Blow-up for solution of a system of quasilinear hyperbolic equations involving the p-laplacian

Mamadou Sango

Abstract

We study the blow-up for the solution of a system of quasilinear hyperbolic equations involving the p-laplacian. We derive a differential inequality for a function involving some norms of the solution which yields the finite time blow-up.

1 Introduction

We are concerned with the blow-up of solutions of the initial boundary value problem for a class of quasilinear system of hyperbolic equations in a bounded domain $\Omega \subset \mathbf{R}^{n}$ $(n \geq 1)$ with a sufficiently smooth boundary $\partial \Omega$:

$$
\begin{align*}
& u_{t t}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)-\Delta u_{t}+\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}} \operatorname{sign}\left(u_{t}\right)=|u|^{m_{1}-1} u \text { in } \Omega \times(0, T), \\
& v_{t t}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial v}{\partial x}\right|^{p-2} \frac{\partial v}{\partial x_{i}}\right)-\Delta v_{t}+\left|v_{t}\right|^{\alpha_{2}}\left|u_{t}\right|^{\beta_{2}} \operatorname{sign}\left(v_{t}\right)=|v|^{m_{2}-1} v \text { in } \Omega \times(0, T), \tag{1}
\end{align*}
$$

$$
\begin{align*}
& u(x, t)=0, v(x, t)=0 \text { on } \partial \Omega \times(0, T), \tag{3}\\
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x) \text { in } \Omega, \tag{4}\\
& v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x) \text { in } \Omega, \tag{5}
\end{align*}
$$

[^0]Communicated by P. Godin.
where $0<T \leq \infty, p, m_{i}, \alpha_{i}, \beta_{i}(i=1,2)$ are positive numbers subjected to some appropriate restrictions.

The problem is related to a class of nonlinear evolutions equations of the type

$$
\left\{\begin{array}{c}
\varphi_{t t}+A(t) \varphi-B(t) \varphi_{t}+D(t) \varphi_{t}=F(t) \varphi \tag{6}\\
\varphi(0)=\varphi_{0} \\
\varphi_{t}(0)=\varphi_{1}
\end{array}\right.
$$

where A, B, D and F are some nonlinear operators. Issues of global existence under various conditions were considered in [1], [14]; see the references in these papers. Equations of this type arise in several areas of physics. The most common of them being the case when

$$
A \varphi=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \vartheta_{i}\left(\frac{\partial \varphi}{\partial x}\right) \text { and } B \varphi_{t}=\Delta \varphi_{t}
$$

which describes the longitudinal motion of a viscoelastic bar obeying the nonlinear Voight model. Physically the strong damping term $-\Delta \varphi_{t}$ and the nonlinear dissipative damping term $D(t) \varphi_{t}$ play a dissipative role in the energy accumulation in the configurations of viscoelastic materials, while the nonlinear source term $F(t) \varphi$ leads to the gathering of energy in the configurations. The interaction between these terms may lead to a lack of synchronization in the energy accumulation and as a result the configuration may break or burn out in finite time, this mathematically is expressed through the finite time blow-up of the solution.

Here we consider an initial boundary value problem involving a system of nonlinear hyperbolic equations with slightly more general nonlinear damping terms.

The case without sources terms which lead to global existence was considered in [1]. The study of finite time blow-up involving one equation (thus one of the parameters $\alpha_{i}=0$ and $m_{1}=m_{2}$) was considered in [14], [15].

The approach in the present paper follows closely that of [2], [7], [9]. We refer also to the important papers devoted to related questions such as [4], [3], [5], [6], [8], [10], [11], [12](this paper treats hyperbolic systems with source terms without damping) and in the several references therein; the approach in some of these papers is mainly based on the potential well method which originated in the work of Sattinger [13]. We note that semilinear equations and systems (when $p=2$) are the ones that have been widely studied. Nonlinear hyperbolic problems involving the p-Laplacian are becoming the object of increasing interest only in recent years.

The paper is organized as follows. In section 2, we state our main result. Section 3 is devoted to the proof of the main result through the derivation of a suitable differential inequality satisfied by a function involving some norms of the solution.

2 Preliminaries

We introduce some notations. By $L_{p}(\Omega)(p \geq 1)$ we denote the set of integrable functions u on Ω, such that the norm

$$
\|u\|_{L_{p}(\Omega)}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}<\infty .
$$

Let X be a Banach space. By the symbol $L_{p}(0, T, Y)$ we mean the functions $u(x, t)$ that are L_{p}-integrable from $[0, T]$ into X and with the norm

$$
\|u\|_{L_{p}(0, T, X)}=\left(\int_{0}^{T}\|u(t)\|_{X}^{p} d t\right)^{1 / p}, 1 \leq p<\infty
$$

and

$$
\|u\|_{L_{\infty}(0, T, X)}=e s s \sup _{t \in[0, T]}\|u(t)\|_{X} .
$$

For $p>1$, we consider the function space

$$
\stackrel{o}{W_{p}^{1}}(\Omega)=\left\{u \in L_{p}(\Omega):\left.u\right|_{\partial \Omega}=0, \frac{\partial u}{\partial x_{i}} \in L_{p}(\Omega), i=1, \ldots, n\right\},
$$

with the norm

$$
\|u\|_{W_{p}^{o}(\Omega)}^{o}=\left(\sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x\right)^{1 / p}
$$

when $p=2$, we denote $\stackrel{o}{W_{p}^{1}}(\Omega)$ by $H_{0}^{1}(\Omega)$. We denote by X^{2} the Cartesian product of a set X with itself. The letter C will stand for all constants depending only on the data.

We introduce the functions

$$
\begin{array}{r}
H_{u}(t)=-\frac{1}{2} \int_{\Omega} u_{t}^{2} d x-\frac{1}{p} \int_{\Omega}\left|\frac{\partial u}{\partial x}\right|^{p} d x+\frac{1}{m_{1}+1} \int_{\Omega}|u|^{m_{1}+1} d x \\
H_{v}(t)=-\frac{1}{2} \int_{\Omega} v_{t}^{2} d x-\frac{1}{p} \int_{\Omega}\left|\frac{\partial v}{\partial x}\right|^{p} d x+\frac{1}{m_{2}+1} \int_{\Omega}|v|^{m_{2}+1} d x \\
H(t)=H_{u}(t)+H_{v}(t) \\
F(t)=\|u(t)\|_{L_{2}(\Omega)}^{2}+\|v(t)\|_{L_{2}(\Omega)}^{2}+\int_{0}^{t} \int_{\Omega}\left[\left|\frac{\partial u(\tau)}{\partial x}\right|^{2}+\left|\frac{\partial v(\tau)}{\partial x}\right|^{2}\right] d x d \tau \tag{10}
\end{array}
$$

for sake of simplicity we denote from now on the norm $\|\cdot\|_{L_{p}(\Omega)}$ by $\|\cdot\|_{p}$.
Our main result is

Theorem 1. Let $U=(u, v)$ be a local weak solution of problem (1)-(5), in the sense that there exists a number $0<T<\infty$ such that

$$
\begin{align*}
U= & {\left[C\left(0, T, \stackrel{o}{W_{p}^{1}}(\Omega)\right)\right]^{2} \cap C\left(0, T, L_{m_{1}+1}(\Omega)\right) \times C\left(0, T, L_{m_{2}+1}(\Omega)\right), } \tag{11}\\
U_{t}= & \left(u_{t}, v_{t}\right) \in\left[C\left(0, T, L_{2}(\Omega)\right)\right]^{2} \cap\left[L_{2}\left(0, T, H_{0}^{1}(\Omega)\right)\right]^{2} \tag{12}\\
& \int_{0}^{T} \int_{\Omega}\left[\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}+1}+\left|v_{t}\right|^{\alpha_{2}+1}\left|u_{t}\right|^{\beta_{2}}\right] d x d t \text { is finite } \tag{13}\\
U_{0}= & \left(u_{0}, v_{0}\right) \in\left[\stackrel{o}{\left.W_{p}^{1}(\Omega)\right]^{2}, U_{1}=\left(u_{1}, v_{1}\right) \in\left[L_{2}(\Omega)\right]^{2}}\right. \tag{14}
\end{align*}
$$

and u satisfies (1)-(5) in the weak sense. Furthermore we assume that

$$
\begin{gather*}
H_{u}(0) \geq C_{1}>0, H_{v}(0) \geq C_{2}>0 F^{\prime}(0)=\int_{\Omega}\left[u_{0} u_{1}+v_{0} v_{1}\right] d x>0 \tag{15}\\
\alpha_{i}>0, \beta_{i}>0, m_{i}>1(i=1,2), 0<\alpha_{1}-\alpha_{2}<1,0<\beta_{2}-\beta_{1}<1 \tag{16}\\
\frac{\alpha_{2}+1}{\alpha_{1}}=\frac{\beta_{2}}{\beta_{1}}>\frac{m_{1}+1}{m_{1}}, \frac{\alpha_{1}}{\alpha_{2}}=\frac{\beta_{1}+1}{\beta_{2}}>\frac{m_{2}+1}{m_{2}}, \tag{17}\\
\max _{i}\left\{2, \frac{n\left(m_{i}+1\right)}{n+m_{i}+1}\right\} \leq p<\min _{i}\left\{m_{i}+1, n\right\} . \tag{18}
\end{gather*}
$$

Then u blows up in finite time, i.e., there exists a $T_{0}>0$ such that

$$
\lim _{t \rightarrow T_{0}^{-}}\left[\|u(t)\|_{m_{1}+1}^{m_{1}+1}+\|v(t)\|_{m_{2}+1}^{m_{2}+1}+\left\|U_{t}(t)\right\|_{2}^{2}\right]=\infty
$$

Remark 2. The constants C_{1} and C_{2} will be chosen later. Some few words about questions related to the problem (1)-(5) are in order. The global existence without the source terms was considered in [1]. In particular it was shown that if $p \geq 2$, $0<\beta_{1}<1-\alpha_{1}, 0<\alpha_{2}<1-\beta_{2}, 0<\alpha_{1}<1,0<\beta_{2}<1$ and the above conditions (14) are imposed on the initial data, then a global weak solution exists and decay estimates under further conditions were derived.

3 Proof of the theorem

The blow-up result will follow from a differential inequality satisfied by the function

$$
W(t)=H^{1-\alpha}(t)+\varepsilon F^{\prime}(t),
$$

where α and ε are small parameters that will be chosen in the sequel. This idea goes back to Ball [2].

We start with the derivation of some useful informations on the function H which follow from a suitable identity.

Multiplying the equations (1) and (2) by u_{t} and v_{t} respectively and integrating over Ω, we get

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{1}{p}\left\|\frac{\partial u}{\partial x}\right\|_{p}^{p}-\frac{1}{m_{1}+1}\|u\|_{m_{1}+1}^{m_{1}+1}\right]=-\left\|\frac{\partial u_{t}}{\partial x}\right\|_{2}^{2}-\int_{\Omega}\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}+1} d x \\
& \frac{d}{d t}\left[\frac{1}{2}\left\|v_{t}\right\|_{2}^{2}+\frac{1}{p}\left\|\frac{\partial v}{\partial x}\right\|_{p}^{p}-\frac{1}{m_{2}+1}\|v\|_{m_{2}+1}^{m_{2}+1}\right]=-\left\|\frac{\partial v_{t}}{\partial x}\right\|_{2}^{2}-\int_{\Omega}\left|v_{t}\right|^{\alpha_{2}+1}\left|u_{t}\right|^{\beta_{2}} d x
\end{aligned}
$$

This implies that

$$
\begin{equation*}
H_{u}^{\prime}=\left\|\frac{\partial u_{t}}{\partial x}\right\|_{2}^{2}+\int_{\Omega}\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}+1} d x \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{v}^{\prime}=\left\|\frac{\partial v_{t}}{\partial x}\right\|_{2}^{2}+\int_{\Omega}\left|v_{t}\right|^{\alpha_{2}+1}\left|u_{t}\right|^{\beta_{2}} d x \tag{20}
\end{equation*}
$$

that is H_{u} and H_{v} are non decreasing. Thus from the assumption on $H_{u}(0)$ and $H_{v}(0)$, it follows that for all $t \geq 0$,

$$
\begin{align*}
& 0<H_{u}(0) \leq H_{u}(t) \leq \frac{1}{m_{1}+1}\|u\|_{m_{1}+1}^{m_{1}+1} \leq C\left\|\frac{\partial u}{\partial x}\right\|_{p}^{m_{1}+1}, \tag{21}\\
& 0<H_{v}(0) \leq H_{v}(t) \leq \frac{1}{m_{2}+1}\|u\|_{m_{2}+1}^{m_{2}+1} \leq C\left\|\frac{\partial v}{\partial x}\right\|_{p}^{m_{2}+1} \tag{22}
\end{align*}
$$

where we have used the fact that ${ }_{W}^{o}(\Omega)$ is embedded into $L_{m_{i}+1}(\Omega)$ since by the conditions (18) on $p, p n /(n-p) \geq \max _{i}\left\{m_{i}+1\right\}$.

By approximating u with sufficiently smooth functions with respect to t, we can see that $F^{\prime \prime}$ satisfies

$$
\left.\begin{array}{rl}
F^{\prime \prime}(t)= & 2 \int_{\Omega}\left(u_{t}^{2}+v_{t}^{2}\right) d x+2 \int_{\Omega}\left(u u_{t t}+v v_{t t}\right) d x \tag{23}\\
& +2 \int_{\Omega} \sum_{i=1}^{n}\left[\frac{\partial u}{\partial x_{i}} \frac{\partial u_{t}}{\partial x_{i}}+\frac{\partial v}{\partial x_{i}} \frac{\partial v_{t}}{\partial x_{i}}\right] d x \\
= & 2\left(\left\|u_{t}\right\|_{2}^{2}-\left\|\frac{\partial u}{\partial x}\right\|_{p}^{p}-\int_{\Omega}\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}} u \operatorname{sign} u_{t} d x+\|u\|_{m_{1}+1}^{m_{1}+1}\right.
\end{array}\right) .
$$

Thus substituting $F^{\prime \prime}$ as expressed in (23) into the relation

$$
\frac{d}{d t}\left(H^{1-\alpha}(t)+\varepsilon F^{\prime}(t)\right)=(1-\alpha) H^{-\alpha} H+\varepsilon F^{\prime \prime}(t)
$$

and using the definition of H, we get

$$
\begin{align*}
& \frac{d}{d t}\left(H^{1-\alpha}(t)+\varepsilon F^{\prime}(t)\right) \tag{24}\\
= & (1-\alpha) H^{-\alpha} H^{\prime}+\varepsilon(2+p)\left\|U_{t}\right\|_{2}^{2}+2 p \varepsilon H \\
& +\varepsilon\left(2-\frac{2 p}{m_{1}+1}\right)\|u\|_{m_{1}+1}^{m_{1}+1}+\varepsilon\left(2-\frac{2 p}{m_{2}+1}\right)\|v\|_{m_{2}+1}^{m_{2}+1} \\
& -2 \varepsilon \int_{\Omega}\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}} u \operatorname{sign} u_{t} d x-2 \varepsilon \int_{\Omega}\left|v_{t}\right|^{\alpha 2}\left|u_{t}\right|^{\beta_{2}} v \operatorname{sign} v_{t} d x .
\end{align*}
$$

Let us denote the two last integrals by I_{1} and I_{2}, respectively and estimate them.

By Hölder's inequality, we have

$$
\begin{aligned}
I_{1} & \leq \int_{\Omega}\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}}|u| d x \\
& \leq\left(\int_{\Omega}\left(\left|v_{t}\right|^{\alpha_{1}}\left|u_{t}\right|^{\beta_{1}}\right)^{\left(m_{1}+1\right) / m_{1}} d x\right)^{m_{1} /\left(m_{1}+1\right)}\left(\int_{\Omega}|u|^{m_{1}+1} d x\right)^{1 /\left(m_{1}+1\right)} \\
& \leq\left(\int_{\Omega}\left|v_{t}\right|^{\alpha_{2}+1}\left|u_{t}\right|^{\beta_{2}} d x\right)^{\beta_{1} / \beta_{2}}\left(\int_{\Omega}|u|^{m_{1}+1} d x\right)^{1 /\left(m_{1}+1\right)}
\end{aligned}
$$

where in the last inequality we used the restrictions (16) and (17).
Next writing

$$
\frac{1}{m_{1}+1}=\frac{\beta_{2}-\beta_{1}}{\beta_{2}}+\sigma_{1} ; \sigma_{1}=\frac{1}{m_{1}+1}-\frac{\beta_{2}-\beta_{1}}{\beta_{2}}
$$

we have $\sigma_{1}<0$, and using Young's inequality we get

$$
\begin{aligned}
I_{1} & \leq\left(\int_{\Omega}\left|v_{t}\right|^{\alpha_{2}+1}\left|u_{t}\right|^{\beta_{2}} d x\right)^{\beta_{1} / \beta_{2}}\left(\int_{\Omega}|u|^{m_{1}+1} d x\right)^{\sigma_{1}}\left(\int_{\Omega}|u|^{m_{1}+1} d x\right)^{\left(\beta_{2}-\beta_{1}\right) / \beta_{2}} \\
& \leq C\left[\int_{\Omega}\left|v_{t}\right|^{\alpha_{2}+1}\left|u_{t}\right|^{\beta_{2}} d x+\int_{\Omega}|u|^{m_{1}+1} d x\right]\left(\int_{\Omega}|u|^{m_{1}+1} d x\right)^{\sigma_{1}} .
\end{aligned}
$$

By (21) and (20), we get

$$
\begin{equation*}
2 \varepsilon I_{1} \leq C \varepsilon\left(H_{u}(t)\right)^{\sigma_{1}}\left[H_{v}^{\prime}(t)+\int_{\Omega}|u|^{m_{1}+1} d x\right] . \tag{25}
\end{equation*}
$$

Analogously we obtain

$$
\begin{equation*}
2 \varepsilon I_{2} \leq C \varepsilon\left(H_{v}(t)\right)^{\sigma_{2}}\left[H_{u}^{\prime}(t)+\int_{\Omega}|v|^{m_{2}+1} d x\right] ; \sigma_{2}=\frac{1}{m_{2}+1}-\frac{\alpha_{1}-\alpha_{2}}{\alpha_{1}} \tag{26}
\end{equation*}
$$

Combining these two last inequalities with (21)-(22), it follows that

$$
2 \varepsilon\left(I_{1}+I_{2}\right) \leq 2 \varepsilon\left[H_{u}^{\sigma_{1}}(0)+H_{v}^{\sigma_{2}}(0)\right]\left[H^{\prime}(t)+\|u\|_{m_{1}+1}^{m_{1}+1}+\|v\|_{m_{2}+1}^{m_{2}+1}\right] .
$$

Taking account of (24), the following relation holds:

$$
\begin{align*}
& \frac{d}{d t}\left(H^{1-\alpha}(t)+\varepsilon F^{\prime}(t)\right) \\
\geq & \left\{(1-\alpha) H^{-\alpha}(0)-2 \varepsilon C\left[H_{u}^{\sigma_{1}}(0)+H_{v}^{\sigma_{2}}(0)\right]\right\} H^{\prime}(t)+\varepsilon(2+p)\left\|U_{t}\right\|_{2}^{2}+2 p \varepsilon H \\
& +\varepsilon\left(2-\frac{2 p}{m_{1}+1}-C\left[H_{u}^{\sigma_{1}}(0)+H_{v}^{\sigma_{2}}(0)\right]\right)\|u\|_{m_{1}+1}^{m_{1}+1} \tag{27}\\
& +\varepsilon\left(2-\frac{2 p}{m_{2}+1}-C\left[H_{u}^{\sigma_{1}}(0)+H_{v}^{\sigma_{2}}(0)\right]\right)\|v\|_{m_{2}+1}^{m_{2}+1} .
\end{align*}
$$

We take

$$
\begin{equation*}
\alpha \in\left(0, \min \left\{\frac{m_{1}-1}{2\left(m_{1}+1\right)}, \frac{m_{2}-1}{2\left(m_{2}+1\right)}, \frac{p-2}{p}\right\}\right) \tag{28}
\end{equation*}
$$

and choose $\varepsilon>0$ such that

$$
(1-\alpha) H^{-\alpha}(0)-2 \varepsilon C\left[H_{u}^{\sigma_{1}}(0)+H_{v}^{\sigma_{2}}(0)\right]>0
$$

Also we choose the constants C_{1} and C_{2} in (15) in such a way that

$$
C_{1}^{\sigma_{1}}+C_{2}^{\sigma_{2}} \leq \min _{i}\left\{\frac{1}{C}\left(2-\frac{2 p}{m_{i}+1}\right)\right\}
$$

Then the inequalities hold:

$$
\begin{aligned}
& 2-\frac{2 p}{m_{1}+1}-C\left[H_{u}^{\sigma_{1}}(0)+H_{v}^{\sigma_{2}}(0)\right]>0 \\
& 2-\frac{2 p}{m_{2}+1}-C\left[H_{u}^{\sigma_{1}}(0)+H_{v}^{\sigma_{2}}(0)\right]>0
\end{aligned}
$$

Thus from (19), (20) it follows that

$$
\begin{equation*}
\frac{d}{d t}\left(H^{1-\alpha}(t)+\varepsilon F^{\prime}(t)\right) \geq C\left(\left\|U_{t}\right\|_{2}^{2}+H(t)+\|u\|_{m_{1}+1}^{m_{1}+1}+\|u\|_{m_{2}+1}^{m_{2}+1}\right) \tag{29}
\end{equation*}
$$

as a consequence we have that $W(t)$ is increasing since $H(t)>0$ by (21)-(22). Therefore using the assumption that $F^{\prime}(0)>0$, we get

$$
W(t)>0, \forall t \geq 0
$$

We make a further restriction on α by requiring that $0<\alpha<1 / 2$. Then setting $\beta=1 /(1-\alpha)$ (i.e., $2>\beta>1$) we claim the inequality

$$
\begin{equation*}
W^{\prime}(t) \geq C W^{\beta}(t) \tag{30}
\end{equation*}
$$

For the proof of (30), we consider two alternatives:

- If there exists a $t>0$ such that $F^{\prime}(t)<0$, then

$$
\begin{equation*}
\left(H^{1-\alpha}(t)+\varepsilon F^{\prime}(t)\right)^{\beta} \leq H(t) \tag{31}
\end{equation*}
$$

Thus (30) follows from (29).

- If there exists a $t>0$ such that $F(t) \geq 0$, then using Holder's and Young's inequalities we get

$$
\begin{align*}
{\left[F^{\prime}(t)\right]^{\beta} } & =\left(2 \int_{\Omega}\left[u_{t} u+v_{t} v\right] d x+\left\|\frac{\partial u}{\partial x}\right\|_{2}^{2}+\left\|\frac{\partial v}{\partial x}\right\|_{2}^{2}\right)^{\beta} \tag{32}\\
& \leq C\left[\|u\|_{2}^{\lambda_{1} \beta}+\left\|u_{t}\right\|_{2}^{\mu_{1} \beta}+\|v\|_{2}^{\lambda_{2} \beta}+\left\|v_{t}\right\|_{2}^{\mu_{2} \beta}+\left\|\frac{\partial u}{\partial x}\right\|_{2}^{2 \beta}+\left\|\frac{\partial v}{\partial x}\right\|_{2}^{2 \beta}\right]
\end{align*}
$$

where $\lambda_{i}^{-1}+\mu_{i}^{-1}=1$. We take $\mu_{i} \beta=2, i=1,2$. Thus $\mu_{1}=\mu_{2}=2 / \beta$ and

$$
\lambda_{1}=\lambda_{2}=\lambda=\frac{2(1-\alpha)}{1-2 \alpha} .
$$

By the restrictions on α, we have

$$
\lambda \beta=\frac{2}{1-2 \alpha} \leq \min \left\{m_{i}+1\right\}, 2 \beta=\frac{2}{1-\alpha} \leq p
$$

Thus from (32), using Hölder's inequality we have

$$
\begin{aligned}
{\left[F^{\prime}(t)\right]^{\beta} \leq } & C\left[\|u\|_{m_{1}+1}^{\lambda \beta}+\left\|u_{t}\right\|_{2}^{2}+\|v\|_{m_{2}+1}^{\lambda \beta}+\left\|v_{t}\right\|_{2}^{2}+\left\|\frac{\partial u}{\partial x}\right\|_{p}^{2 \beta}+\left\|\frac{\partial v}{\partial x}\right\|_{p}^{2 \beta}\right] \\
= & C\left\{\|u\|_{m_{1}+1}^{\lambda \beta-\left(m_{1}+1\right)}\|u\|_{m_{1}+1}^{m_{1}+1}+\left\|U_{t}\right\|_{2}^{2}+\|v\|_{m_{2}+1}^{\lambda \beta-\left(m_{2}+1\right)}\|v\|_{m_{2}+1}^{m_{2}+1}\right. \\
& \left.+\left\|\frac{\partial u}{\partial x}\right\|_{p}^{2 \beta-p}\left\|\frac{\partial u}{\partial x}\right\|_{p}^{p}+\left\|\frac{\partial v}{\partial x}\right\|_{p}^{2 \beta-p}\left\|\frac{\partial v}{\partial x}\right\|_{p}^{p}\right\} .
\end{aligned}
$$

¿From the estimates (21) and (22) we deduce that

$$
\begin{aligned}
{\left[F^{\prime}(t)\right]^{\beta} \leq } & C\left\{\left[H_{u}(0)\right]^{\left[\lambda \beta-\left(m_{1}+1\right)\right] /\left[m_{1}+1\right]}\|u\|_{m_{1}+1}^{m_{1}+1}\right. \\
& +\left\|U_{t}\right\|_{2}^{2}+\left[H_{v}(0)\right]^{\left[\lambda \beta-\left(m_{2}+1\right)\right] /\left[m_{2}+1\right]}\|v\|_{m_{2}+1}^{m_{2}+1} \\
& \left.+\left[H_{u}(0)\right]^{(2 \beta-p) /\left(m_{1}+1\right)}\left\|\frac{\partial u}{\partial x}\right\|_{p}^{p}+\left[H_{v}(0)\right]^{(2 \beta-p) /\left(m_{2}+1\right)}\left\|\frac{\partial v}{\partial x}\right\|_{p}^{p}\right\} .
\end{aligned}
$$

Thus

$$
\left[F^{\prime}(t)\right]^{\beta} \leq C\left[\|u\|_{m_{1}+1}^{m_{1}+1}+\|v\|_{m_{2}+1}^{m_{2}+1}+\left\|U_{t}\right\|_{2}^{2}+\left\|\frac{\partial u}{\partial x}\right\|_{p}^{p}+\left\|\frac{\partial v}{\partial x}\right\|_{p}^{p}\right] .
$$

From the definition of H we have

$$
H(t)+\frac{1}{p}\left[\left\|\frac{\partial u}{\partial x}\right\|_{p}^{p}+\left\|\frac{\partial v}{\partial x}\right\|_{p}^{p}\right] \leq \frac{1}{m_{1}+1}\|u\|_{m_{1}+1}^{m_{1}+1}+\frac{1}{m_{2}+1}\|v\|_{m_{2}+1}^{m_{2}+1} .
$$

Thus

$$
\begin{aligned}
{\left[F^{\prime}(t)\right]^{\beta} } & \leq C\left[\|u\|_{m_{1}+1}^{m_{1}+1}+\|v\|_{m_{2}+1}^{m_{2}+1}+\left\|U_{t}\right\|_{2}^{2}+\left\|\frac{\partial u}{\partial x}\right\|_{p}^{p}+\left\|\frac{\partial v}{\partial x}\right\|_{p}^{p}+H(t)\right] \\
& \leq C\left[\|u\|_{m_{1}+1}^{m_{1}+1}+\|v\|_{m_{2}+1}^{m_{2}+1}+\left\|U_{t}\right\|_{2}^{2}\right]
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left(H^{1-\alpha}(t)+\varepsilon F^{\prime}(t)\right)^{\beta} \leq C\left[\|u\|_{m_{1}+1}^{m_{1}+1}+\|v\|_{m_{2}+1}^{m_{2}+1}+\left\|U_{t}\right\|_{2}^{2}\right] . \tag{33}
\end{equation*}
$$

This inequality together with (29) imply (30).
Now integrating both sides of (30) over the interval $[0, t]$, it follows that there exists a $T_{0}>0$ such that

$$
\lim _{t \rightarrow T_{0}^{-}}\left(H^{1-\alpha}(t)+\varepsilon F^{\prime}(t)\right)=\infty
$$

This limit combined with (33), (31), (21) and (22) give

$$
\lim _{t \rightarrow T_{0}^{-}}\left[\|u(t)\|_{m_{1}+1}^{m_{1}+1}+\|v(t)\|_{m_{2}+1}^{m_{2}+1}+\left\|U_{t}(t)\right\|_{2}^{2}\right]=\infty
$$

The theorem is proved.

References

[1] Biazutti, A. C. On a nonlinear evolution equation and its applications. Nonlinear Anal. 24 (1995), no. 8, 1221-1234.
[2] Ball, J. M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 473-486.
[3] Eloulaimi, R., Guedda, M. Nonexistence of global solutions of nonlinear wave equations. Port. Math. (N.S.) 58 (2001), no. 4, 449-460.
[4] Galaktionov, V. A.; Pohozaev, S. I. Blow-up and critical exponents for nonlinear hyperbolic equations. Nonlinear Anal. 53 (2003), no. 3-4, 453-466.
[5] Guedda, M., Labani, H. Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary conditions. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 1, 39-46.
[6] Glassey, R. T. Blow-up theorems for nonlinear wave equations. Math. Z. 132 (1973), 183-203.
[7] Ikehata, R., Some remarks on the wave equations with nonlinear damping and source terms. Nonlinear Anal. 27 (1996), no. 10, 1165-1175.
[8] Kirane, M., Messaoudi, S. Nonexistence results for the Cauchy problem of some systems of hyperbolic equations. Ann. Polon. Math. 78 (2002), no. 1, 39-47
[9] Lions, J.-L. Contrôle des systèmes distribués singuliers. (French) [Control of singular distributed systems] Méthodes Mathématiques de l'Informatique [Mathematical Methods of Information Science], 13. Gauthier-Villars, Montrouge, 1983.
[10] Ono, K. On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation. J. Math. Anal. Appl. 216 (1997), no. 1, 321-342.
[11] Ono, K. Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differential Equations 137 (1997), no. 2, 273-301.
[12] Pohozaev, S.; Véron, L. Blow-up results for nonlinear hyperbolic inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 2, 393-420.
[13] Sattinger, D. H. On global solution of nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 301968 148-172.
[14] Yang, Zhijian. Blowup of solutions for a class of non-linear evolution equations with non-linear damping and source terms. Math. Methods Appl. Sci. 25 (2002), no. 10, 825-833.
[15] Yang, Zhijian. Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms. Math. Methods Appl. Sci. 25 (2002), no. 10, 795-814.

Department of Mathematics
University of Pretoria, Mamelodi Campus
Pretoria 0002, South Africa
Email: sango7777@yahoo.com, mamadou.sango@up.ac.za

[^0]: Received by the editors January 2006.

