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Abstract

We estimate the number of homotopy types of the gauge groups of Sp(2)
and SU(3).

1 Introduction

Let G be a compact, connected, simple Lie group. The fact that π3(G) = π4(BG) =
Z leads to the classification of principal G bundles Pk over S4 by the integer k in Z.
The gauge group Gk(G) acts freely on the space Map(Pk, EG) of all G equivariant
maps from Pk to EG and its orbit space is given by the k–component of the space
Mapk(S

4, BG) of maps from S4 to BG. Since Map(Pk, EG) is contractible, we
get BGk(G) ≃ Mapk(S

4, BG). Similarly, if Gb
k(G) is the based gauge group which

consists of base point preserving automorphisms on Pk, then BGb
k(G) ≃ Ω3

kG [1].
Then we have the following fibrations:

Ω3
kG → BGk(G) → BG , Gk(G) → G

αk→ Ω3
kG .

In this paper we study the homotopy types of of gauge groups associated with
principal Sp(2) and SU(3) bundles over S4.

This paper is organized as follows. In Section 2, we collect some known facts
concerning some homotopy groups of spheres, Sp(2) and SU(3), which will be used
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in the next section. In Section 3, we calculate the homotopy group [G, Ω3G] for
G = Sp(2) and SU(3). In Section 4, we apply the results to estimate the number
of homotopy types of gauge groups of Sp(2) and SU(3).

2 Some known results

In this section we collect some known results which will be used in Section 3.
Notation. πi(X : p) denotes the p-primary component of the homotopy group

πi(X); in particular πn
m = πm(Sn : 2).

Firstly, we recall from [8] some results on homotopy groups of spheres:

π4(S
3) ∼= Z2{η3}, π6(S

3) ∼= Z4{ν
′} ⊕ Z3{α1(3)}, (2.1)

π9(S
3) ∼= Z3{α1(3) ◦ α1(6)}, π10(S

3) ∼= Z3{α2(3)} ⊕ Z5,

π7(S
7) ∼= Z{ι7}, π11(S

7) ∼= 0, π10(S
7) ∼= Z8{ν7} ⊕ Z3{α1(7)} ,

where {−} indicates a generator of the group;

π3
5
∼= Z2{η

2
3}, π3

6
∼= Z4{ν

′}, π3
7
∼= Z2{ν

′η6}, (2.2)

π5
6
∼= Z2{η5}, π5

7
∼= Z2{η

2
5}, π5

8
∼= Z8{ν5}.

By (5.3) and (5.5) of [8], we have

2ν ′ = η3
3, η3

5 = 4ν5. (2.3)

Secondly we consider the symplectic group Sp(2), which is a S3-bundle over S7:

S3 i
→ Sp(2)

p
→ S7 (2.4)

so that we have a cellular decomposition

Sp(2) ≃ S3 ∪ e7 ∪ e10 ,

where e7 is attached to S3 by the Massey element ω = 〈ι3, ι3〉, the Samelson product.
Associated with (2.4), we have a homotopy exact sequence

(A)n · · · → πn(S3)
i∗→ πn(Sp(2))

p∗
→ πn(S7)

∆
→ πn−1(S

3) → · · · .

We recall from [6] some results on homotopy groups of Sp(2):

π6(Sp(2)) ∼= 0,

π7(Sp(2)) ∼= Z{[12ι7]}, (2.5)

π13(Sp(2)) ∼= Z4 ⊕ Z2,

where [x] denotes an element of πn(Sp(2)) such that p∗([x]) = x. We also have

∆(ι7) = ω = ν ′ + α1(3), (2.6)

∆(α1(7)) = α1(3) ◦ α1(6).
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Thirdly we consider the special unitary group SU(3), which is a S3-bundle over
S5:

S3 i
→ SU(3)

p
→ S5 (2.7)

so that we have a cellular decomposition

SU(3) ≃ S3 ∪ e5 ∪ e8 ,

where e5 is attached to S3 by η3, a suspension of the Hopf element η2. Associated
with (2.7), we have a homotopy exact sequence

(B)n · · · → πn(S3)
i∗→ πn(SU(3))

p∗
→ πn(S5)

∆
→ πn−1(S

3) → · · · .

We recall from [6] some results on homotopy groups of SU(3):

π6(SU(3) :2) = Z2{i∗(ν
′)}, π7(SU(3) :2) = 0, (2.8)

π8(SU(3) :2) = Z4{[2ι5]ν5}, π11(SU(3) :2) = Z4{[ν
2
5 ]},

where we denote by [x] an element of πn(SU(3) :2) such that p∗([x]) = x.

3 The homotopy group [G, Ω3G] for G = Sp(2) and SU(3)

Firstly we calculate [Sp(2), Ω3Sp(2)] ∼= [S3 ∧ Sp(2), Sp(2)].

Theorem 3.1. [Sp(2), Ω3Sp(2)] ∼= Z40 ⊕ Z4 ⊕ Z2 .

Proof. Recall from [5, Lemma 2.1] that

S3Sp(2) ≃ S6 ∪S3ω e10 ∨ S13 ,

where ω = ν ′ + α1(3). Hence we have

[S3 ∧ Sp(2), Sp(2)] ∼= [S6 ∪S3ω e10, Sp(2)] ⊕ π13(Sp(2)) ,

where we have π13(Sp(2)) ∼= Z4 ⊕ Z2 by (2.5). Hence it is sufficient to calculate
[S6 ∪S3ω e10, Sp(2)]. For simplicity we put γ = S3ω. Then we have

γ = 2ν6 + α1(6) ∈ π9(S
6) ∼= Z8{ν6} ⊕ Z3{α1(6)}.

We consider the exact sequence

· · · → π7(Sp(2))
(Sγ)∗

→ π10(Sp(2))
π∗

→ [S6 ∪γ e10, Sp(2)]
j∗

→ π6(Sp(2)) → · · ·

associated with the cofibration

S9 γ
→ S6 j

→ S6 ∪γ e10,

where we have π6(Sp(2)) = 0 by (2.5). Hence we have

[S6 ∪γ e10, Sp(2)] ∼= Coker(Sγ)∗.
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We consider the exact sequence (A)n associated with the fibration (2.4). In
particular, we consider the case n = 7:

π7(S
3)

i∗→ π7(Sp(2))
p∗
→ π7(S

7)
∆
→ π6(S

3),

where by (2.1) we have

π7(S
7) = Z{ι7}, π6(S

3) = Z4{ν
′} ⊕ Z3{α1(3)}

and we have

∆(ι7) = ν ′ + α1(3), π7(Sp(2)) = Z{[12ι7]}

respectively by (2.6) and (2.5).
We consider the exact sequence (A)10:

· · · → π11(S
7) → π10(S

3)
i∗→ π10(Sp(2))

p∗
→ π10(S

7)
∆
→ π9(S

3) → · · ·

associated with (2.4), where by (2.6) we have

∆(α1(7)) = α1(3) ◦ α1(6),

which implies that

π10(Sp(2)) = Z8{[ν7]} ⊕ Z3{i∗(α2(3))} ⊕ Z5. (3.1)

We will calculate
(Sγ)∗ : π7(Sp(2)) → π10(Sp(2)).

Since ∆(ι7) is of order 12, we can define a Toda bracket

{∆(ι7), 12ι6, α1(6)} ⊂ π10(S
3).

Then we have

{∆(ι7), 12ι6, α1(6)} = {ν ′ + α1(3), 12ι6, α1(6)} by (2.6)

⊃ {(ν ′ + α1(3))4ι6, 3ι6, α1(6)} by Proposition 1.2 of [8]

= {α1(3), 3ι6, α1(6)} by the fact 4ν ′ = 0

∋ α2(3) by Lemma 13.5 of [8].

Hence by Theorem 2.1 of [6], there exists an element β of π7(Sp(2)) such that

p∗(β) = 12ι7,

i∗(α2(3)) = β ◦ α1(7). (3.2)

Since p∗ : π7(Sp(2)) → π7(S
7) is an injective by (2.5), we have β = [12ι7]. So by

(3.2) we have
i∗(α2(3)) = [12ι7] ◦ α1(7).

Then we have

(Sγ)∗([12ι7]) = [12ι7] ◦ 2ν7 + [12ι7] ◦ α1(7) (3.3)

= [12ι7] ◦ 2ν7 + i∗(α2(3)).
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By the facts that p∗([12ι7]◦2ν7) = 24ν7 = 0 and that p∗ : π10(Sp(2) : 2) → π10(S
7 : 2)

is an isomorphism, we have [12ι7] ◦ 2ν7 = 0. So by (3.3) we have

(Sγ)∗([12ι7]) = i∗(α2(3)).

Then by (3.1) we have Coker(Sγ)∗ = Z8{[ν7]} ⊕ Z5. �

Next we calculate [SU(3), Ω3SU(3)] ∼= [S3 ∧ SU(3), SU(3)].

Theorem 3.2. [SU(3), Ω3SU(3)] ∼= Z3 ⊕ Z4 ⊕ Z24 .

Proof. Recall from [5, Lemma 2.1] that

S3SU(3) ≃ S6 ∪η6
e8 ∨ S11.

Since η6 is of order 2, we have

S3SU(3) ≃p S6 ∨ S8 ∨ S11,

where p is an odd prime. So localized at p > 2, we have

[S3 ∧ SU(3), SU(3)] = [S6 ∨ S8 ∨ S11, S3 × S5]

= π6(S
3 × S5) ⊕ π8(S

3 × S5) ⊕ π11(S
3 × S5) .

So localized at primes p > 2, we have [S3 ∧ SU(3), SU(3)] ∼= Z3 ⊕ Z3. Now we
concentrate on 2-primary components of [S6 ∪η6

e8, SU(3)]. So in the following we
work in the 2-local category. We consider the following commutative diagram

π5
9 π5

7

∆





y

∆





y

π3
8 π3

6

i∗





y

i∗





y

π7(SU(3))
η∗

7−−−−→ π8(SU(3))
π∗

−−−−→ [S6 ∪η6
e8, SU(3)]

j∗

−−−−→ π6(SU(3))
η∗

6−−−−→ π7(SU(3))

p∗





y

p∗





y

p∗





y

p∗





y

p∗





y

π5
7

η∗

7−−−−→ π5
8

π∗

−−−−→ [S6 ∪η6
e8, S5]

j∗

−−−−→ π5
6

η∗

6−−−−→ π5
7

∆





y

∆





y





y

∆





y

∆





y

π3
6

η∗

6−−−−→ π3
7

π∗

−−−−→ [S5 ∪η5
e7, S3]

j∗

−−−−→ π3
5

η∗

5−−−−→ π3
6

where vertical and horizontal sequences are exact associated with the fibrations
(B)8 and (B)6 and the cofibration

(C)n Sn+1 ηn

→ Sn j
→ Sn ∪ηn

en+2

respectively.
We consider the exact sequence

π3
6

η∗

6→ π3
7 → [S5 ∪η5

e7, S3] → π3
5

η∗

5→ π3
6
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associated with the cofibration (C)5, where by (2.2) we have

π3
5 = Z2{η

2
3}, π3

6 = Z4{ν
′}, π3

7 = Z2{ν
′η6}.

So we see that η∗

6 is an epimorphism. By (2.3) we have 2ν ′ = η3
3, which implies that

η∗

5 is a monomorphism. So we have

[S5 ∪η5
e7, S3] = 0.

We consider the exact sequence

π5
7

η∗

7→ π5
8

π∗

→ [S6 ∪η6
e8, S5] → π5

6

η∗

6→ π5
7

associated with the cofibration (C)6, where by (2.2) we have

π5
6 = Z2{η5}, π5

7 = Z2{η
2
5}, π5

8 = Z8{ν5}.

So we see that η∗

6 is an isomorphism. By (2.3) we have η∗

7(η
2
5) = η2

5 ◦η7 = 4ν5. Hence
we have

[S6 ∪η6
e8, S5] = Z4{π

∗(ν5)}.

Consider the following commutative diagram, which is deduced from the one
above:

0 π3
6

i∗







y

i∗







y

0 −−−→ π8(SU(3))
π∗

−−−→ [S6 ∪η6
e8, SU(3)]

j∗

−−−→ π6(SU(3)) −−−→ 0

p∗







y

p∗







y

p∗







y

π5
7

η∗

7−−−→ π5
8

π∗

−−−→ [S6 ∪η6
e8, S5]

j∗

−−−→ 0

∆







y

∆







y







y

π3
6

η∗

6−−−→ π3
7 −−−→ 0

Since p∗ : [S6 ∪η6
e8, SU(3)] → [S6 ∪η6

e8, S5] is an epimorphism, there exists an
element α ∈ [S6 ∪η6

e8, SU(3)] such that

p∗(α) = π∗(ν5).

Since j∗(2α) = 0, there exists β ∈ π8(SU(3)) such that

π∗(β) = 2α.

By the commutativity of the above diagram we have

π∗(p∗(β)) = 2p∗(α) = 2π∗(ν5).

By the exactness of the middle column we have

p∗(β) ≡ 2ν5 mod {Im η∗

7 = 4ν5}.
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Hence for some odd integer a we have

β = a[2ι5]ν5.

Thus we have

4α = 2π∗(β) = 2π∗([2ι5]ν5) 6= 0,

which implies that α is of order 8. Hence we have

[S6 ∪η6
e8, SU(3)] ∼= Z8.

Since π11(SU(3)) ∼= Z4 by (2.8), we obtain that [S3 ∧ SU(3), SU(3)] ∼= Z4 ⊕ Z8 in
the 2-local category. �

Remark 3.3. These two theorems are known to K. Maruyama–H. Ooshima as

π3(map (G, G)) [4].

Remark 3.4. The result for SU(3) is obtained by Hamanaka and Kono by an

entirely different method, unstable K-theory [2].

4 Homotopy types of Gk(Sp(2))

As an application of the previous section, we estimate the number of homotopy
types of the gauge groups of Sp(2) and SU(3). First we recall the following two
propositions from [7, Example 4.4 and Proposition 4.2].

Proposition 4.1. If Gk(Sp(n)) is homotopy equivalent to Gl(Sp(n)), then (n(2n +
1), k) = (n(2n + 1), l) for even n and (4n(2n + 1), k) = (4n(2n + 1), l) for odd n.

So, if Gk(Sp(2)) is homotopy equivalent to Gl(Sp(2)), then (10, k) = (10, l). There-
fore there are at least four homotopy types of Gk(Sp(2)).

Proposition 4.2. If Gk(SU(n)) is homotopy equivalent to Gl(SU(n)), then (n(n2 −
1)/(n, 2), k) = (n(n2 − 1)/(n, 2), l).

Observe that there is a minor numerical error in the integer for n(n2−1)/(n, 2) in
[7], that is, n+1 in Proposition 4.2 of [7] should be n. So, if Gk(SU(3)) is homotopy
equivalent to Gl(SU(3)), then (24, k) = (24, l). Therefore there are at least eight
homotopy types of Gk(SU(3)).

Now let us restate the following useful lemma due to Hamanaka-Kono [2, Lemma
3.2]. Let X be a connected loop space, with ∗ its base point, µ : X × X → X its
loop multiplication and ι : X → X its homotopy inverse. For an integer n we define
a self map n : X → X as follows: 0 = ∗, 1 = 1X , n = µ ◦ ((n − 1) × 1X) ◦ ∆ for a
positive integer n. If n < 0, then n = ι ◦ (−n).

Lemma 4.3. Let k, k
′

and d be non-zero integers satisfying (k, d) = (k
′

, d). Let

πj(X) be finite for any j, Y a finite complex and α : Y → X any continuous map.

If dα = 0, then there exists a homotopy equivalence

(k
′

/k)d : X → X

where k
′

◦ α ≃ (k
′

/k)d ◦ k ◦ α.
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Now we consider the following fibration for G = Sp(2) and SU(3):

Gk(G) → G
αk−→ Ω3

kG
∼= [S3 ∧ G, G] ,

where the map αk is equal to γ ◦ (kǫ ∧ iG) with γ the commutator map and ǫ a
generator of π3(G). By Theorems 3.1 and 3.2, we have the following results.

Theorem 4.4. 1. 40(γ ◦ ǫ ∧ iSp(2)) = 40αk = 0.

2. 24(γ ◦ ǫ ∧ iSU(3)) = 24αk = 0.

Using the localization technique stated in Lemma 4.3, we can obtain a self-
homotopy equivalence h of Ω3

0G such that h ◦ (k ◦ α1) ≃ (l ◦ α1) holds if

(40, k) = (40, l) for G = Sp(2), (4.1)

(24, k) = (24, l) for G = SU(3) .

Hence we obtain the following result.

Theorem 4.5. If (40, k) = (40, l), then Gk(Sp(2)) is homotopy equivalent to Gl(Sp(2)).

Therefore there are at most eight homotopy types of Gk(Sp(2)). Together with
Proposition 4.1, we conclude the following.

Corollary 4.6. The number of homotopy types of Gk(Sp(2)) is 4 or 6 or 8.

Together with Proposition 4.2 and (4.1) we recover the result due to Hamanaka-
Kono [2].

Theorem 4.7. Gk(SU(3)) is homotopy equivalent to Gl(SU(3) if and only if (24, k) =
(24, l).
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