any unfolding can be written
as

u2

∂

∂u1

+ u3

∂

∂u2

+ u4

∂

∂u3

+(a1(µ) + a2(µ)u2 + a3(µ)u3 + a4(µ)u4 + u2

1
+ h(µ, u))

∂

∂u4

,

where we assume that µ ∈ R
4, the coefficients ai(µ), with i = 1, 2, 3, 4, represent

exact coefficients in a Taylor expansion with respect to u and h is O(‖(µ, u)‖2) and
also O(‖(u2, u3, u4)‖2).



802 F. Drubi – S. Ibáñez – J. Á. Rodŕıguez

Let a(µ) = (a1(µ), a2(µ), a3(µ), a4(µ)). The unfolding is generic if

Det [Dµa(0)] 6= 0. (2.4)

In such a case it follows from the results in [7] that the unfolding contains two generic
bifurcation curves of three dimensional nilpotent singularities of codimension three
and, consequently, the existence of strange attractors.

In [7] the left-hand sides of expressions (2.3) and (2.4) were provided without any
discussion about the estimation of the error due to the use of approximate values for
parameters and variables. Here we include such estimation. Note that in [7] explicit
algebraic formulas were provided in order to check the generic conditions.

Remark 2.1. In general, given a function y = f(x1, . . . , xn) and assuming that we
know approximate values

xi = x̄i ± ∆xi,

for i = 1, . . . , n, we will get an approximate value y = f(x̄)±∆y with absolute error

∆y =

∣

∣

∣

∣

∣

∂f

∂x1

∣

∣

∣

∣

∣

x̄

∆x1 + · · ·+
∣

∣

∣

∣

∣

∂f

∂xn

∣

∣

∣

∣

∣

x̄

∆xn,

where x̄ = (x̄1, . . . , x̄n).

Using the above approach, that is, estimating the increase of the error in each
algebraic computation, we get that the left hand sides in expressions (2.3) and (2.4)
are

175.163090114± 3.e−9

and

−365263.4408 ± 6.e−4,

respectively. Therefore the required generic conditions are satisfied.

Remark 2.2. Although we only mention the nilpotent singularities arising in the
two-coupled brusselators model, it should be noticed that there appear others with
a very rich unfolding. At the trivial singularity one can find pitchfork-Hopf singu-
larities of codimension two and three. Note that pitchfork-Hopf singularities have
been studied in the literature (see [16] for the codimension two cases and [3], and
references therein, for the codimension three cases) but their unfoldings are not yet
completely understood. Of course there also appear Hopf-Hopf singularities at the
trivial equilibrium point when λ1 = λ2 = 0 and B = A2+1. In the specific context of
coupled systems they were studied in [4]. For the nontrivial singularities we should
underline that most of the dynamics in the unfolding of the 4-dimensional nilpotent
singularity of codimension four is completely unknown. There also exist Bogdanov-
Takens-Hopf singularities. Their unfolding is again only partially understood and
the only reference, as far as we know, is [17].
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3 Chaotic dynamics: numerical results

According to Theorem 1.1, arbitrarily near (Â, B̂, λ̂1, λ̂2) there are parameter values
(A, B, λ1, λ2) for which the system (1.2) has Shil’nikov homoclinic orbits and hence
strange attractors.

We shall compute Lyapunov exponents for family (1.2) with parameter values
near (Â, B̂, λ̂1, λ̂2) to find examples of those strange attractors whose existence has
been proven in [7]. Using our own algorithms (usual numerical integration procedure
for Fortran 90 with a Taylor series method of order 25 and variable step-sizes for
all numerical integration of the ODEs), we will show that small regions with a
positive value of the maximum Lyapunov exponent appear near the bifurcation
point (Â, B̂, λ̂1, λ̂2).

Before we present the numerical results we just briefly comment on how they
are done. We first choose a suitable range of parameters. Note that the strange
attractors we are looking for are related with Shil’nikov homoclinic orbits. Therefore,
we will reduce our study to those parameter values for which the system has a
saddle-focus equilibrium point with eigenvalues ν and ρ±iω such that the Shil’nikov
condition, ν > |ρ|, is satisfied. Additionally, we fix a point,

α = (Ā, B̄, λ̄1, λ̄2) ≈ (2.69201, 11.51650, 1.26066, 1.58948),

on the bifurcation curve TZ of 3-dimensional nilpotent singularities of codimen-
sion 3 where the non-zero eigenvalue is negative. Of course, α is chosen close to
(Â, B̂, λ̂1, λ̂2).

Remark 3.1. Notice that the curve TZ is explicitly determined by the saddle-node
condition p2 − 4q = 0, the equations c1 = c2 = 0 and the condition c3 6= 0. Expre-
ssions for p, q, c1, c2 and c3 are given in Section 2.

At α we take the hyperplane S which is orthogonal to TZ. On S λ2 can be
written as a function of (A, B, λ1) and therefore, in the sequel, we only have to work
with three parameters. We finally consider a 1-parameter family of planes in S

Tǫ =
{

(A + ǫ, B, λ1) ∈ R
3 : (A, B, λ1) ∈ Tβ

}

,

with ǫ small and where Tβ denotes the tangent plane to the saddle-node bifurcation
surface (restricted to S) at β = (Ā, B̄, λ̄1). Our numerical results are obtained
for parameter values near β on Tǫ with ǫ = −1.e−3 and verifying the Shil’nikov
condition.

On each plane Tǫ we get A as a function of (B, λ1) and hence we have reduced
the study to only two parameters. The results presented in this paper to illustrate
how change in dynamics through a chaotic region correspond to λ1 = 1.205 and
B ∈ (11.475, 11.477). All the tests have been done for inicial conditions near the
1-dimensional unstable manifold of a saddle-focus equilibrium point. Some compu-
tations of Lyapunov exponents are shown in Table 1.

The spectrum of the Lyapunov exponents which correspond to a strange atractor
are of type (+, 0,−,−). In Fig. 1, we show the typical bifurcation diagram of
attractors for B ∈ (11.47500, 11.47605). There we can see a region with an infinite
sequence of period-doubling bifurcations followed by a chaotic region.
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B µ1 µ2 µ3 µ4

(a) 11.47520 0.000 -0.035 -0.571 -3.064
(b) 11.47540 0.000 -0.003 -0.605 -3.053
(c) 11.47560 0.000 -0.019 -0.597 -3.042
(d) 11.47570 0.000 -0.002 -0.616 -3.036
(e) 11.47580 0.031 0.000 -0.651 -3.031
(f) 11.47590 0.033 0.000 -0.665 -3.024
(g) 11.47610 0.053 0.000 -0.692 -3.012
(h) 11.47630 0.055 0.000 -0.676 -3.004
(i) 11.47650 0.066 0.000 -0.690 -2.993
(j) 11.47670 0.000 -0.004 -0.550 -2.993
(k) 11.47690 0.074 0.000 -0.642 -2.980
(l) 11.47700 0.000 -3.711 -20.31 -22.36

Table 1: Lyapunov exponents of system (1.2) for some parameter values on Tǫ with
B ∈ (11.475, 11.477) and λ1 = 1.205.

11.475 11.4752 11.4754 11.4756 11.4758 11.476 11.4762
5.04

5.05

5.06

5.07

5.08

5.09

5.1

5.11

5.12

5.13

5.14

Duplicación de periódos en las variables (B,y
1
)

B

y 1

Figure 1: Bifurcation diagram of attractors obtained by plotting the values of y1 for
B ∈ (11.47500, 11.47605).
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Numerically computed examples of attractors (projected on (x2, y2, x1) space)
for various values of parameter B are shown in Fig. 2. Figures 2(i− ii) correspond
to two periodic orbits whose Lyapunov exponents are given in Table 1, see cases
(a) and (d). Figures 2(iii − v) show three examples of strange attractors we have
found near the bifurcation point (Â, B̂, λ̂1, λ̂2). The maximum Lyapunov exponent
of these attractors is given in Table 1 cases (f), (h) and (k), respectively. The
attractor shown in Fig. 2(vi) is again a periodic orbit. It is remarkable that in this
case the periodic orbit is contained in the invariant plane Π ≡ {x1 = x2, y1 = y2} and
therefore a synchronization phenomenon appears. To illustrate it we show evolution
over time of variables (x1, x2) and (y1, y2) in Fig. 3(2). We can also see in Fig. 3(1)
how variables of a strange attractor evolve over time. All graphics in this paper
have been done using Matlab [20].
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Figure 2: Projection of attractors on the (x2, y2, x1) space at different values of
B: (i) 11.47520, (ii) 11.47570, (iii) 11.47590, (iv) 11.47630, (v) 11.47690, and (vi)
11.47700. (i) and (ii) are periodic attractors; (iii) − (v) are chaotic attractors; and
(vi) is a periodic attractor on the invariant plane Π.
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Figure 3: Evolution over time of variables (x1, x2) and (y1, y2) at different values of
B: 1.(a-b) 11.47690, 2.(a-b) 11.47700.

References

[1] J. C. Alexander, Spontaneous oscillations in two 2-component cells coupled by
diffusion, J. Math. Biol. 23 (1986), 205–219.

[2] J. C. Alexander, A period-doubling bubble in the dynamics of two coupled
oscillators, in “Nonlinear oscillations in biology and chemistry” (Salt Lake City,
Utah, 1985) Lecture Notes in Biomath. 66 Springer-Verlag (1986), 208–220.

[3] A. Algaba, M. Merino, E. Freire, E. Gamero and A. J. Rodŕıguez-Luis, On the
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