
Higher order functions and Walsh coefficients

revisited

M. T. Iglesias C. Vidal∗ A. Verschoren

Abstract

The main purpose of this note is to present an alternative, more transparent
treatment of the results obtained in [4], which link the epistasis of a function
to its Walsh coefficients and its order.

1 Introduction

Throughout, we will denote by Ωℓ = {0, 1}ℓ the set of binary strings of length ℓ and
use binary representation to identify Ωℓ with the set of integers 0, . . . , 2ℓ −1. As the
results of this note should be viewed in the context of genetic algorithms (cf. [4], for
details), we will usually refer to real-valued functions on Ωℓ as fitness functions. It
is easy to see that any fitness function f may be written in polynomial form as

f(x0, . . . , xℓ−1) =
∑

i0...iℓ−1∈{0,1}

ai0...iℓ−1
xi0

0 . . . x
iℓ−1

ℓ−1 . (1)

We say that f is of order (at most) k, if it may be written as

∑

0≤i<ℓ

gi(si) +
∑

0≤i1<i2<ℓ

gi1i2(si1 , si2) + · · · +
∑

0≤i1<···<ik<ℓ

gi1···ik(si1, . . . , sik)

for some functions gi1···ir(si1, . . . , sir) on Ωr, which essentially describe the interaction
between the bits situated at the locations i1, i2, · · · , ir. It is not difficult to see that
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this is also equivalent to ai0...iℓ−1
= 0 for u(i0 . . . iℓ−1) > k, in the above form (1) of

f . Here, u(s) denotes the weight of the string s, i.e., the number of ones in s.

The Walsh coefficients of a fitness function f are easy to calculate by using its
vector representation tf = (f0, ..., f2ℓ−1) ∈ R

2ℓ

, where fi is the value of f on the binary
string i0 . . . iℓ−1 representing 0 ≤ i ≤ 2ℓ − 1.

Recall that for any string t ∈ Ωℓ, the associated Walsh function ψt is defined by
ψt(s) = (−1)s·t, where s · t denotes the scalar product of s and t. It is then well-
known (cf. [2], for example) that the set {ψt, t ∈ Ωℓ} forms a basis for the vector
space of real-valued functions on Ωℓ. Actually, considering the 2ℓ-dimensional matrix
Vℓ = (ψt(s))s,t∈Ωℓ

∈M2ℓ(Z) which satisfies the recursion formula

Vℓ+1 =

(
Vℓ Vℓ

Vℓ −Vℓ

)

,

with

V1 =

(
1 1
1 −1

)

,

and putting
vℓ = (vi) = 2−ℓVℓ f ,

it is easy to check that vi = vi(f) is the i−th coordinate of f with respect to the
above basis.

The vector w = Wℓf , where Wℓ = 2−ℓ/2Vℓ defines the Walsh transform w of f
and its components

wi = 2−ℓ/2vi

are the Walsh coefficients of f .

In [4], we proved the following result, which links the order of a fitness function
to its Walsh coefficients:

Theorem 1.1. For any function f : Ωℓ → R with Walsh coefficients wt, the follow-

ing statements are equivalent:

1. f has order k;

2. wt = 0 for all t ∈ Ωℓ with u(t) > k.

The proof of the implication 2) ⇒ 1) is easy. Indeed, as

f(s) = (Wℓw)s = 2−ℓ/2w0 + 2−ℓ/2
k∑

j=1

∑

0≤i1<···<ij<ℓ

(−1)(si1
+···+sij

)
w2i1+···+2ij ,

for any s ∈ Ωℓ, we have

f(s) =
k∑

j=1

∑

0≤i1<···<ij<ℓ

gi1···ij (s),

with

gi1···ij (s) = 2−ℓ/2



 w0

k
(

ℓ
j

) + (−1)(si1
+···+sij

)
w2i1+···+2ij



 ,
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for every 0 ≤ i1 < · · · < ij < ℓ.
The other implication was also proven in [4], the proof being very technical, how-

ever. In the next section, we will present a surprisingly straightforward alternative
to it.

Note 1.1. In [4], we linked the previous result to the notion of “higher epistasis”,
showing that the previous statements are also equivalent to asserting that ε∗k(f) = 0,
where ε∗k(f) denotes the normalized k-epistasis of f - we refer to [3, 4, 5] for defini-
tions and details. Specializing to the order one (or linear) case, the result thus says
that a fitness function is linear if and only if it has zero “standard” normalized epis-
tasis, and that this is also equivalent to all of its higher Walsh coefficients vanishing,
cf. [3] for details and the proper interpretation of this result in the framework of GA
hardness.

2 The “other” implication

As we just mentioned, in this section we will give an alternative proof of the impli-
cation 1) ⇒ 2) in the above theorem. For s0 ∈ {0, 1}, define fs0#...# : Ωℓ−1 → R

by

fs0#...#(s1, . . . , sℓ−1) = f(s0, s1, . . . , sℓ−1).

From

f0#...#(x1, . . . , xℓ−1) =
∑

i1...iℓ−1∈{0,1}

ci1...iℓ−1
xi1

1 . . . x
iℓ−1
ℓ−1

and

f1#...#(x1, . . . , xℓ−1) =
∑

i1...iℓ−1∈{0,1}

bi1...iℓ−1
xi1

1 . . . x
iℓ−1
ℓ−1 ,

it follows that

a0i1...iℓ−1
= ci1...iℓ−1

and

a1i1...iℓ−1
= bi1...iℓ−1

− ci1...iℓ−1
. (2)

Indeed, the very definition of f0#...# yields

f0#...#(x1, . . . , xℓ−1) =
∑

i0...iℓ−1∈{0,1}

ai0...iℓ−1
0i0xi1

1 . . . x
iℓ−1

ℓ−1

=
∑

i1...iℓ−1∈{0,1}

a0i1...iℓ−1
xi1

1 . . . x
iℓ−1

ℓ−1

=
∑

i1...iℓ−1∈{0,1}

ci1...iℓ−1
xi1

1 . . . x
iℓ−1

ℓ−1 .

The second relation may be derived similarly.

Let us denote by vs0

i1...iℓ−1
the Walsh coefficients vs0i1...iℓ−1

(fs0#...#) of fs0#...#.

We will need the following lemmas:
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Lemma 2.1. With notations as before, we have

vs0i1...iℓ−1
(f) = 2−1

(
v0

i1...iℓ−1
+ (−1)s0v1

i1...iℓ−1

)

resp.

vs0

i1...iℓ−1
= v0i1...iℓ−1

(f) + (−1)s0v1i1...iℓ−1
(f).

Proof. By a straightforward recursion argument, the result easily follows from:

vℓ = 2−ℓVℓ f = 2−ℓ

(
Vℓ−1 Vℓ−1

Vℓ−1 −Vℓ−1

)(
f0#...#

f1#...#

)

=

= 2−ℓ

(
2ℓ−1 [vℓ−1(f0#...#) + vℓ−1(f1#...#)]
2ℓ−1 [vℓ−1(f0#...#) − vℓ−1(f1#...#)]

)

.

�

Lemma 2.2. For any fitness function

f(x0, . . . , xℓ−1) =
∑

i0...iℓ−1∈{0,1}

ai0...iℓ−1
xi0

0 . . . x
iℓ−1

ℓ−1

on Ωℓ and any s = s0 . . . sℓ−1 ∈ Ωℓ, we have

as = (−2)u(s)
∑

t∈J(s)

vt

resp.

vs = (−1)u(s)
∑

t∈J(s)

2−u(t)at,

where J(s) = {t ∈ Ωℓ; si = 1 ⇒ ti = 1}.

Proof. First, consider s = 1s1 . . . sℓ−1 = 1ŝ, then u(s) = u(ŝ) + 1. Using (2), lemma
2.1 and an easy induction argument, it follows that:

a1ŝ = bŝ − cŝ

= (−2)u(ŝ)
∑

t1...tℓ−1∈J(ŝ)

v1
t1...tℓ−1

− v0
t1...tℓ−1

= (−2)u(ŝ)
∑

t1...tℓ−1∈J(ŝ)

(−2)v1t1...tℓ−1
(f)

= (−2)u(ŝ)+1
∑

t1...tℓ−1∈J(ŝ)

v1t1...tℓ−1
(f)

= (−2)u(s)
∑

t∈J(s)

vt.

The corresponding expression of v1ŝ in terms of at may be derived similarly.
Next, consider s = 0ŝ. In this case u(s) = u(ŝ), and it follows, in a similar way,

that
v0ŝ = 2−1[v0

ŝ
+ v1

ŝ
]

= 2−1(−1)u( ŝ ) ∑

t̂∈J(ŝ)

2−u( t̂ )
(
ct̂ + bt̂

)

= (−1)u(s) ∑

t̂∈J(ŝ)

2−u( t̂ )ct̂ + (−1)u(s) ∑

t̂∈J(ŝ)

2−u( t̂ )−1
(
bt̂ − ct̂

)

= (−1)u(s) ∑

t̂∈J(ŝ)

2−u( t̂ )a0t̂ + (−1)u(s) ∑

t̂∈J(ŝ)

2(−u( t̂ )+1)a1t̂

= (−1)u(s) ∑

t∈J(s)
2−u(t)at.
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The corresponding expression of a0ŝ in terms of vt may be obtained in a similar
way. �

The following corollary now clearly proves the implication 1) ⇒ 2) in the above
theorem:

Corollary 2.3. For any fitness function f : Ωℓ → R with polynomial form

f(x0, . . . , xℓ−1) =
∑

i0...iℓ−1∈{0,1}

ai0...iℓ−1
xi0

0 . . . x
iℓ−1

ℓ−1 ,

and 1 ≤ k ≤ ℓ, the following assertions are equivalent:

1. as = 0 for any s ∈ Ωℓ with u(s) > k;

2. vs = 0 for any s ∈ Ωℓ with u(s) > k.

Proof. This is an immediate consequence of 2.2 and the fact that for any t ∈ J(s),
we have u(t) ≥ u(s). �

Corollary 2.4. With notations as before, the following assertions are equivalent:

1. f is “strictly” of order k, i.e., as = 0 for any s ∈ Ωℓ with u(s) > k and there

exists t ∈ Ωℓ with u(t) = k and at 6= 0;

2. vs = 0 for any s ∈ Ωℓ with u(s) > k and there exists t ∈ Ωℓ with u(t) = k and

vt 6= 0.

Proof. If we suppose 1) with at 6= 0 and u(t) = k, we can use 2.2 and put:

at = (−2)k
∑

z∈J(t)

vz = (−2)k
∑

z∈J(t) : u(z)=k

vz,

so there exists z ∈ J(t) with u(z) = k and vz 6= 0, which yields 2). The other
implication may be proved similarly. �
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