A Subordination Result with Generalized Sakaguchi Univalent Functions Related to Complex Order

H. Özlem Güney Shigeyoshi Owa

Abstract

In the present paper, we obtain an interesting subordination relation for a family of analytic functions of complex order by using subordination theorem.

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U}=\{z\in\mathbb{C}\,:\,|z|<1\}$. Also, let $\mathcal C$ denote

familiar class of functions $f(z) \in \mathcal{A}$ which are convex in \mathbb{U} . A function f(z) in \mathcal{A} is said to be starlike of complex order b if and only if it satisfies

$$Re\left\{1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right\}>0\ z\in\mathbb{U}.$$

This class is denoted by $S^*(b)$.

Received by the editors January 2007.

Communicated by F. Brackx.

2000 Mathematics Subject Classification: 30C45; 33C20.

Key words and phrases: analytic function, univalent function, Sakaguchi function, convex function, subordinating factor sequence.

A function f(z) in \mathcal{A} is said to be convex of complex order b if and only if it satisfies

$$Re\left\{1 + \frac{1}{b}\left(\frac{zf''(z)}{f'(z)}\right)\right\} > 0 \ z \in \mathbb{U}.$$

This class is denoted by K(b).

A function f(z) in A is called to be Sakaguchi function if and only if it satisfies

$$Re\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > 0, z \in \mathbb{U}.$$

This class is denoted by S_S [1].

A function f(z) in \mathcal{A} is called to be Sakaguchi function of order α if and only if it satisfies

$$Re\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > \alpha \ ; 0 \le \alpha < \frac{1}{2} \ z \in \mathbb{U}.$$

This class is denoted by $S_S(\alpha)$ [2]. However, the class $T_S(\alpha)$ is defined by $f(z) \in T_S(\alpha) \Leftrightarrow zf'(z) \in S_S(\alpha)$.

A function f(z) in \mathcal{A} is said to be Generalized Sakaguchi function of order α if and only if it satisfies

$$Re\left\{\frac{(1-t)zf'(z)}{f(z)-f(tz)}\right\} > \alpha \ ; 0 \le \alpha < 1 \,, t \in \mathbb{C} \,, |t| \le 1 \,, t \ne 1 \,, z \in \mathbb{U}.$$

This class is denoted by $S(\alpha, t)$ [3]. However, the class $T(\alpha, t)$ is defined by $f(z) \in T(\alpha, t) \Leftrightarrow zf'(z) \in S(\alpha, t)$.

A function $f(z) \in A$ is said to be in the class $S(b, \lambda, t)$ if and only if it satisfies the inequality

$$Re\left\{1 + \frac{1}{b}\left(\frac{(1-t)(zf'(z) + \lambda z^2 f''(z))}{(1-\lambda)(f(z) - f(tz)) + \lambda (zf'(z) - tzf'(tz))} - 1\right)\right\} > 0$$

where $t \in \mathbb{C}$, $|t| \le 1$, $t \ne 1$, $b \in \mathbb{C} - \{0\} \ 0 \le \lambda \le 1$ and $z \in \mathbb{U}$.

Güney [4] proved that if the function f(z) defined by (1.1) and

(1.2)
$$\sum_{n=2}^{\infty} (1 + \lambda(n-1))(|n-u_n| + |b||u_n|)|a_n| \le |b|,$$

then $f(z) \in S(b, \lambda, t)$ where $t \in \mathbb{C}$, $|t| \leq 1$, $t \neq 1$, $u_n = \sum_{j=0}^{n-1} t^j$, $b \in \mathbb{C} - \{0\}$, $0 \leq \lambda \leq 1$ and $z \in \mathbb{U}$. We obtain the various subclasses of \mathcal{A} can be represented as $S(b, \lambda, t)$ for suitable choices of b, λ , and t. For example,

$$S(b, 0, 0) \equiv S^*(b),$$

$$S(b, 1, 0) \equiv K(b),$$

$$S(1 - \alpha, 0, -1) \equiv S_S(\alpha)$$

and

$$S(1 - \alpha, 0, t) \equiv S(\alpha, t).$$

Let $S[b, \lambda, t]$ denote the class of functions $f(z) \in \mathcal{A}$ whose coefficients satisfy the condition (1.2).

We note that

$$S[b, \lambda, t] \subseteq S(b, \lambda, t).$$

If we consider

$$f(z) = z + \sum_{n=2}^{\infty} \frac{b}{n(n-1)(1+\lambda(n-1))(|n-u_n|+|b||u_n|)} z^n$$

with

$$a_n = \frac{b}{n(n-1)(1+\lambda(n-1))(|n-u_n|+|b||u_n|)},$$

then we have that

$$\sum_{n=2}^{\infty} (1 + \lambda(n-1))(|n - u_n| + |b||u_n|)|a_n|$$

$$= |b| \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$= |b|.$$

Therefore, we see that f(z) is in the class $S[b, \lambda, t]$.

Evidently, we have

$$S[b, 0, 0] \equiv S^*[b],$$

$$S[b, 1, 0] \equiv K[b],$$

$$S[1 - \alpha, 0, -1] \equiv S_S[\alpha]$$

and

$$S[1 - \alpha, 0, t] \equiv S[\alpha, t].$$

In this paper, we prove an interesting subordination result for the class $S[b, \lambda, t]$. In our proposed investigation of functions in the class $S[b, \lambda, t]$, we need the following definitions and lemma.

Definition 1. Given two functions $f, g \in \mathcal{A}$ where f(z) is given by (1.1) and g(z) is defined by

$$g(z) = z + \sum_{n=2}^{\infty} c_n z^n.$$

The Hadamard product f * g is defined by

$$(f*g)(z) = z + \sum_{n=2}^{\infty} a_n c_n z^n, \ z \in \mathbb{U}.$$

Definition 2. (Subordination Principle) For two functions f and g analytic in \mathbb{U} , we say that the function f(z) is subordinate to g(z) in \mathbb{U} and write $f(z) \prec$

g(z), $z \in \mathbb{U}$, if there exists a Schwarz function w(z), analytic in \mathbb{U} with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)), $z \in \mathbb{U}$. In particular, if the function g(z) is univalent in \mathbb{U} , the above subordination is equivalent to f(0) = g(0) and $f(\mathbb{U}) \subseteq g(\mathbb{U})$.

Definition 3. (Subordinating Factor Sequence) A sequence $\{c_n\}_{n=1}^{\infty}$ of complex numbers is said to be a *Subordinating Factor Sequence* if for the function f(z) of the form (1.1) is analytic, univalent and convex in \mathbb{U} , we have the subordination given by

(1.3)
$$\sum_{n=1}^{\infty} a_n c_n z^n \prec f(z); \qquad z \in \mathbb{U}, a_1 = 1.$$

Lemma. The sequence $\{b_n\}_{n=1}^{\infty}$ is Subordinating factor sequence iff

(1.4)
$$\operatorname{Re}\left\{1 + 2\sum_{n=1}^{\infty} b_n z^n\right\} > 0.$$

The above lemma due to Wilf [5].

2 Main Theorem

Theorem . If $f(z) \in S[b, \lambda, t]$ then

(2.1)
$$\frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)}(f*g)(z) \prec g(z)$$

for every function $q(z) \in \mathcal{C}$ and

(2.2)
$$Ref(z) > -1 - \frac{|b|}{(1+\lambda)(|2-u_2|+|b||u_2|)}.$$

The constant $\frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)}$ is the best estimate.

Proof. Let $f(z) \in S[b, \lambda, t]$ and $g(z) = z + \sum_{n=2}^{\infty} c_n z^n \in \mathcal{C}$. Then

$$\frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)}(f*g)(z)$$

$$=\frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)}(z+\sum_{n=2}^{\infty}a_nc_nz^n).$$

Thus, by Definition 3, (2.1) will hold if

$$\left\{ \frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)} a_n \right\}_{n=1}^{\infty}$$

is a subordinating factor sequence with $a_1 = 1$. In view of Lemma, this is equivalent to

$$(2.3) Re\left\{1 + 2\sum_{n=1}^{\infty} \frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)} a_n z^n\right\} > 0.$$

Now because $(1 + \lambda(n-1))(|n-u_n| + |b||u_n|)$ is increasing function of n, we have

$$Re\left\{1 + \frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{|b|((1+\lambda)|u_2|+1) + (1+\lambda)|2-u_2|} \sum_{n=1}^{\infty} a_n z^n\right\}$$

$$= Re\left\{1 + \frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{|b|((1+\lambda)|u_2|+1) + (1+\lambda)|2-u_2|} z + \frac{1}{|b|((1+\lambda)|u_2|+1) + (1+\lambda)|2-u_2|} \sum_{n=2}^{\infty} (1+\lambda)(|2-u_2|+|b||u_2|) a_n z^n\right\}$$

$$\geq 1 - \frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{|b|((1+\lambda)|u_2|+1) + (1+\lambda)|2-u_2|} r - \frac{1}{|b|((1+\lambda)|u_2|+1) + (1+\lambda)|2-u_2|} \sum_{n=2}^{\infty} (1+\lambda(n-1))(|n-u_n|+|b||u_n|) a_n r^n$$

$$> 1 - \frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{|b|((1+\lambda)|u_2|+1) + (1+\lambda)|2-u_2|} r - \frac{|b|}{|b|((1+\lambda)|u_2|+1) +$$

Hence, (2.3) holds true in \mathbb{U} and also the subordination result (2.1) asserted by Theorem . The inequality (2.2) follows by taking $g(z) = \frac{z}{1-z} = \sum_{n=1}^{\infty} z^n \in \mathcal{C}$ in (2.1).

Now, consider the function

$$t(z) = z - \frac{|b|}{(1+\lambda)(|2-u_2|+|b||u_2|)}z^2$$

which is a member of the class $S[b, \lambda, t]$. Then by using (2.1), we have

$$\frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)}t(z) \prec \frac{z}{1-z} \qquad ; \qquad z \in \mathbb{U}.$$

It is easily verified that

$$minRe\left\{\frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)}t(z)\right\} = -\frac{1}{2} \qquad ; \qquad z \in \mathbb{U}.$$

Then the constant $\frac{(1+\lambda)(|2-u_2|+|b||u_2|)}{2(|b|((1+\lambda)|u_2|+1)+(1+\lambda)|2-u_2|)}$ cannot be replaced by a larger one, which completes the proof of Theorem.

Corollary 1. Let $f(z) \in S^*[b]$, then for every function $g \in \mathcal{C}$

$$\frac{(1+|b|)}{2(2|b|+1)}(f*g)(z) \prec g(z) \tag{1}$$

and

$$Ref(z) > -1 - \frac{|b|}{1 + |b|}.$$
 (2)

The constant $\frac{(1+|b|)}{2(2|b|+1)}$ is the best estimate.

Corollary 2. Let $f(z) \in K[b]$, then for every function $g \in \mathcal{C}$

$$\frac{1+|b|}{3|b|+2}(f*g)(z) \prec g(z)$$
 (3)

and

$$Ref(z) > -1 - \frac{|b|}{2(1+|b|)}$$
 (4)

The constant $\frac{1+|b|}{3|b|+2}$ is the best estimate.

Corollary 3. Let $f(z) \in S_S[\alpha, t]$, then for every function $g \in C$

$$\frac{(|2-u_2|+(1-\alpha)|u_2|)}{2((1-\alpha)(|u_2|+1)+|2-u_2|)}(f*g)(z) \prec g(z)$$
 (5)

and

$$Ref(z) > -1 - \frac{(1-\alpha)}{(|2-u_2| + (1-\alpha)|u_2|)}$$
 (6)

The constant $\frac{(|2-u_2|+(1-\alpha)|u_2|)}{2((1-\alpha)(|u_2|+1)+|2-u_2|)}$ is the best estimate.

References

- [1] K. Sakaguchi, On certain univalent mapping, J.Math.Soc.Japan 11(1959), 72-75.
- [2] N.E.Cho, O.S.Kwon and S.Owa, Certain subclasses of Sakaguchi functions, Southeast Asian Bull.Math. 17(1993), 121-126.
- [3] S. Owa, T. Sekine and R. Yamakawa, On Sakaguchi type functions, *Applied Mathematics and Comp. 2006*.
- [4] H.Ö. Güney, On Generalized Sakaguchi Univalent Functions Related to complex order, Int. Symp. Complex Function Theory and Appl. Brasov, Romania 1-5 September 2006.
- [5] H.S. Wilf, Subordinating factor sequences for convex maps of the unit circle, *Proc. Amer. Math. Soc.* 12(1961),689-693.

Department of Mathematics Faculty of Science and Art, University of Dicle 21280, Diyarbakır/TURKEY ozlemg@dicle.edu.tr

Department of Mathematics Kinki University, Higashi-Osaka, Osaka 577-8520, JAPAN owa@math.kindai.ac.jp