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Abstract

We study the blow-up for the solution of a system of quasilinear hyperbolic

equations involving the p-laplacian. We derive a differential inequality for a

function involving some norms of the solution which yields the finite time

blow-up.

1 Introduction

We are concerned with the blow-up of solutions of the initial boundary value problem
for a class of quasilinear system of hyperbolic equations in a bounded domain Ω ⊂ R

n

(n ≥ 1) with a sufficiently smooth boundary ∂Ω :
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β1 sign (ut) = |u|m1−1 u in Ω × (0, T ),

(1)
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− ∆vt + |vt|
α2 |ut|

β2 sign (vt) = |v|m2−1 v in Ω × (0, T ),

(2)

u (x, t) = 0, v (x, t) = 0 on ∂Ω × (0, T ), (3)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) in Ω, (4)

v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) in Ω, (5)
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where 0 < T ≤ ∞, p, mi, αi, βi (i = 1, 2) are positive numbers subjected to some
appropriate restrictions.

The problem is related to a class of nonlinear evolutions equations of the type










ϕtt + A (t) ϕ − B (t) ϕt + D (t) ϕt = F (t) ϕ
ϕ (0) = ϕ0

ϕt (0) = ϕ1

(6)

where A, B, D and F are some nonlinear operators. Issues of global existence under
various conditions were considered in [1], [14]; see the references in these papers.
Equations of this type arise in several areas of physics. The most common of them
being the case when

Aϕ = −
n
∑

i=1

∂

∂xi
ϑi

(

∂ϕ

∂x

)

and Bϕt = ∆ϕt

which describes the longitudinal motion of a viscoelastic bar obeying the nonlinear
Voight model. Physically the strong damping term −∆ϕt and the nonlinear dissi-
pative damping term D (t)ϕt play a dissipative role in the energy accumulation in
the configurations of viscoelastic materials, while the nonlinear source term F (t) ϕ
leads to the gathering of energy in the configurations. The interaction between these
terms may lead to a lack of synchronization in the energy accumulation and as a
result the configuration may break or burn out in finite time, this mathematically
is expressed through the finite time blow-up of the solution.

Here we consider an initial boundary value problem involving a system of non-
linear hyperbolic equations with slightly more general nonlinear damping terms.

The case without sources terms which lead to global existence was considered
in [1]. The study of finite time blow-up involving one equation (thus one of the
parameters αi = 0 and m1 = m2) was considered in [14], [15].

The approach in the present paper follows closely that of [2], [7], [9]. We refer also
to the important papers devoted to related questions such as [4], [3], [5], [6], [8], [10],
[11], [12](this paper treats hyperbolic systems with source terms without damping)
and in the several references therein; the approach in some of these papers is mainly
based on the potential well method which originated in the work of Sattinger [13].
We note that semilinear equations and systems (when p = 2) are the ones that have
been widely studied. Nonlinear hyperbolic problems involving the p-Laplacian are
becoming the object of increasing interest only in recent years.

The paper is organized as follows. In section 2, we state our main result. Section
3 is devoted to the proof of the main result through the derivation of a suitable
differential inequality satisfied by a function involving some norms of the solution.

2 Preliminaries

We introduce some notations. By Lp (Ω) (p ≥ 1) we denote the set of integrable
functions u on Ω, such that the norm

||u||Lp(Ω) =
(∫

Ω
|u|p dx

)1/p

< ∞.



Blow-up for solution of a system of quasilinear hyperbolic equations 501

Let X be a Banach space. By the symbol Lp (0, T, Y ) we mean the functions u (x, t)
that are Lp-integrable from [0, T ] into X and with the norm

||u||Lp(0,T,X) =

(

∫ T

0
||u (t)||pX dt

)1/p

, 1 ≤ p < ∞

and
||u||L∞(0,T,X) = ess sup

t∈[0,T ]
||u (t)||X .

For p > 1, we consider the function space

o

W 1
p (Ω) =

{

u ∈ Lp (Ω) : u|∂Ω = 0,
∂u

∂xi

∈ Lp (Ω) , i = 1, ..., n

}

,

with the norm

||u|| o

W 1
p (Ω)

=

(

n
∑

i=1

∫

Ω

∣

∣

∣
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∣
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∣

∣

∣

∣

p
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)1/p

;

when p = 2, we denote
o

W 1
p (Ω) by H1

0 (Ω). We denote by X2 the Cartesian product
of a set X with itself. The letter C will stand for all constants depending only on
the data.

We introduce the functions

Hu (t) = −
1

2

∫

Ω
u2

tdx −
1
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∣

∣

∣
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dx +
1

m1 + 1

∫

Ω
|u|m1+1 dx, (7)

Hv (t) = −
1

2

∫

Ω
v2

t dx −
1

p
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∣

∣
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dx +
1

m2 + 1

∫

Ω
|v|m2+1 dx, (8)

H (t) = Hu (t) + Hv (t) (9)

F (t) = ||u (t)||2L2(Ω) + ||v (t)||2L2(Ω) +
∫ t

0

∫

Ω
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∣

∣

∣
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 dxdτ ; (10)

for sake of simplicity we denote from now on the norm ||·||Lp(Ω) by ||·||p.
Our main result is

Theorem 1. Let U = (u, v) be a local weak solution of problem (1)-(5), in the sense
that there exists a number 0 < T < ∞ such that

U ∈

[

C

(

0, T,
o

W 1
p (Ω)

)]2

∩ C (0, T, Lm1+1 (Ω)) × C (0, T, Lm2+1 (Ω)) , (11)

Ut = (ut, vt) ∈ [C (0, T, L2 (Ω))]2 ∩
[

L2

(

0, T, H1
0 (Ω)

)]2
(12)

∫ T

0

∫

Ω

[

|vt|
α1 |ut|

β1+1 + |vt|
α2+1 |ut|

β2

]

dxdt is finite (13)

U0 = (u0, v0) ∈

[

o

W 1
p (Ω)

]2

, U1 = (u1, v1) ∈ [L2 (Ω)]2 (14)
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and u satisfies (1)-(5) in the weak sense. Furthermore we assume that

Hu (0) ≥ C1 > 0, Hv (0) ≥ C2 > 0 F ′ (0) =
∫

Ω
[u0u1 + v0v1] dx > 0 (15)

αi > 0, βi > 0, mi > 1 (i = 1, 2), 0 < α1 − α2 < 1, 0 < β2 − β1 < 1 (16)

α2 + 1

α1

=
β2

β1

>
m1 + 1

m1

,
α1

α2

=
β1 + 1

β2

>
m2 + 1

m2

, (17)

max
i

{

2,
n (mi + 1)

n + mi + 1

}

≤ p < min
i

{mi + 1, n} . (18)

Then u blows up in finite time, i.e., there exists a T0 > 0 such that

lim
t→T−

0

[

||u (t)||m1+1
m1+1 + ||v (t)||m2+1

m2+1 + ||Ut (t)||
2
2

]

= ∞.

Remark 2. The constants C1 and C2 will be chosen later. Some few words about
questions related to the problem (1)-(5) are in order. The global existence without
the source terms was considered in [1]. In particular it was shown that if p ≥ 2,
0 < β1 < 1− α1, 0 < α2 < 1− β2, 0 < α1 < 1, 0 < β2 < 1 and the above conditions
(14) are imposed on the initial data, then a global weak solution exists and decay
estimates under further conditions were derived.

3 Proof of the theorem

The blow-up result will follow from a differential inequality satisfied by the function

W (t) = H1−α (t) + εF ′ (t) ,

where α and ε are small parameters that will be chosen in the sequel. This idea
goes back to Ball [2].

We start with the derivation of some useful informations on the function H which
follow from a suitable identity.

Multiplying the equations (1) and (2) by ut and vt respectively and integrating
over Ω, we get

d

dt
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∣

∣

∣
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α1 |ut|
β1+1 dx
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∣
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∣

∣
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∣

∣

∣
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−
∫
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α2+1 |ut|
β2 dx

This implies that

H ′
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∣
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∣

∣

2

2

+
∫

Ω
|vt|

α1 |ut|
β1+1 dx, (19)
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and

H ′

v =

∣
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∂vt

∂x
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∣
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2

+
∫

Ω
|vt|

α2+1 |ut|
β2 dx, (20)

that is Hu and Hv are non decreasing. Thus from the assumption on Hu (0) and
Hv (0), it follows that for all t ≥ 0,

0 < Hu (0) ≤ Hu (t) ≤
1

m1 + 1
||u||m1+1

m1+1 ≤ C

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1+1

p

, (21)

0 < Hv (0) ≤ Hv (t) ≤
1

m2 + 1
||u||m2+1

m2+1 ≤ C

∣
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∂v

∂x

∣

∣
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∣

∣

∣
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∣

∣

∣

m2+1

p

, (22)

where we have used the fact that
o

W 1
p (Ω) is embedded into Lmi+1 (Ω) since by the

conditions (18) on p, pn/ (n − p) ≥ maxi {mi + 1}.

By approximating u with sufficiently smooth functions with respect to t, we can
see that F ′′ satisfies

F ′′ (t) = 2
∫

Ω

(

u2
t + v2

t

)

dx + 2
∫

Ω
(uutt + vvtt) dx (23)

+2
∫

Ω

n
∑

i=1

[
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∂xi

∂ut

∂xi

+
∂v

∂xi

∂vt

∂xi

]

dx

= 2
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α1 |ut|
β1 usignutdx + ||u||m1+1
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2
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∣
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∣
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∣
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∣

∣

∣

∣
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p

−
∫
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|vt|

α2 |ut|
β2 vsignvtdx + ||v||m2+1

m2+1



 .

Thus substituting F ′′ as expressed in (23) into the relation

d

dt

(

H1−α (t) + εF ′ (t)
)

= (1 − α) H−αH + εF ′′ (t) ,

and using the definition of H , we get

d

dt

(

H1−α (t) + εF ′ (t)
)

(24)

= (1 − α) H−αH ′ + ε (2 + p) ||Ut||
2
2 + 2pεH

+ε
(

2 −
2p

m1 + 1

)

||u||m1+1
m1+1 + ε

(

2 −
2p

m2 + 1

)

||v||m2+1
m2+1

−2ε
∫

Ω
|vt|

α1 |ut|
β1 usignutdx − 2ε

∫

Ω
|vt|

α2 |ut|
β2 vsignvtdx.

Let us denote the two last integrals by I1 and I2, respectively and estimate them.
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By Hölder’s inequality, we have

I1 ≤
∫

Ω
|vt|

α1 |ut|
β1 |u| dx

≤
(
∫

Ω

(

|vt|
α1 |ut|

β1

)(m1+1)/m1

dx
)m1/(m1+1) (∫

Ω
|u|m1+1 dx

)1/(m1+1)

≤
(∫

Ω
|vt|

α2+1 |ut|
β2 dx

)β1/β2
(∫

Ω
|u|m1+1 dx

)1/(m1+1)

where in the last inequality we used the restrictions (16) and (17).
Next writing

1

m1 + 1
=

β2 − β1

β2
+ σ1; σ1 =

1

m1 + 1
−

β2 − β1

β2
,

we have σ1 < 0, and using Young’s inequality we get

I1 ≤
(∫

Ω
|vt|

α2+1 |ut|
β2 dx

)β1/β2
(∫

Ω
|u|m1+1 dx

)σ1
(∫

Ω
|u|m1+1 dx

)(β2−β1)/β2

≤ C
[∫

Ω
|vt|

α2+1 |ut|
β2 dx +

∫

Ω
|u|m1+1 dx

] (∫

Ω
|u|m1+1 dx

)σ1

.

By (21) and (20), we get

2εI1 ≤ Cε (Hu (t))σ1

[

H ′

v (t) +
∫

Ω
|u|m1+1 dx

]

. (25)

Analogously we obtain

2εI2 ≤ Cε (Hv (t))σ2

[

H ′

u (t) +
∫

Ω
|v|m2+1 dx

]

; σ2 =
1

m2 + 1
−

α1 − α2

α1

. (26)

Combining these two last inequalities with (21)-(22), it follows that

2ε (I1 + I2) ≤ 2ε [Hσ1

u (0) + Hσ2

v (0)]
[

H ′ (t) + ||u||m1+1
m1+1 + ||v||m2+1

m2+1

]

.

Taking account of (24), the following relation holds:

d

dt

(

H1−α (t) + εF ′ (t)
)

≥
{

(1 − α)H−α (0) − 2εC [Hσ1

u (0) + Hσ2

v (0)]
}

H ′ (t) + ε (2 + p) ||Ut||
2
2 + 2pεH

+ε
(

2 −
2p

m1 + 1
− C [Hσ1

u (0) + Hσ2

v (0)]
)

||u||m1+1
m1+1 (27)

+ε
(

2 −
2p

m2 + 1
− C [Hσ1

u (0) + Hσ2

v (0)]
)

||v||m2+1
m2+1 .

We take

α ∈

(

0, min

{

m1 − 1

2 (m1 + 1)
,

m2 − 1

2 (m2 + 1)
,
p − 2

p

})

, (28)

and choose ε > 0 such that

(1 − α)H−α (0) − 2εC [Hσ1

u (0) + Hσ2

v (0)] > 0.
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Also we choose the constants C1 and C2 in (15) in such a way that

Cσ1

1 + Cσ2

2 ≤ min
i

{

1

C

(

2 −
2p

mi + 1

)}

.

Then the inequalities hold:

2 −
2p

m1 + 1
− C [Hσ1

u (0) + Hσ2

v (0)] > 0

2 −
2p

m2 + 1
− C [Hσ1

u (0) + Hσ2

v (0)] > 0.

Thus from (19), (20) it follows that

d

dt

(

H1−α (t) + εF ′ (t)
)

≥ C
(

||Ut||
2
2 + H (t) + ||u||m1+1

m1+1 + ||u||m2+1
m2+1

)

; (29)

as a consequence we have that W (t) is increasing since H (t) > 0 by (21)-(22).
Therefore using the assumption that F ′ (0) > 0, we get

W (t) > 0, ∀t ≥ 0.

We make a further restriction on α by requiring that 0 < α < 1/2. Then setting
β = 1/ (1 − α) (i.e., 2 > β > 1) we claim the inequality

W ′ (t) ≥ CW β (t) . (30)

For the proof of (30), we consider two alternatives:

• If there exists a t > 0 such that F ′ (t) < 0, then

(

H1−α (t) + εF ′ (t)
)β

≤ H (t) . (31)

Thus (30) follows from (29).

• If there exists a t > 0 such that F (t) ≥ 0, then using Holder’s and Young’s
inequalities we get

[F ′ (t)]
β

=



2
∫

Ω
[utu + vtv] dx +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2





β

(32)

≤ C



||u||λ1β
2 + ||ut||

µ1β
2 + ||v||λ2β

2 + ||vt||
µ

2
β

2 +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2β

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2β

2





where λ−1
i + µ−1

i = 1. We take µiβ = 2, i = 1, 2. Thus µ1 = µ2 = 2/β and

λ1 = λ2 = λ =
2 (1 − α)

1 − 2α
.

By the restrictions on α, we have

λβ =
2

1 − 2α
≤ min {mi + 1} , 2β =

2

1 − α
≤ p.
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Thus from (32), using Hölder’s inequality we have

[F ′ (t)]
β

≤ C



||u||λβ
m1+1 + ||ut||

2
2 + ||v||λβ

m2+1 + ||vt||
2
2 +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2β

p

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2β

p





= C
{

||u||λβ−(m1+1)
m1+1 ||u||m1+1

m1+1 + ||Ut||
2
2 + ||v||λβ−(m2+1)

m2+1 ||v||m2+1
m2+1

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2β−p

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2β−p

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p







.

¿From the estimates (21) and (22) we deduce that

[F ′ (t)]
β

≤ C
{

[Hu (0)][λβ−(m1+1)]/[m1+1] ||u||m1+1
m1+1

+ ||Ut||
2
2 + [Hv (0)][λβ−(m2+1)]/[m2+1] ||v||m2+1

m2+1

+ [Hu (0)](2β−p)/(m1+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p

+ [Hv (0)](2β−p)/(m2+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p







.

Thus

[F ′ (t)]
β
≤ C



||u||m1+1
m1+1 + ||v||m2+1

m2+1 + ||Ut||
2
2 +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p



 .

From the definition of H we have

H (t) +
1

p





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p



 ≤
1

m1 + 1
||u||m1+1

m1+1 +
1

m2 + 1
||v||m2+1

m2+1 .

Thus

[F ′ (t)]
β

≤ C



||u||m1+1
m1+1 + ||v||m2+1

m2+1 + ||Ut||
2
2 +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

p

+ H (t)





≤ C
[

||u||m1+1
m1+1 + ||v||m2+1

m2+1 + ||Ut||
2
2

]

,

and hence
(

H1−α (t) + εF ′ (t)
)β

≤ C
[

||u||m1+1
m1+1 + ||v||m2+1

m2+1 + ||Ut||
2
2

]

. (33)

This inequality together with (29) imply (30).

Now integrating both sides of (30) over the interval [0, t], it follows that there
exists a T0 > 0 such that

lim
t→T−

0

(

H1−α (t) + εF ′ (t)
)

= ∞.

This limit combined with (33), (31), (21) and (22) give

lim
t→T−

0

[

||u (t)||m1+1
m1+1 + ||v (t)||m2+1

m2+1 + ||Ut (t)||22

]

= ∞.

The theorem is proved.
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