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Abstract

In this paper we study the contractive mappings in vector space with

vector norm. We suppose that values of the norm belong to a σ-complete

vector lattice. The results extend the Banach fixed point theorem for differ-

ential equations, under the condition to retain the convergence of successive

approximations to the unique solution.

1 Introduction

It is well-known that the successive approximations method is an iterative technique
to prove the existence and approximation of solution of a (deterministic or stochas-
tic) differential equation. If the coefficients of the equation satisfy the standard
Lipschitz condition, than this method can be formulated as the Banach fixed point
theorem relative to an integral operator on the space of functions associated in a
natural way to the differential equation.

But this standard conditions is not satisfied for important classes of differential
equations which arise in applications, therefore is necessary to weaken the Banach
fixed point theorem, under condition to retain the convergence of successive approx-
imations to the unique solution of the differential equation. Attempts to weaken the
Banach fixed point theorem abound in literature. In our context we remark that
the operator associated to the differential equation is compatible with the natural
ordering of the underlying function space. Thus, one attempt is led to study the
Banach fixed point theorem for operators in ordered vector spaces.
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This is possible in various ways. For example, is possible to consider that this
operator is defined on an ordered Banach space. L.V. Kantorovicz ([10], Ch. XVIII,
section 4) has generalized the Banach fixed point theorem in a different direction,
considering that the norm of a function is an element belonging to a vector lattice.
We say that this norm is a vector norm.

A survey on this subject can be found in R. Cristescu [6],[7].
In this paper, we study the contractive mappings in vector space with vector

norm, but we suppose that values of the norm belong to a σ-complete vector lattice.
In order to show the importance of these abstract results, in [3], [4] are given some
nontrivial applications to stochastic differential equations. We thus obtain a fixed
point result of successive approximation method used by Yamada [14] and Barbu
and Bocşan [1] for stochastic differential equations in finite-dimensional respectively
infinite-dimensional Hilbert spaces.

We note that the metric spaces, in which the metric take values in an ordered
space, where first introduced by D. Kurepa [11]. Then E. Popa [12] and L.B. Ciric [5]
studied the contraction type mappings in thus spaces. On the other hand, O. Hadzic
[9] studied the fixed points in topological vector spaces considering thus spaces as a
paranormed space, in which the norm take values in a topological semifield.

In sections 2 and 4 we recall the results in lattice theory, respectively in linear
spaces with vector norm. In section 3 we introduce the notions of c-maps and b-maps
and establish some properties. These results are used in section 5 for the notion of
contraction map and to prove a fixed point theorem for these mappings.

The results obtained in this paper are used in [3], [4] for the study of the stochas-
tic differential equations under non-Lipschitz conditions, of the type as in [1].

2 Convergence in σ-complete vector lattices

Let R be a σ-complete vector lattice with the order relation ” ≤ ”. Thus, each
countable subset A which is upper bounded has a least upper bound denoted by
supa∈A a or

∨
a∈A a. Also, each countable subset B which is lower bounded has a

greatest lower bound denoted by infa∈A a or
∧

a∈A a. Thus, for a bounded sequence
(rn) ⊂ R the lower and upper limits

lim rn =
∞∨

n=1

∞∧

m=n

rm, lim rn =
∞∧

n=1

∞∨

m=n

rm (2.1)

is well-defined.
It is well-known [6] that in a σ-complete vector lattice a sequence (rn) converges

in order (or is o-convergent) if and only if it is bounded and lim rn = lim rn. In
this case the common value r of these limits is called o-limit of (rn) and we write
rn

o
→ r.
In what follows we use the following properties of σ-convergence.

Proposition 2.1 [6] Let (rn) and (pn) be two sequences in R.
(i) If (rn) is nondecreasing and upper bounded, then rn

o
→ r where r =

∨∞
n=1.

ii) If (rn) is nonincreasing and lower bounded, then rn
o
→ r where r =

∧∞
n=1.

(iii) If rn
o
→ r and pn

o
→ p and if rn ≤ pn for all n, then r ≤ p.
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(iv) If 0 ≤ rn ≤ pn for all n and if pn
o
→ 0 then rn

o
→ 0.

(v) If rn
o
→ r and if (rnk

) is a subsequence of (rn), then rnk

o
→ r.

(vi) If rn
o
→ r and rn

o
→ p then r = p.

For a sequence satisfying (i) (respectively (ii)) we write rn ↑ r (respectively
rn ↓ r).

Let R+ be the cone of all nonnegative elements of R. We consider a subset P of
R+ which is also a σ-complete sub-lattice of R. Thus, P satisfies the following three
properties:

(I) 0 ∈ P and r ≥ 0 for all r ∈ P .
(II) If (rn) ⊂ P is an upper bounded sequence, then

∨∞
n=1 ∈ P .

(III) If (rn) ⊂ P is a nonincreasing sequence, then
∧∞

n=1 ∈ P .

Since a sequence in P is lower bounded, the property (ii) of Proposition 2.1 can
be reformulated.

Corollary 2.2 If (rn) ⊂ P is a nonincreasing sequence, then rn ↓ r where
r =

∧∞
n=1 and r ∈ P .

Now, for an upper bounded sequence (rn) ⊂ P we define the sequence (ρn) by

ρn =
∞∨

m=n

rm. (2.2)

Clearly, by (II) and (2.2) it follows that

(ρn) ⊂ P and 0 ≤ rn ≤ ρn for all n. (2.3)

Moreover,
(ρn) is nonincreasing (2.4)

and we have the following result.

Theorem 2.3 For an upper bounded sequence (rn) ⊂ P the following statements
are equivalent:

(i) rn
o
→ 0

(ii) ρn ↓ 0.

Proof. Suppose (i) holds, therefore lim rn = 0. (ρn) ⊂ P and (ρn) is nonincreas-
ing in conformity with (2.3) and (2.4). Applying Corollary 2.2 it follows that (ρn) is
o-convergent to ρ =

∧∞
n=1 ρn =

∧∞
n=1

∨∞
m=n rm = lim rn = 0. Since ρn ≥ 0, we obtain

(ii).
Using (2.3) and Proposition 2.1, (iv) we obtain that (ii) implies (i).

We now recall that in R can be defined the module |r| of r ∈ R. It is well known
that |r| can be calculated by the formula

|r| = r
∨

(−r). (2.5)

The following result is well-known [6].
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Theorem 2.4 Let (rn) ⊂ R. Then rn
o
→ r ∈ R if and only if there exists a

sequence (ρn) ⊂ R, ρn ↓ 0 such that

|rn − r| ≤ ρn for all n. (2.6)

3 c-maps and b-maps on P

Let R be a σ-complete vector lattice and P a subset of R satisfying the conditions
(I), (II) and (III) of Section 2.

Definition 3.1 A map Φ : P → P is called to be a c-map on P if it satisfies the
following properties.

(a) Φ(0) = 0 and Φ(r) ≥ r implies r = 0.
(b) Φ is nondecreasing.
(c) Φ is o-continuous, i.e. rn → r implies Φ(rn) → Φ(r).

Theorem 3.2 Let Φ a c-map on P . If the sequence (rn) ⊂ P satisfies
(i) (rn) is upper bounded
(ii) rn+1 ≤ Φ(rn) for all n ≥ 1,
then rn

o
→ 0.

Proof. Since (rn) is upper bounded and (rn) ⊂ P , from (II) it follows that the
sequence (ρn) defined by (2.2) is in P .

Moreover (ρn) satisfies (2.4) and thus from Corollary 2.2 we obtain ρn ↓ ρ where
ρ =

∧∞
n=1 ρn and ρ ∈ P .

Now, for a fixed n and m ≥ n by (2.3) and (2.4) we have

rm ≤ ρm ≤ ρn. (3.1)

Since Φ is nondecreasing, by (ii) and (3.1) we obtain

rm+1 ≤ Φ(ρm) ≤ Φ(ρn). (3.2)

But ρn+1 =
∨∞

k=n+1 rk =
∨∞

m=n rm+1 and then (3.2) implies

ρn+1 ≤ Φ(ρn) for all n. (3.3)

Since (ρn) is o-convergent to ρ ∈ P and Φ is o-continuous, then passing to limit in
(3.3) and using the properties (iii) and (v) from Proposition 2.1 we obtain ρ ≤ Φ(ρ).
The property (a) from Definition 3.1 implies ρ = 0 and applying Theorem 2.3 results
that rn

o
→ 0.

Remark 3.3 From the above proof it follows that Theorem 3.2 remains true if
we suppose that Φ is continuous only for nonincreasing sequences.
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Definition 3.4 A map Ψ : P → P is called to be a b-map on P if it satisfies the
following properties:

(a) Ψ is nondecreasing;
(b) Ψ has a fixed point r∗ 6= 0.

Theorem 3.5 Let Ψ a b-map on P and let r∗ 6= 0 a fixed point of Ψ. Let
r0, r1 ∈ P . Then

(i) If r0 ≤ r∗ and r1 ≤ Ψ(r0), then r1 ≤ r∗.
(i) If r0 ≥ r∗ and r1 ≥ Ψ(r0), then r1 ≥ r∗.

Proof. Since Ψ is nondecreasing and r0 ≤ r∗ it follows that r1 ≤ Ψ(r0) ≤
Ψ(r∗) = r∗. Thus (i) is proved and similarly can be proved (ii).

For r ∈ P define
[0, r] = {r′ : 0 ≤ r′ ≤ r}.

For r1, r2 ∈ P, r1 ≤ r2 we set

[r1, r2] = {r : r1 ≤ r ≤ r2}.

We have the following result.

Corollary 3.6 Let r∗1 and r∗2 two fixed points of a b-map Ψ on P . Suppose
r∗1 ≤ r∗2. Then

Ψ([r∗1, r
∗
2]) ⊆ [r∗1, r

∗
2].

Proof. For r ∈ Ψ([r∗1, r
∗
2]) there exists r0 ∈ [r∗1, r

∗
2] such that r = Ψ(r0). Applying

Theorem 3.5 with r∗ = r∗2 and r1 = r we obtain r ≤ r∗2.
Similarly can be proved that r ≥ r∗1.

Remark 3.7 From the proof of Corollary 3.6 and Theorem 3.5 (i) we have

Ψ([0, r∗]) ⊆ [0, r∗]

if r∗ 6= 0 is a fixed point of a b-map Ψ on P .

4 Linear space with vector P -norm

Let R be a real σ-complete vector lattice and P a subset of R satisfying the conditions
(I), (II) and (III) of Section 2. Furthermore , suppose that P is a cone.

Let X a real linear space. A vector P - norm on X is a map p : X → P, p(x) =
||x|| which satisfies the following axioms

(i) ||x|| 6= 0 if x 6= 0;
(ii) ||λx|| = |λ|||x||;
(iii) ||x + y|| ≤ ||x|| + ||y||

for all x and y in X and every λ a real number.



582 D. Barbu – G. Bocşan

¿From this axioms follows that ||0|| = 0 and ||x|| = 0 implies x = 0.
Clearly, (X , p) is a normed lattice in the sense of Kantorovich and Akilov [[10],

Ch. XVIII, section 4]. As in this book we say that a sequence (xn) ⊂ X is
(a) convergent to x ∈ X if the sequence rn = ||xn − x|| ∈ P is o-convergent to 0;
(b) Cauchy if there exists a sequence (ρn) ⊂ P, ρn ↓ 0 such that for each n we

have
||xn − xm|| ≤ ρn for all m ≥ n. (4.1)

Proposition 4.1 A sequence (xn) ∈ X is convergent to x ∈ X if and only if
there exists a sequence (ρn) ⊂ P, ρn ↓ 0 such that

||xn − x|| ≤ ρn for all n. (4.2)

Proof. Let rn = ||xn − x||. If xn → x, then by definition rn
o
→ 0 and therefore

(rn) ⊂ P is bounded. The sequence (ρn) defined by (2.2) is nonincreasing and thus
(4.2) holds. Applying Theorem 2.3 we obtain ρn ↓ 0.

For converse implication we apply Proposition 2.1 (iv) and obtain rn ↓ 0.

Proposition 4.2 Let a sequence (xn) ⊂ X and (xnk
) a subsequence of (xn).

(i) If (xn) converges to x ∈ X , then (xnk
) converges to x.

(ii) If (xn) converges to x and y then x = y.

Proof. Let (ρn) the sequence as in Proposition 4.1. Then by (4.2) we have

||xnk
− x|| ≤ ρnk

for all k. (4.3)

Thus, for the sequence x′
k = xnk

, ρ′
k = ρnk

the inequality (4.2) holds. Applying
Proposition 2.1, (v) and Proposition 4.1 we obtain the convergence of x′

k to x.
For the part (ii), from axiom (iii) we have

0 ≤ ||x − y|| ≤ ||x − xn|| + ||xn − y|| for all n. (4.4)

Passing to limit in (4.4) we obtain ||x− y|| = 0 and thus x = y.

We say that a subset A of X is bounded if the set {||a|| : a ∈ A} ⊂ P is bounded
(in order). Then we have.

Proposition 4.3 If the sequence (xn) ⊂ X is convergent or Cauchy, then it is
bounded.

Proof. If (xn) converges to x, let (ρn) the sequence as in Proposition 4.1. From
axiom (iii) we have

0 ≤ ||xn|| ≤ ||xn − x|| + ||x|| ≤ ρn + ||x|| ≤ ρ1 + ||x|| for all n.

Hence, there exists M = ρ1 + ||x|| ∈ P such that 0 ≤ ||xn|| ≤ M .
Thus, (xn) is bounded.
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Similarly, if (xn) is Cauchy then for n ≥ 1 we have

0 ≤ ||xm|| ≤ ||x1 − xm|| + ||x1|| ≤ ρ1 + ||x1|| for all m ≥ 1

and again we obtain 0 ≤ ||xm|| ≤ M where M = ρ1 + ||x1||, i.e. (xn) is bounded.

Theorem 4.4 (i) The following inequality holds

|||x|| − ||y||| ≤ ||x − y|| for all x, y ∈ X . (4.5)

(ii) The vector norm is continuous on X .

Proof. (i) From axiom (iii) we have ||x|| ≤ ||x − y|| + ||y|| which is equivalent
with ||x|| − ||y|| ≤ ||x − y||. Similarly, we have ||y|| − ||x|| ≤ ||x − y|| and thus, by
(2.5) we obtain (4.5).

(ii) Let xn → x. By (4.5) it follows that

|||xn|| − ||x||| ≤ ||xn − x|| for all n. (4.6)

Denoting by rn = ||xn − x|| we have rn
o
→ 0. Applying Theorem 2.3 and using (2.3)

and (2.4) it results that Theorem 2.4 can be applied and thus ||xn||
o
→ ||x||.

Recall [10] that the space X is called complete if each Cauchy sequence is con-
vergent to an element of X .

5 Contractions maps in spaces with vector norm

Let R and P as in Section 4 and (X , P, || · ||) a real linear space with a vector norm.

Definition 5.1We say that a map G : X → X is a contraction map on X with
respect to the c-map Φ on P (or P -contraction, or Φ-contraction) if

||Gx − Gy|| ≤ Φ(||x − y||) for all x, y ∈ X . (5.1)

If for a map G : X → X there exists a c-map Φ on P such that (5.1) holds, then
we say that G is a contraction on X .

Proposition 5.2 Let G a contraction on X . Then
(i) G is continuous
(ii) If G has a fixed point, then it is unique.

Proof. (i) Let xn → x and rn = ||xn − x||. Applying (5.1) we have

0 ≤ ||Gxn − Gx|| ≤ Φ(rn) for all n. (5.2)

But xn→x is equivalent with rn
o
→ 0. Then, from Definition 3.1, we obtain Φ(rn)

o
→

Φ(0) = 0. Passing to limit in (5.2) and using Proposition 2.1, (iv) it follows that
||Gxn − Gx||

o
→ 0, i.e Gxn→Gx.
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(ii) Let x and y two fixed points of G and r = ||x − y||. Since r = ||Gx − Gy||,
then (5.1) implies r ≤ Φ(r) and by the definition of a c-map we obtain r = 0. Thus,
x = y.

Remark 5.3 Suppose that in Definition 3.1 the continuity of Φ holds only for
nonincreasing sequence. Let (ρn) defined by (2.2). Then from Theorem 2.3 we have
ρn ↓ 0. Since Φ is nondecreasing and (ρn) satisfies (2.3), from (5.2) we obtain

0 ≤ ||Gxn − Gx|| ≤ Φ(ρn) for all n.

Thus, as in the proof of (i), we obtain the continuity of G.

Theorem 5.4 Let G a contraction on X . If
(a) X is complete
(b) the sequence of successive approximations

xn+1 = Gxn, n ≥ 0, x0 ∈ X (5.3)

is bounded.
Then G has a fixed point x ∈ X and xn→x.

Proof. Let Φ a c-map satisfying (5.1) and let rn,m = ||xn − xm||.
Since (xn) is bounded, it follows that there exists M ∈ P such that

0 ≤ ||xn|| ≤ M for all n ≥ 0. (5.4)

Then, by the axioms of vector norm we have

0 ≤ rn,m ≤ ||xn|| + ||xm|| ≤ M + M = 2M ∈ P, n ≥ 0, m ≥ 0.

Thus, {rn,m : n ≥ 0, m ≥ 0} is an upper bounded subset of P and since P satisfies
the property (II), Section 2, it follows that the sequence (rn) defined by

rn =
∞∨

m,p≥n

rm,p, n ≥ 0 (5.5)

is in P .
But the sequence (rn) defined by (5.5) is nonincreasing. From Proposition 2.1,

(ii) results

rn ↓ r, where r =
∞∧

n=0

rn. (5.6)

Since rn is in P and P satisfies (III) from Section 2, it follows that

r ∈ P. (5.7)

On the other hand, G is a Φ-contraction and by (5.1), for m, p ≥ n, we obtain
rm+1,p+1 = ||xm+1 − xp+1|| = ||Gxm − Gxp|| ≤ Φ(||xm − xp||) = Φ(rm,p) ≤ Φ(rn).

Thus we have
rm+1,p+1 ≤ Φ(rn) for all m, p ≥ n. (5.8)
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But rn+1 =
∨∞

m,p≥n+1 rm,p =
∨∞

m,p≥n rm+1,p+1 and using (5.8) we obtain

rn+1 ≤ Φ(rn) for all n ≥ 0. (5.9)

Therefore the sequence (rn) ⊂ P satisfies the conditions of Theorem 3.2. Thus

rn ↓ 0. (5.10)

Since by (5.5) we have

||xn − xm|| = rn,m ≤ rn for all m ≥ n (5.11)

and since (5.10) holds, it follows that (4.1) holds, therefore (xn) is a Cauchy sequence.
But X is complete, hence there exists x ∈ X such that xn→x. Let (ρn) the sequence
given by Proposition 4.1. Then, by (5.1) we have

0 ≤ ||Gxn − Gx|| ≤ Φ(||xn − x||) ≤ Φ(ρn) for all n. (5.12)

Using the continuity of Φ we have Φ(ρn) ↓ 0. Thus, applying Proposition 4.1 we
obtain Gxn → Gx. By (5.3) it follows that (Gxn) is a subsequence of (xn), hence
Gxn → x. Applying Proposition 4.2 (ii) we obtain Gx = x and the Theorem is
proved.

Definition 5.5 We say that a map G : X → X is bounded if there exists a
b-map Ψ on P such that

||Gx|| ≤ Ψ(||x||) for all x ∈ X . (5.13)

If (5.13) holds we say that G is Ψ-bounded.

Theorem 5.6 Suppose that the map G : X → X is Ψ-bounded and let r∗ 6= 0 a
fixed point of Ψ.

Let x0 ∈ X and r0 = ||x0||. If
r0 ≤ r∗, (5.14)

then the sequence of successive approximations of G defined by (5.3) is bounded and

||xn|| ≤ r∗ for all n. (5.15)

Proof. Let r1 = ||x1|| = ||Gx0||. By (5.13) we have r1 ≤ Ψ(||x0||) = Ψ(r0).
Using (5.14) it follows from Theorem 3.5, (i) that r1 ≤ r∗. Thus, (5.15) holds for
n = 0, 1 and by mathematical induction it can be proved that (5.15) holds for all
n.

Combining the above results we obtain the following.

Theorem 5.7 Let G : X → X a Ψ-bounded contraction on the linear space with
vector norm and let r∗, r∗ 6= 0 a fixed points of Ψ. If

(a) X is complete
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(b) r0 = ||x0|| satisfies
r0 ≤ r∗

then the sequence of successive approximations given by

xn+1 = Gxn, n ≥ 0, x0 ∈ X

is convergent to the unique fixed point of G.

Proof. From Theorem 5.6 it follows that (xn) satisfies (5.15), hence (xn) is
bounded. Theorem 5.4 implies that (xn) converges to a fixed point x of G, which is
unique, in conformity with Proposition 5.2.

References
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[9] O. Hadžić, Fixed point theory in vector topological spaces, Univ. of Novi Sad,
Faculty of Science, Institute of Mathematics 1984

[10] L. Kantorovicz and G. Akilov, Analyse fonctionnelle II, Mir, Moscow, 1981

[11] D. Kurepa, Tableaux ramifiés d’ensembles. Espaces pseudodistanciés, C.R.
198(1934), 1563-1565

[12] E. Popa, Espaces pseudometriques et pseudonormés, An. Şti. Univ. ”Al.I.
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