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Abstract

We consider the problem: given a regular form (linear functional) v, find
all the regular forms u which satisfy the relation xu = λx2v, λ ∈ C − {0}.
We give the second-order recurrence relation of the orthogonal polynomial
sequence with respect to u. Some examples are studied.

Introduction

In the present paper, we intend to study the following problem: Let v be a regular
form (linear functional), R and D are non-zero polynomials. Find all regular forms
u satisfying:

Ru = Dv. (1)

This problem has been studied in some particular cases. In fact the product of a
linear form by a polynomial (R(x)=1) is studied in [5,6,7] and the inverse problem
(D(x) = λ, λ ∈ C−{0}) is considered in [12,15,19,21]. More generally, when R and
D have non-trivial common factor the authors of [13] found necessary and sufficient
conditions for u to be a regular form. The case where R = D is treated in [2,3,12,14].
The aim of this contribution is to analyze the case in which R(x) = x and D(x) =
λx2, λ ∈ C − {0}. We remark that R and D have a common factor and R 6= D.
In fact, the inverse problem is studied in [23,24]. On the other hand, this situation
generalizes the case treated in [14] ( see (1.2) below).
In the first section, we will give the regularity conditions and the coefficients of the
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second-order recurrence relation satisfied by the monic orthogonal sequence (MOPS)
with respect to u. We will study the case where v is a symmetric form: the regularity
conditions become simpler. The particular case where v is a symmetric positive
definite form is analyzed. The second section is devoted to the case where v is
a semi-classical. We will prove that u is also semi-classical form and some results
concerning the class of u are given. In the last section, some examples will be treated.
The regular forms found in theses examples are semi-classical of class s ∈ {1, 2}. The
integral representations of these regular forms and they coefficients of the second-
order recurrence satisfied by the MOPS with respect to u are given. As a result, we
also found that the list given in [4] is not complete ( see proposition 3.2 below).

1 The problem xu = λx2v

1.1 The main problem

Let P be the vector space of polynomials with coefficients in C and P ′ its dual. We
denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P. Let us recall that a form u is called
regular if there exists a monic polynomial sequence {Pn}n≥0, degPn = n, n ≥ 0
such that 〈u, PnPm〉 = rnδn,m, n,m ≥ 0, rn 6= 0, n ≥ 0. The left-multiplication hw
of the form w by a polynomial h is defined by 〈hw, p〉 := 〈w, hp〉 for all p ∈ P.
We consider the following problem: given a regular form v, find all regular forms u
satisfying

xu = λx2v , λ ∈ C − {0}, (1.1)

with the constraints
(u)0 = 1 , (v)0 = 1,

where (u)n := 〈u, xn〉, n ≥ 0, are the moments of u. This is equivalent to

u = λxv + (1 − λ(v)1)δ, (1.2)

where 〈δ, f〉 = f(0).
We see that when 1 − λ(v)1 6= 0 and xv is regular, we meet again the problem
studied in [14].
We suppose that the form v possesses the following integral representation:

〈v, f〉 =

+∞
∫

−∞

V (x)f(x)dx, for each polynomialf,

where V is a locally integrable function with rapid decay. Then the form u is
represented by

〈u, f〉 = λ

+∞
∫

−∞

xV (x)f(x)dx+ (1 − λ(v)1)f(0). (1.3)

Let {Sn}n≥0 denote the sequence of monic orthogonal polynomials with respect to
v, we have

S0(x) = 1 , S1(x) = x− ξ0 ,

Sn+2(x) = (x− ξn+1)Sn+1(x) − σn+1Sn(x), n ≥ 0,
(1.4)
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with

ξn =
〈v, xS2

n(x)〉
〈v, S2

n〉
, σn+1 =

〈v, S2
n+1〉

〈v, S2
n〉

, n ≥ 0. (1.5)

When u is regular, let {Zn}n≥0 be the corresponding monic orthogonal sequence

Z0(x) = 1 , Z1(x) = x− β0 ,

Zn+2(x) = (x− βn+1)Zn+1(x) − γn+1Zn(x), n ≥ 0,
(1.6)

where γn+1 6= 0 for all n ≥ 0.
From (1.1), we know that the existence of the sequence {Zn}n≥0 is among all the
strictly quasi-orthogonal sequences of order one with respect to λx2v = w, (w is not
necessarily a regular form) [8,16,18,20]. This is

x2Z0(x) = S2(x) + c1S1(x) + b0,

x2Zn+1(x) = Sn+3(x) + cn+2Sn+2(x) + bn+1Sn+1(x) + anSn(x), n ≥ 0,
(1.7)

with an 6= 0 , n ≥ 0.

By virtue of (1.7), we can deduce

Sn+3(0) + cn+2Sn+2(0) + bn+1Sn+1(0) + anSn(0) = 0, n ≥ 0. (1.8)

xZn+1(x) = (θ0Sn+3)(x) + cn+2(θ0Sn+2)(x) + bn+1(θ0Sn+1)(x) + an(θ0Sn)(x),

n ≥ 0. (1.9)

Zn+1(x) = (θ2
0Sn+3)(x) + cn+2(θ

2
0Sn+2)(x) + bn+1(θ

2
0Sn+1)(x) + an(θ2

0Sn)(x),

n ≥ 0, (1.10)

with in general (θcf)(x) := f(x)−f(c)
x−c

, c ∈ C , f ∈ P .

Lemma 1.1. Let {Zn}n≥0 be a sequence of polynomials satisfying (1.7) where an, bn
and cn are complex numbers such that an 6= 0 for all n ≥ 0. The sequence {Zn}n≥0

is orthogonal with respect to u if and only if

〈u, Zn+1〉 = 0, n ≥ 0. (1.11)

Proof.

The condition (1.11) is necessary from the definition of the orthogonality of {Zn}n≥0

with respect to u.
For 0 ≤ k ≤ n we have

〈u, xk+1Zn+1(x)〉 = 〈xu, xkZn+1(x)〉
= λ〈v, xk+2Zn+1(x)〉, n ≥ 0 (by (1.1)).

Taking the relation (1.7) into account, we get

〈u, xk+1Zn+1(x)〉 =λ〈v, xkSn+3(x)〉 + λcn+2〈v, xkSn+2(x)〉
+ λbn+1〈v, xkSn+1(x)〉 + λan〈v, xkSn(x)〉

From the orthogonality of {Sn}n≥0, we obtain

〈u, xk+1Zn+1(x)〉 = 0, 0 ≤ k ≤ n− 1, n ≥ 1,

〈u, xn+1Zn+1(x)〉 = λan〈v, S2
n〉 6= 0, n ≥ 0.
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Consequently, the precedent relation and (1.11) prove that {Zn}n≥0 is orthogonal
with respect to u. This proves the Lemma.

Based on (1.7) and (1.11), we get

0 = Sn+3(0) + cn+2Sn+2(0) + bn+1Sn+1(0) + anSn(0), n ≥ 0,

0 = S ′
n+3(0) + cn+2S

′
n+2(0) + bn+1S

′
n+1(0) + anS

′
n(0), n ≥ 0,

0 = 〈u, Zn+1〉
= 〈u, θ2

0Sn+3〉 + cn+2〈u, θ2
0Sn+2〉 + bn+1〈u, θ2

0Sn+1〉 + an〈u, θ2
0Sn〉, n ≥ 0, (1.12)

with the following initial conditions:

0 = S2(0) + c1S1(0) + b0S0(0),

0 = S ′
2(0) + c1S

′
1(0) + b0S

′
0(0).

(1.13)

If we denote

∆n :=

Sn+2(0) Sn+1(0) Sn(0)

S ′
n+2(0) S ′

n+1(0) S ′
n(0)

〈u, θ2
0Sn+2〉 〈u, θ2

0Sn+1〉 〈u, θ2
0Sn〉

, n ≥ 0. (1.14)

From the Cramer rule, we get

∆nan = −∆n+1, n ≥ 0. (1.15)

∆nbn+1 =

Sn+2(0) −Sn+3(0) Sn(0)

S ′
n+2(0) −S ′

n+3(0) S ′
n(0)

〈u, θ2
0Sn+2〉 −〈u, θ2

0Sn+3〉 〈u, θ2
0Sn〉

, n ≥ 0. (1.16)

∆ncn+2 =

−Sn+3(0) Sn+1(0) Sn(0)

−S ′
n+3(0) S ′

n+1(0) S ′
n(0)

−〈u, θ2
0Sn+3〉 〈u, θ2

0Sn+1〉 〈u, θ2
0Sn〉

, n ≥ 0. (1.17)

Proposition 1.2. The form u is regular if and only if ∆n 6= 0, n ≥ 0. In this case

the coefficients of the second-order recurrence relation of {Zn}n≥0 are given by the

following formulas:

γ1 = −λ∆1

∆0
. (1.18)

γn+2 =
∆n∆n+2

∆2
n+1

σn+1, n ≥ 0. (1.19)

β0 = λb0. (1.20)

βn+1 = −bn+1
∆n

∆n+1
σn+1 + cn+2 − ξn+2 − ξn+1, n ≥ 0. (1.21)

Proof.

Necessity.
Through (1.14), we have

∆0 = −S ′
1(0)〈u, θ2

0S2〉 = −1. (1.22)
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{Zn}n≥0 is orthogonal with respect to u, hence it is strictly quasi-orthogonal of
order one with respect to x2v, which satisfies (1.7) with an 6= 0, n ≥ 0. This implies
∆n 6= 0, n ≥ 0. Assuming the contrary, there exists an n0 ≥ 1 such that ∆n0

= 0.
Then from (1.15), ∆0 = 0 becomes a contradiction.
Sufficiency.
Let

c1 = −S ′
2(0). (1.23)

b0 = −c1S1(0) − S2(0). (1.24)

Then the initial conditions (1.13) are satisfied.
Furthermore, the system (1.12) is a Cramer system whose solution is given by (1.15),
(1.16) and (1.17). The numbers an, bn and cn (n ≥ 0) define a sequence of polyno-
mials {Zn}n≥0 by (1.7). Therefore, it follows from (1.12) and Lemma 1.1 that u is
regular ( {Zn}n≥0 is the corresponding monic orthogonal polynomial sequence).
Moreover, we have

〈u, Z2
n+1〉 = 〈u, xn+1Zn+1(x)〉 = λ〈v, xn+2Zn+1(x)〉, n ≥ 0,

by (1.7) and the orthogonality of {Sn}n≥0. We get

〈u, Z2
n+1〉 = λan〈v, S2

n〉, n ≥ 0.

Taking the relation (1.15) into account, we obtain

〈u, Z2
n+1〉 = −λ∆n+1

∆n

〈v, S2
n〉, n ≥ 0. (1.25)

Making n = 0 in the latter equation, we get (1.18).
On the other hand, we have

γn+2 =
〈u, Z2

n+2〉
〈u, Z2

n+1〉
, n ≥ 0.

Based on the relation (1.25), we can deduce (1.19).
We have β0 = 〈u, x〉 = λ〈v, x2Z0(x)〉 and by (1.7) and the orthogonality of {Sn}n≥0

we obtain (1.20).
From (1.9) and the orthogonality of {Zn}n≥0, we obtain

〈u, xZ2
n+1(x)〉 = 〈u, Zn+1θ0Sn+3〉 + cn+2〈u, Z2

n+1〉, n ≥ 0. (1.26)

Using (1.4), we have

θ0Sn+3 = Sn+2 − ξn+2θ0Sn+2 − σn+2θ0Sn+1, n ≥ 0.

Through the latter relation and the orthogonality of {Zn}n≥0, we get

〈u, Zn+1θ0Sn+3〉 = 〈u, Zn+1Sn+2〉 − ξn+2〈u, Z2
n+1〉, n ≥ 0.

However, we have

〈u, Zn+1Sn+2〉 = 〈xu, Zn+1Sn+1〉 − ξn+1〈u, Z2
n+1〉 (by(1.4))

= λ〈v, x2Zn+1(x)Sn+1(x)〉 − ξn+1〈u, Z2
n+1〉, n ≥ 0, (by (1.1)).



316 O.F. Kamech – M. Mejri

On account of (1.7) and the orthogonality of {Sn}n≥0, we get

〈u, Zn+1Sn+2〉 = λbn+1〈v, S2
n+1〉 − ξn+1〈u, Z2

n+1〉, n ≥ 0,

then the latter becomes

〈u, Zn+1θ0Sn+3〉 = λbn+1〈v, S2
n+1〉 − (ξn+1 + ξn+2)〈u, Z2

n+1〉, n ≥ 0.

Therefore, (1.26) can be written as the following

〈u, xZ2
n+1(x)〉 = λbn+1〈v, S2

n+1〉 + (cn+2 − ξn+1 − ξn+2)〈u, Z2
n+1〉, n ≥ 0.

As a matter of fact, we get

βn+1 =
〈u, xZ2

n+1(x)〉
〈u, Z2

n+1〉
= λbn+1

〈v, S2
n+1〉

〈u, Z2
n+1〉

+ cn+2 − ξn+1 − ξn+2, n ≥ 0.

By virtue of (1.25), we can deduce (1.21).

1.2 The computation of ∆
n

As we have seen in the proposition 1.2, it is very important to have an explicit
expression of ∆n.
First, we need the following lemma:
Lemma 1.3. The following formulas hold

〈u, θ0Sn〉 = λ〈v, Sn〉 − λSn(0) + (1 − λ(v)1)S
′
n(0), n ≥ 0. (1.27)

〈u, θ2
0Sn〉 =

1

2
S ′′

n(0) + λ(S
(1)
n−1(0) − S ′

n(0) − 1

2
(v)1S

′′
n(0)), n ≥ 0, (1.28)

〈v, S2
n〉 = Sn(0)S(1)

n (0) − Sn+1(0)S
(1)
n−1(0), n ≥ 0, (1.29)

with S(1)
n (x) = 〈v, Sn+1(x)−Sn+1(ξ)

x−ξ
〉, n ≥ 0 and S

(1)
−1(x) = 0.

Proof.

Both formulas (1.27) and (1.28) can be deduced from (1.2).
The formula (1.29) is proved in [23].
By (1.4), we successively obtain the following relations:

Sn+2(0) = −ξn+1Sn+1(0) − σn+1Sn(0), n ≥ 0. (1.30)

S ′
n+2(0) = Sn+1(0) − ξn+1S

′
n+1(0) − σn+1S

′
n(0), n ≥ 0. (1.31)

(θ0Sn+2)(x) = Sn+1(x) − ξn+1(θ0Sn+1)(x) − σn+1(θ0Sn)(x), n ≥ 0. (1.32)

(θ2
0Sn+2)(x) = (θ0Sn+1)(x) − ξn+1(θ

2
0Sn+1)(x) − σn+1(θ

2
0Sn)(x), n ≥ 0. (1.33)

Using (1.33), we get

〈u, θ2
0Sn+2〉 = 〈u, θ0Sn+1〉 − ξn+1〈u, θ2

0Sn+1〉 − σn+1〈u, θ2
0Sn〉, n ≥ 0. (1.34)

Taking the relations (1.30), (1.31) and (1.34) into account, we get (1.14)
written as the following:

∆n =

0 Sn+1(0) Sn(0)

Sn+1(0) S ′
n+1(0) S ′

n(0)

〈u, θ0Sn+1〉 〈u, θ2
0Sn+1〉 〈u, θ2

0Sn〉
, n ≥ 0,
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that is

∆n = −Sn+1(0)
{

Sn+1(0)〈u, θ2
0Sn〉 − Sn(0)〈u, θ2

0Sn+1〉
}

+ 〈u, θ0Sn+1〉
{

Sn+1(0)S ′
n(0) − Sn(0)S ′

n+1(0)
}

, n ≥ 0.

From the relations (1.27), (1.28) and (1.29), we get

∆n = λ
{

Sn+1(0)〈v, S2
n〉 − (v)1

(1

2
Sn+1(0)χ′

n(0) − S ′
n+1(0)χn(0)

)

}

+
1

2
Sn+1(0)χ′

n(0) − S ′
n+1(0)χn(0), n ≥ 0, (1.35)

with
χn(x) = Sn(x)S

′
n+1(x) − Sn+1(x)S

′
n(x), n ≥ 0. (1.36)

If the form u is regular, for (1.15), (1.16) and (1.17) we obtain

an = −∆n+1

∆n
, n ≥ 0. (1.37)

bn+1 = ∆−1
n (λEn + Fn) + σn+2, n ≥ 0. (1.38)

cn+2 = −∆−1
n (λGn +Hn) + ξn+2, n ≥ 0, (1.39)

where

En = Sn+2(0)
(

Θn(0) +
1

2
(v)1µ

′
n(0)

)

− (v)1S
′
n+2(0)µn(0), n ≥ 0. (1.40)

Fn = −1

2
Sn+2(0)µ′

n(0) + S ′
n+2(0)µn(0), n ≥ 0. (1.41)

Gn = Sn+2(0)
(

〈v, S2
n〉 −

1

2
(v)1χ

′
n(0)

)

+ (v)1χn(0)S ′
n+2(0), n ≥ 0. (1.42)

Hn = −S ′
n+2(0)χn(0) +

1

2
Sn+2(0)χ′

n(0), n ≥ 0, (1.43)

with

µn(x) = Sn+2(x)S
′
n(x) − S ′

n+2(x)Sn(x), n ≥ 0. (1.44)

Θn(x) = Sn(x)S
(1)
n+1(x) − Sn+2(x)S

(1)
n−1(x), n ≥ 0. (1.45)

1.3 The case where v is a symmetric form

In the following sequel we will assume that v is a symmetric regular form.
We need the following result:
Lemma 1.4. [23] When {Sn}≥0 is a symmetric sequence, we have

S2n(0) =
(−1)n

σ2n+1

n
∏

µ=0

σ2µ+1 , n ≥ 0 , S2n+1(0) = 0 , n ≥ 0.

S
(1)
2n+1(0) = 0 , n ≥ 0 , S ′

2n(0) = 0 , n ≥ 0.

S ′
2n+1(0) = (−1)nΛn

n
∏

µ=0

σ2µ , n ≥ 0 , S ′′
2n+1(0) = 0 , n ≥ 0,
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where

Λn =
n

∑

ν=0

1

σ2ν+1

ν
∏

µ=0

σ2µ+1

σ2µ
, n ≥ 0 , (1.46)

with σ0 = (u)0 = 1.

Proposition 1.5. We have the following formulas:






















∆2n =
(−1)n+1

σ2n+1

( n
∏

µ=0

σ2µ

)2( n
∏

µ=0

σ2µ+1

)

Λ2
n, n ≥ 0.

∆2n+1 = λ(−1)n+1

( n
∏

µ=0

σ2µ

)( n
∏

µ=0

σ2µ+1

)2

, n ≥ 0,
(1.47)

Proof.

By virtue of lemma 1.4, for (1.36) we get

χ2n(0) =
Λn

σ2n+1

2n+1
∏

µ=0

σµ, n ≥ 0 ; χ2n+1(0) = Λn

2n+1
∏

µ=0

σµ, n ≥ 0.

χ′
n(0) = 0, n ≥ 0

(1.48)

When v is a symmetric form, we have (v)1 = 0, then (1.35) becomes

∆n = λSn+1(0)〈v, S2
n〉 +

1

2
Sn+1(0)χ′

n(0) − S ′
n+1(0)χn(0), n ≥ 0,

by (1.48), we get (1.47).

Theorem 1.6. The form u is regular if and only if Λn 6= 0, n ≥ 0.
Proof.

We get the desired result from the proposition 1.5.

Corollary 1.7. When v is a positive definite form u is a regular form.

Proof.

If v is a positive definite then σn > 0. Therefore, we obtain Λn > 0, n ≥ 0, thus the
desired result.

Proposition 1.8. When u is a regular form, we have

a2n = −λσ2n+1Λ
−2
n

n
∏

µ=0

σ2µ+1

σ2µ
, n ≥ 0,

a2n+1 = λ−1σ2
2n+2Λ

2
n+1

n
∏

µ=0

σ2µ

σ2µ+1

, n ≥ 0.

(1.49)

b2n = σ2n+1, n ≥ 0,

b2n+1 = σ2n+2 + Λ−1
n

n
∏

µ=0

σ2µ+1

σ2µ
, n ≥ 0.

(1.50)

c1 = 0,

c2n+2 = −λΛ−2
n

n
∏

µ=0

σ2µ+1

σ2µ

, n ≥ 0,

c2n+3 = λ−1ΛnΛn+1σ2n+2

n
∏

µ=0

σ2µ

σ2µ+1
, n ≥ 0.

(1.51)



The product of a regular form by a polynomial generalized 319

Proof.

On account of (1.47) and (1.37), we get (1.49).
By (1.13), it follows that

b0 = σ1 , c1 = 0. (1.52)

For (1.44) and (1.45) we have

µn(0) = 0, n ≥ 0 ; Θn(0) = 0, n ≥ 0,

µ′
2n(0) = −2

Λn

σ2n+1

(

n
∏

µ=0

σ2µ

)(

n
∏

µ=0

σ2µ+1

)

, n ≥ 0 , µ′
2n+1(0) = 0, n ≥ 0,

by the preceding relations and (1.48), for (1.40)-(1.43) we obtain

En = 0, n ≥ 0 ; F2n = (−1)n+1 Λn

σ2n+1

(

n
∏

µ=0

σ2µ

)(

n
∏

µ=0

σ2µ+1

)2
, n ≥ 0,

F2n+1 = 0, n ≥ 0 ; G2n =
(−1)n+1

σ2n+1

(

n
∏

µ=0

σ2µ

)(

n
∏

µ=0

σ2µ+1

)2
, n ≥ 0,

G2n+1 = 0, n ≥ 0 ; H2n = 0, n ≥ 0,

H2n+1 = (−1)nσ2n+2ΛnΛn+1

(

n
∏

µ=0

σ2µ

)2
n

∏

µ=0

σ2µ+1, n ≥ 0.

Taking the previous relations and (1.52) into account, the relations (1.38) and (1.39)
give (1.50) and (1.51).

2 Some results on the semi-classical case

Let us recall that a form u is called semi-classical if it is regular and there exists two
polynomials φ and ψ such that

(φu)′ + ψu = 0,

where the distributional derivative w′ of a formw is defined by 〈w′, p〉 = −〈w, p′〉, p ∈
P.
The class of the semi-classical form u is s = max(deg φ− 2, degψ− 1) if and only if
the following condition is satisfied:

∏

c

(

| ψ(c) + φ′(c) | + | 〈u, θcψ + θ2
cφ〉 |

)

> 0, (2.1)

where c ∈ {x : φ(x) = 0} [16].
In the following sequel, the form v is taken to be semi-classical of class s satisfying
(φv)′ + ψv = 0.
From (1.1) when the form u is regular, it is also semi-classical and it satisfies

(φ̃u)′ + ψ̃u = 0,

with
φ̃(x) = x2φ(x) and ψ̃(x) = x2ψ(x) − 3xφ(x). (2.2)
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Lemma 2.1.
(a) We have the following formulas:

(θc(fg))(x) = f(x)(θcg)(x) + g(c)(θcf)(x) , f, g ∈ P. (2.3)

〈xw, θcf〉 = 〈w, f〉+ c〈w, θcf〉 − (w)0f(c) , f ∈ P , w ∈ P ′. (2.4)

(b) Let f, g ∈ P , w ∈ P ′, if we have (fw)′ + gw = 0 then 〈w, g〉 = 0.

Proposition 2.2. The class of u depends only on the zero x = 0.

We use the following lemma to prove it:
Lemma 2.3. For all zero c of φ, we have

〈u, θcψ̃ + θ2
c φ̃〉 = λc3〈v, θcψ + θ2

cφ〉
+ (ψ(c) + φ′(c))

{

c + (u)1 − λ(c2 + c(v)1 + (v)2)
}

, (2.5)

and

ψ̃(c) + φ̃′(c) = c2
(

ψ(c) + φ′(c)
)

. (2.6)

Proof.

Let c be a zero of φ, we can write the following equation:

φ̃(x) = x2(x− c)(θcφ)(x). (2.7)

On account of (2.3), we successively obtain

(θ2
c φ̃)(x) = x2(θ2

cφ)(x) + φ′(c)(θc(t
2))(x). (2.8)

(θcψ̃)(x) = x2(θcψ)(x) + ψ(c)(θc(t
2))(x) − 3x(θcφ)(x). (2.9)

Then

〈u, θcψ̃ + θ2
c φ̃〉 = 〈x2u, θcψ + θ2

cφ〉 − 3〈xu, θcφ〉 + (ψ(c) + φ′(c))〈u, θc(t
2)(x)〉,

by (1.1), we have xu = λx2v and x2u = λx3v therefore, it follows that

〈u, θcψ̃ + θ2
c φ̃〉 = λ〈x3v, θcψ + θ2

cφ〉 − 3λ〈x2v, θcφ〉 + (ψ(c)

+ φ′(c))〈u, θc(t
2)(x)〉. (2.10)

Using (2.4), we get successively

〈x3v, θcψ + θ2
cφ〉 = 〈v, x2ψ〉 + c〈v, xψ〉 + c2〈v, ψ〉 + 〈v, xφ〉 + 2c〈v, φ〉

+ 3c2〈v, θcφ〉 + c3〈v, θcψ + θ2
cφ〉

− (ψ(c) + φ′(c))
(

(v)2 + c(v)1 + c2
)

,

〈x2v, θcφ〉 = 〈v, xφ〉 + c〈v, φ〉 + c2〈v, θcφ〉.
Consequently (2.10) can be written

〈u, θcψ̃ + θ2
c φ̃〉 = λ〈v, x2ψ − 2xφ〉 + λc〈v, xψ − φ〉 + λc2〈v, ψ〉

+ λc3〈v, θcψ + θ2
cφ〉 + {〈u, θc(t

2)(x)〉 − λ(c2 + c(v)1 + (v)2)}(ψ(c) + φ′(c)).



The product of a regular form by a polynomial generalized 321

But (φv)′ + ψv = 0. Then (xφv)′ + (xψ − φ)v = 0 and (x2φv)′ + (x2ψ − 2xφ)v = 0,
by the lemma 2.1, we obtain

〈v, ψ〉 = 0, 〈v, xψ − φ〉 = 0, 〈v, x2ψ − 2xφ〉 = 0.

Therefore,

〈u, θcψ̃ + θ2
c φ̃〉 = λc3〈v, θcψ + θ2

cφ〉
+ {〈u, θc(t

2)(x)〉 − λ(c2 + c(v)1 + (v)2)}(ψ(c) + φ′(c)).

On the other hand, 〈u, θc(t
2)(x)〉 = 〈u, x+ c〉 = (u)1 + c, thus (2.5).

From (2.2), we can deduce (2.6).

Proof of the proposition 2.2.

Let c be a zero of φ such that c 6= 0.
If ψ(c) + φ′(c) = 0, using (2.5), 〈u, θcψ̃ + θ2

c φ̃〉 = λc3〈v, θcψ + θ2
cφ〉 6= 0 since v is

semi-classical of class s and so satisfies (2.1).
If ψ(c) + φ′(c) 6= 0, then ψ̃(c) + φ̃′(c) 6= 0, from (2.6).
In all cases, we cannot simplify (2.2) by x− c.

Proposition 2.4. Let v be a semi-classical form of class s satisfying

(φv)′ + ψv = 0,

and introduce

ϑ1 := (1 − λ(v)1)φ(0), (2.11)

ϑ2 := (1 − λ(v)1)(ψ(0) − φ′(0)), (2.12)

ϑ3 := (1 − λ(v)1)ψ
′(0). (2.13)

The form u given by (1.1) is also a semi-classical of class s̃ satisfying

(φ̃u)′ + ψ̃u = 0.

Moreover,
(1) if ϑ1 6= 0, then s̃ = s+ 2 and φ̃(x) = x2φ(x), ψ̃(x) = x2ψ(x) − 3xφ(x);
(2) if ϑ1 = 0 and ϑ2 6= 0 or φ(0) 6= 0, then s̃ = s+ 1 and φ̃(x) = xφ(x), ψ̃(x) =
xψ(x) − 2φ(x);

(3) if ϑ1 = 0, ϑ2 = 0, φ(0) = 0 and ϑ3 6= 0 or ψ(0) 6= 0 , then s̃ = s and

φ̃(x) = φ(x), ψ̃(x) = ψ(x) − (θ0φ)(x).

Proof.

(1) From (2.2), we have
ψ̃(0) + φ̃′(0) = 0,

and
〈u, θ0ψ̃ + θ2

0φ̃〉 = 〈u, xψ(x) − 2φ(x)〉 = 〈xu, ψ〉 − 2〈u, φ〉.
Taking into account the relation (1.2), we obtain

〈u, θ0ψ̃ + θ2
0φ̃〉 = λ〈v, x2ψ(x) − 2xφ(x)〉 − 2(1 − λ(v)1)φ(0).
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But (φv)′ + ψv = 0, then (x2φ(x)v)′ + (x2ψ(x) − 2xφ(x))v = 0. By virtue of the
lemma 2.1, we have 〈v, x2ψ(x) − 2xφ(x)〉 = 0 so, the latter becomes

〈u, θ0ψ̃ + θ2
0φ̃〉 = −2(1 − λ(v)1)φ(0) = −2ϑ1. (2.14)

Therefore, if ϑ1 6= 0, it is not possible to simplify from (2.1), which means that the
class of u is s̃ = s + 2 and u satisfies

(φ̃u)′ + ψ̃u = 0, (2.15)

with
φ̃(x) = x2φ(x), ψ̃(x) = x2ψ(x) − 3xφ(x).

(2) If ϑ1 = 0, by (2.14) and (2.15) u satisfies

(φ̃0u)
′ + ψ̃0u = 0, (2.16)

with
φ̃0(x) = xφ(x), ψ̃0(x) = xψ(x) − 2φ(x).

Then
ψ̃0(0) + φ̃′

0(0) = −φ(0), (2.17)

and
〈u, θ0ψ̃0 + θ2

0φ̃0〉 = 〈u, ψ − θ0φ〉
= λ〈v, xψ(x) − x(θ0φ)(x)〉 + (1 − λ(v)1)(ψ(0) − φ′(0))
= λ〈v, xψ(x) − φ(x)〉 + λφ(0) + (1 − λ(v)1)(ψ(0) − φ′(0)).

But (φv)′ +ψv = 0, then (xφ(x)v)′ + (xψ(x)−φ(x))v = 0. By lemma 2.1 we obtain
〈v, xψ(x) − φ(x)〉 = 0. As result, we get

〈u, θ0ψ̃0 + θ2
0φ̃0〉 = λφ(0) + ϑ2. (2.18)

On account of (2.17), (2.18) and (2.1), we can deduce that when φ(0) 6= 0 or ϑ2 6= 0,
it impossible to simplify equation (2.16), which means that the class of u is s̃ = s+1.
(3) When ϑ1 = 0, ϑ2 = 0 and φ(0) = 0, by (2.16) and (2.18) u satisfies

(φ̃1u)
′ + ψ̃1u = 0, (2.19)

with
φ̃1(x) = φ(x), ψ̃1(x) = ψ(x) − (θ0φ)(x). (2.20)

Then
ψ̃1(0) + φ̃′

1(0) = ψ(0), (2.21)

and
〈u, θ0ψ̃1 + θ2

0φ̃1〉 = 〈u, θ0ψ〉 = λ〈v, x(θ0ψ)(x)〉 + (1 − λ(v)1)ψ
′(0).

Consequently, it follows that

〈u, θ0ψ̃1 + θ2
0φ̃1〉 = −λψ(0) + ϑ3. (2.22)

From (2.21) and (2.22), we can deduce that if ψ(0) 6= 0 or ϑ3 6= 0 which means it is
impossible to simplify (2.19) and s̃ = s.
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3 Some examples

3.1. Let us describe the case v := H(τ), where H(τ) is the generalized Hermite
form. Here is [5]

ξn = 0, n ≥ 0, σn+1 =
n+ 1 + τ(1 + (−1)n)

2
, n ≥ 0. (3.1)

Then

n
∏

µ=0

σ2µ+1 =
Γ(n+ τ + 3/2)

Γ(τ + 1/2)
, n ≥ 0,

n
∏

µ=0

σ2µ = Γ(n + 1), n ≥ 0. (3.2)

We want

Λn =
n

∑

ν=0

1

σ2ν+1

ν
∏

µ=0

σ2µ+1

σ2µ
, n ≥ 0.

From (3.1) and (3.2), we have

1

σ2ν+1

ν
∏

µ=0

σ2µ+1

σ2µ
=

Γ(ν + τ + 3/2)

(ν + τ + 1/2)Γ(ν + 1)Γ(τ + 1/2)
=

1

Γ(τ + 1/2)
hν ,

where

hν =
Γ(ν + τ + 1/2)

Γ(ν + 1)
, ν ≥ 0,

fulfilling
(ν + 1)hν+1 − νhν = (τ + 1/2)hν,

and so

Λn =
1

Γ(τ + 1/2)

n
∑

ν=0

hν =
1

(τ + 1/2)Γ(τ + 1/2)

n
∑

ν=0

{

(ν + 1)hν+1 − νhν

}

.

We can deduce that

Λn =
(n + 1)hn+1

Γ(τ + 3/2)
=

Γ(n + τ + 3/2)

Γ(τ + 3/2)Γ(n+ 1)
, n ≥ 0. (3.3)
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Therefore we have the following table:
Table 1

∆n
∆2n = (−1)n+1 τ + 1/2

Γ3(τ + 3/2)

Γ3(n+ τ + 3/2)

n+ τ + 1/2
, n ≥ 0,

∆2n+1 = (−1)n+1 λ

Γ2(τ + 1/2)
Γ(n+ 1)Γ2(n + τ + 3/2), n ≥ 0.

an
a2n = −λ(τ + 1/2)Γ(τ + 3/2)

Γ(n+ 1)

Γ(n + τ + 1/2)
, n ≥ 0,

a2n+1 =
1

λ(τ + 1/2)Γ(τ + 3/2)

(n+ τ + 3/2)Γ(n + τ + 5/2)

Γ(n+ 1)
, n ≥ 0.

bn b2n = n+ τ + 1/2, n ≥ 0 , b2n+1 = n+ τ + 3/2, n ≥ 0.

cn
c2n+2 = −λ(τ + 1/2)Γ(τ + 3/2)

Γ(n+ 1)

Γ(n + τ + 3/2)
, n ≥ 0,

c1 = 0 , c2n+3 =
1

λ(τ + 1/2)Γ(τ + 3/2)

Γ(n+ τ + 5/2)

Γ(n+ 1)
, n ≥ 0.

γn+1

γ1 = −λ2(τ + 1/2)2,

γ2n+3 = −λ2(τ + 1/2)2Γ2(τ + 3/2)
Γ2(n+ 2)

Γ2(n+ τ + 5/2)
, n ≥ 0,

γ2n+2 = − 1

λ2(τ + 1/2)2Γ2(τ + 3/2)

Γ2(n+ τ + 5/2)

Γ2(n+ 1)
, n ≥ 0.

βn

β0 = λ(τ + 1/2),

β2n+2 = λ(τ + 1/2)Γ(τ + 3/2)
Γ(n+ 2)

Γ(n + τ + 5/2)

+
1

λ(τ + 1/2)Γ(τ + 3/2)

Γ(n+ τ + 5/2)

Γ(n+ 1)
, n ≥ 0,

β2n+1 = − 1

λ(τ + 1/2)Γ(τ + 3/2)

Γ(n+ τ + 5/2)

Γ(n+ 1)

−λ(τ + 1/2)Γ(τ + 3/2)
Γ(n+ 1)

Γ(n + τ + 3/2)
, n ≥ 0.

Proposition 3.1. If v = H(τ) is the generalized Hermite form, then the form u given
by (1.1) possesses the following integral representation:

〈u, f〉 =
λ

Γ(τ + 1/2)

+∞
∫

−∞

x | x |2τ e−x2

f(x)dx+ f(0), ∀f ∈ P, ℜτ > −1/2. (3.4)

It is a quasi-antisymmetric and semi-classical form of class s satisfying the following
functional equation

(x2u)′ + (2x3 − (2τ + 3)x)u = 0, τ 6= −1, s = 2. (3.5)

(xu)′ + 2x2u = 0, τ = −1, s = 1. (3.6)
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Proof.
It is well known that the generalized Hermite form possesses the following integral repre-
sentation [5]

〈v, f〉 =

+∞
∫

−∞

V (x)f(x)dx, ∀f ∈ P,

with V (x) =
1

Γ(τ + 1/2)
| x |2τ , x ∈ IR, ℜτ > −1/2. Following from (1.3), we easily

obtain (3.4).
Also, the form u is quasi-antisymmetric because it satisfies

〈u, x2n+2〉 = λ〈v, x2n+3〉 = 0, n ≥ 0.

When τ = 0, v is the classical Hermite form. The latter satisfies [17]

(φ0v)
′ + ψ0v = 0,

with φ0(x) = 1, ψ0(x) = 2x. Therefore, (2.15) becomes ϑ1 = 1 6= 0. By virtue of the
proposition 2.4, we get

(φ̃0u)
′ + ψ̃0u = 0, (3.7)

where φ̃0(x) = x2, ψ̃0(x) = 2x3 − 3x, with u a semi-classical form of class s = 2.
When τ 6= 0, the generalized Hermite form is a semi-classical of class one and satisfies [1]

(φ1v)
′ + ψ1v = 0,

with φ1(x) = x, ψ1(x) = 2x2 − 2τ − 1. In this case, for (2.15) and (2.16) we have

ϑ1 = 0, ϑ2 = −2(τ + 1).

If τ 6= −1, by virtue of the proposition 2.4, we get

(φ̃1u)
′ + ψ̃1u = 0, (3.8)

with φ̃1(x) = x2, ψ̃1(x) = 2x3 − (2τ + 3)x and u a semi-classical form of class s = 2.
Then, (3.8) gives (3.5).
When τ = −1, we have ψ1(0) = 1 6= 0, by virtue of the proposition 2.4, we can deduce
(3.6).

Proposition 3.2. When τ = −1, the form u satisfying the equation (3.6) has the
following integral representation:

〈u, f〉 = − λ

2Γ(1/2)
P

+∞
∫

−∞

e−x2

x
f(x)dx+ f(0), ∀f ∈ P, (3.9)

where [7]

P

+∞
∫

−∞

V (x)

x
dx = lim

ǫ→0

(

−ǫ
∫

−∞

V (x)

x
dx+

+∞
∫

ǫ

V (x)

x
dx

)

.

Proof.
By virtue of the previous proposition, the form u is quasi antisymmetric

(u)2n+2 = 0, n ≥ 0. (3.10)
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On account of (1.1), we get 〈xu, 1〉 = λ〈x2v, 1〉 and we have

(u)1 = λ(v)2 = λσ1.

By (3.1), we obtain

(u)1 = −λ
2
. (3.11)

From the functional equation (3.6), we get

〈(xu)′ + 2x2u, x2n+1〉 = 0, n ≥ 0,

which is equivalent to
(u)2n+3 = (n+ 1/2)(u)2n+1, n ≥ 0,

consequently

(u)2n+3 =
Γ(n+ 3/2)

Γ(1/2)
(u)1, n ≥ 0.

By (3.11), we can deduce that

(u)2n+1 = − λ

2Γ(1/2)
Γ(n+ 1/2), n ≥ 0. (3.12)

From the definition of the gamma function, we get

〈u, x2n+1〉 = − λ

2Γ(1/2)

+∞
∫

0

xn−1/2e−xdx = − λ

Γ(1/2)

+∞
∫

0

x2ne−x2

dx

= − λ

2Γ(1/2)

+∞
∫

−∞

x2ne−x2

dx, n ≥ 0.

Then, we can deduce

〈u, x2n+1〉 = − λ

2Γ(1/2)
lim
ε→0

(

−ǫ
∫

−∞

e−x2

x
x2n+1dx+

+∞
∫

ǫ

e−x2

x
x2n+1dx

)

, n ≥ 0.

On account of (3.10), we can write

〈u, xn〉 = − λ

2Γ(1/2)
lim
ε→0

(

−ǫ
∫

−∞

e−x2

x
xndx+

+∞
∫

ǫ

e−x2

x
xndx

)

, n ≥ 1,

taking (3.11) into account, we get

〈u, xn〉 = − λ

2Γ(1/2)
lim
ε→0

(

−ǫ
∫

−∞

e−x2

x
xndx+

+∞
∫

ǫ

e−x2

x
xndx

)

− λ

2
〈δ, xn〉, n ≥ 0.

Hence (3.9).
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Remark. The integral representation given in (3.9) does not exist in the list given in [4].

3.2. Let us describe the case v := J(1/2,1/2). It is the second kind Chebyshev functional,
which is a particular case of the Jacobi form J(α,β) for α = β = 1/2. Here is [5]:

ξn = 0, n ≥ 0 , σn+1 =
1

4
, n ≥ 0. (3.13)

Then,
n

∏

µ=0

σ2µ+1 =
1

4n+1
, n ≥ 0 ,

n
∏

µ=0

σ2µ =
1

4n
, n ≥ 0. (3.14)

So, for (1.46) we get

Λn = n+ 1, n ≥ 0. (3.15)

Therefore, we obtain the table below:
Table 2

∆n
∆2n = (−1)n+1 (n+1)2

43n
, n ≥ 0 , ∆2n+1 = λ (−1)n+1

43n+2 , n ≥ 0.

an a2n = − λ
42(n+1)2 , n ≥ 0 , a2n+1 = (n+2)2

4λ , n ≥ 0.

bn b2n = 1
4 , n ≥ 0 , b2n+1 = n+2

4(n+1) , n ≥ 0.

cn c1 = 0 , c2n+3 = (n+1)(n+2)
λ , n ≥ 0 , c2n+2 = − λ

4(n+1)2 , n ≥ 0.

γn+1 γ2n+2 = −λ−2(n+ 1)2(n+ 2)2, n ≥ 0 , γ2n+1 = − λ2

42(n+1)2 , n ≥ 0.

βn β0 = λ
4 , β2n+2 = λ

4(n+2)2 + (n+ 1)(n + 2)λ−1, n ≥ 0

β2n+1 = − λ
4(n+1)2 − (n+ 1)(n + 2)λ−1, n ≥ 0

Proposition 3.3. If v = J(1/2,1/2), the second kind Chebyshev form, then the form u
given by (1.1) possesses the following integral representation:

〈u, f〉 = f(0) + λ

√

2

π

1
∫

−1

x
√

1 − x2f(x)dx, f ∈ P. (3.16)

The form u is a quasi-antisymmetric and semi-classical of class s = 2 satisfying the
following functional equation:

(

x2(x2 − 1)u
)′

− 3x(2x2 − 1)u = 0. (3.17)

Proof.
It is well known that the second kind Chebyshev form possesses the following integral
representation [5]:

〈v, f〉 =

1
∫

−1

V (x)dx,∀f ∈ P,
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with V (x) =
√

2
π

√
1 − x2, x ∈] − 1, 1[. Following from (1.3), we get (3.16).

Also, u is quasi-antisymmetric because it satisfies

〈u, x2n+2〉 = λ〈v, x2n+3〉 = 0, n ≥ 0.

The form v is classical and it satisfies [17]

(

(x2 − 1)v
)′ − 3xv = 0.

Then, ϑ1 = −1 6= 0, by virtue of the proposition 2.4, we get (3.17).

3.3 Let us describe v = J(−1/2,1/2), the third kind Chebyshev form. The latter is the
co-recursive of the second kind Chebyshev form. We have [5]

ξ0 = −1

2
, ξn+1 = 0, n ≥ 0 , σn+1 =

1

4
, n ≥ 0. (3.18)

We have the following results:
Lemma 3.4. [23] The following formulas hold

S2n(0) =
(−1)n

22n
, n ≥ 0 , S2n+1(0) =

(−1)n

22n+1
, n ≥ 0,

S
(1)
2n (0) =

(−1)n

22n
, n ≥ 0 , S

(1)
2n+1(0) = 0, n ≥ 0,

S′
2n(0) = (−1)n+1 n

22n−1
, n ≥ 0 , S′

2n+1(0) = (−1)n
n+ 1

22n
, n ≥ 0,

S′′
2n(0) = (−1)n+1n(n+ 1)

22n−2
, n ≥ 0 , S′′

2n+1(0) = (−1)n+1n(n+ 1)

22n−1
, n ≥ 0.

Following the previous lemma, for (1.36), (1.44) and (1.45) we get

χ2n(0) =
2n+ 1

24n
, n ≥ 0 , χ2n+1(0) =

n+ 1

24n+1
, n ≥ 0,

χ′
2n(0) = 0, n ≥ 0 , χ′

2n+1(0) =
n+ 1

24n
, n ≥ 0,

µ2n(0) =
−1

24n+1
, n ≥ 0 , µ2n+1(0) =

1

24n+3
, n ≥ 0,

µ′2n(0) = −n+ 1

24n−1
, n ≥ 0 , µ′2n+1(0) = −n+ 1

24n+1
, n ≥ 0,

Θn(0) = 0, n ≥ 0, 〈v, S2
n〉 =

1

4n
, n ≥ 0 , (v)1 = −1

2
.

Then, we obtain

∆2n = λ
(−1)n+1

26n+1

(

(1 + 2λ−1)(n + 1)(2n + 1) − 1
)

, n ≥ 0,

∆2n+1 = λ
(−1)n+1

26n+4

(

(1 + 2λ−1)(n + 1)(2n + 3) + 1
)

, n ≥ 0.

(3.19)

On account of the proposition 1.2, the form u is regular if and only if

t(n+ 1)(2n + 1) − 1 6= 0, n ≥ 0 , t(n+ 1)(2n + 3) + 1 6= 0, n ≥ 0, (3.20)

where t = 1 + 2λ−1.
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We assume that the previous conditions are satisfied. Therefore, we get the table be-
low:
Table 3

an

a2n = −
1

8

t(n + 1)(2n + 3) + 1

t(n + 1)(2n + 1) − 1
, n ≥ 0 , a2n+1 =

1

8

t(n + 2)(2n + 3) − 1

t(n + 1)(2n + 3) + 1
, n ≥ 0.

bn

b0 = 1

2
, b2n+2 =

1

4

t(n + 2)(2n + 3) + 1

t(n + 1)(2n + 3) + 1
, n ≥ 0, b2n+1 =

1

4

t(n + 1)(2n + 3) − 1

t(n + 1)(2n + 1) − 1
, n ≥ 0.

cn

c1 = −
1

2
, c2n+3 =

1

2

t(n + 1)(2n + 3) − 1

t(n + 1)(2n + 3) + 1
, n ≥ 0 , c2n+2 = −

1

2

t(n + 1)(2n + 1) + 1

t(n + 1)(2n + 1) − 1
, n ≥ 0.

γn+1

γ1 = −
λ(2λ + 3)

8
, γ2n+3 = −

1

4

(

t(n + 1)(2n + 3) + 1
)(

t(n + 2)(2n + 5) − 1
)

(

t(n + 2)(2n + 3) − 1
)2

, n ≥ 0,

γ2n+2 = −
1

4

(

t(n + 1)(2n + 1) − 1
)(

t(n + 2)(2n + 3) − 1
)

(

t(n + 1)(2n + 3) + 1
)2

, n ≥ 0.

βn

β0 =
λ

2
, β2n+2 =

t2(n + 1)(n + 2)(2n + 3)2 + 1
(

t(n + 2)(2n + 3) − 1
)(

t(n + 1)(2n + 3) + 1
) , n ≥ 0,

β2n+1 = −
t2(n + 1)2(2n + 1)(2n + 3) + 1

(

t(n + 1)(2n + 3) + 1
)(

t(n + 1)(2n + 1) − 1
) , n ≥ 0.

Proposition 3.5. If v = J(−1/2,1/2), the third kind Chebyshev form, then the form u given
by (1.1) possesses the following integral representation:

〈u, f〉 = (1 +
1

2
λ)f(0) +

λ

π

1
∫

−1

x

√

1 − x

1 + x
f(x)dx, f ∈ P. (3.21)

The form u is a semi-classical form of class s satisfying the following functional
equation:

λ 6= −2 , s = 2,
(

x2(x2 − 1)u
)′ − x

(

5x2 + x− 3)u = 0,

λ = −2 , s = 1,
(

x(x2 − 1)u
)′ −

(

4x2 + x− 2)u = 0.
(3.22)

Proof.
It is well known that v = J(−1/2,1/2) possesses the following integral representation [5]:

〈v, f〉 =

1
∫

−1

V (x)f(x)dx, f ∈ P,

with V (x) = 1
π

√

1−x
1+x , x ∈] − 1, 1[. Following from (1.3), we easily obtain (3.21).

The form v is classical and satisfies [17]

(φv)′ + ψv = 0,

with φ(x) = x2 − 1, ψ(x) = −2x− 1. Then, (2.15) and (2.16) become

ϑ1 = −1

2
(λ+ 2) , ϑ2 = −1

2
(λ+ 2),

and φ(0) = −1 6= 0.
The proposition 2.4 is enough to obtain (3.22).
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3.4. Let us describe the case where v is the form given in [11,22]. We have

ξn = (−1)n, n ≥ 0 , σn+1 = −1

4
, n ≥ 0. (3.23)

Lemma 3.6. We have the following formulas:

Sn(0) = (−1)νn

n+ 1

2n
, n ≥ 0. (3.24)

S(1)
n (0) = (−1)n+νn

n+ 1

2n
, n ≥ 0. (3.25)

S′
n(0) = (−1)νn

(

(−1)n − 1
)n+ 1

2n+1
, n ≥ 0. (3.26)

S′′
n(0) =

(−1)1+νn

3.2n+2
(n+ 1)

(

2n− 1 + (−1)n
)(

2n + 5 − (−1)n
)

, n ≥ 0, (3.27)

where

νn =
2n+ 1 − (−1)n

4
, n ≥ 0. (3.28)

Proof.
In this case, (1.4) becomes

S0(x) = 1 , S1(x) = x− 1,

Sn+2(x) =
(

x+ (−1)n
)

Sn+1(x) +
1

4
Sn(x), n ≥ 0.

(3.29)

So, we get

S0(0) = 1, S1(0) = −1, S2(0) = −3

4
, (3.30)

Sn+2(0) = (−1)nSn+1(0) +
1

4
Sn(0), n ≥ 0. (3.31)

From (3.31), we can deduce the following relations:

S2n+1(0) = S2n+2(0) −
1

4
S2n(0), n ≥ 0. (3.32)

S2n+3(0) = −S2n+2(0) +
1

4
S2n+1(0), n ≥ 0. (3.33)

On account of (3.32), the relation (3.33) becomes

S2n+4(0) +
1

2
S2n+2(0) +

1

16
S2n(0) = 0, n ≥ 0,

by (3.30), we can deduce that

S2n(0) = (−1)n
2n + 1

22n
, n ≥ 0. (3.34)

By virtue of the previous relation and (3.32), we obtain

S2n+1(0) = (−1)n+1n+ 1

22n
, n ≥ 0. (3.35)

The relations (3.34) and (3.35) produce (3.24).

The sequence {S(1)
n }n≥0 satisfies the following recurrence relation

S
(1)
0 (x) = 1 , S

(1)
1 (x) = x+ 1,

S
(1)
n+2(x) =

(

x− (−1)n
)

S
(1)
n+1(x) +

1

4
S(1)

n (x), n ≥ 0.
(3.36)
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The above analogous calculations give (3.25).
From (3.29), we obtain

S′
0(0) = 0 , S′

2(0) = 0, (3.37)

S′
n+2(0) = (−1)nS′

n+1(0) +
1

4
S′

n(0) + Sn+1(0), n ≥ 0. (3.38)

Following (3.38), we get

S′
2n+1(0) = S′

2n+2(0) −
1

4
S′

2n(0) − S2n+1(0), n ≥ 0. (3.39)

S′
2n+2(0) = −S′

2n+3(0) +
1

4
S′

2n+1(0) + S2n+2(0), n ≥ 0. (3.40)

On account of (3.39), equation (3.40) can be written as following:

S′
2n+4(0) +

1

2
S′

2n+2(0) +
1

16
S′

2n(0) = S2n+3(0) −
1

4
S2n+1(0) + S2n+2(0), n ≥ 0.

By (3.24) and (3.37), we can deduce that

S′
2n(0) = 0, n ≥ 0. (3.41)

By virtue of the preceding relation and (3.24), equation (3.39) becomes

S′
2n+1(0) = (−1)n

n+ 1

22n
, n ≥ 0. (3.42)

Then, (3.41) and (3.42) give (3.26).
On account of (3.29), we obtain

S′′
0 (0) = 0 , S′′

1 (0) = 0 , S′′
2 (0) = 2. (3.43)

S′′
n+2(0) = (−1)nS′′

n+1(0) +
1

4
S′′

n(0) + 2S′
n+1(0), n ≥ 0. (3.44)

Therefore, by (3.44), it follows that

S′′
2n+1(0) = S′′

2n+2(0) −
1

4
S′′

2n(0) − 2S′
2n+1(0), n ≥ 0. (3.45)

S′′
2n+3(0) = −S′′

2n+2(0) +
1

4
S′′

2n+1(0) + 2S′
2n+2(0), n ≥ 0. (3.46)

By (3.45) and (3.26), equation (3.46) can be written as

S′′
2n+4(0) +

1

2
S′′

2n+2(0) +
1

16
S′′

2n(0) = (−1)n+1 4n + 6

4n+1
, n ≥ 0.

Then, we get

S′′
2n(0) = (−1)n+1n(n+ 1)(2n + 1)

3.22n−2
, n ≥ 0. (3.47)

On account of (3.47), (3.26) and (3.45), we obtain

S′′
2n+1(0) = (−1)n

n(n+ 1)(n + 2)

3.22n−2
, n ≥ 0. (3.48)
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Then (3.47) and (3.48) give (3.27).
Following from lemma 3.6, for (1.36), (1.44) and (1.45) we get

χn(0) =
(n + 1)(n+ 2)

22n+1
, n ≥ 0,

χ′
n(0) = (−1)n

(n+ 1)(n + 2)

3.22n+1

(

2n+ 3 − 3(−1)n
)

, n ≥ 0,

µn(0) = 0, n ≥ 0 , µ′n(0) = −(n+ 1)(n + 2)(n + 3)

3.22n
, n ≥ 0,

Θn(0) =
1

22n
, n ≥ 0.

Then, we get

∆n =
(−1)n+1+νn+1

3.23n+2
(n+ 2)tn, n ≥ 0, (3.49)

where
tn = (n+ 1)(n + 2)(n + 3)(λ− 1) − 6λ. (3.50)

On account of the proposition 1.2, the form u is regular if and only if tn 6= 0, n ≥ 0.
We assume that the previous condition is satisfied. Therefore, we obtain the following
table:
Table 4

an
(−1)n

8

n+ 3

n+ 2

tn+1

tn
, n ≥ 0.

bn b0 =
3

4
, bn+1 =

n+ 4

4(n+ 2)
, n ≥ 0.

cn
c1 = 0 , cn+2 =

(−1)n

2

n+ 1

n+ 2

tn+1

tn
, n ≥ 0.

γn+1 γ1 = −λ t1
25

, γn+2 =
(n+ 2)(n + 4)

4(n + 3)2
tntn+2

t2n+1

, n ≥ 0.

βn β0 =
3

4
λ , βn+1 =

(−1)n

2

{n+ 1

n+ 2

tn+1

tn
− n+ 4

n+ 3

tn
tn+1

}

, n ≥ 0.

Proposition 3.7. The form u given by (1.1) have the following integral representation:

〈u, f〉 =
2λ

π

1
∫

−1

x2

√

1 − x

1 + x
f(x)dx+ (1 − λ)f(0), f ∈ P. (3.51)

The form u is a semi-classical form of class s satisfying the following functional equation:

λ 6= 1, s = 2,
(

x2(x2 − 1)u
)′

+
(

−6x3 + x2 + 4x
)

u = 0, (3.52)

λ = 1, s = 1,
(

x(x2 − 1)u
)′

+
(

−5x2 + x+ 3
)

u = 0. (3.53)

Proof.
The form v has the following integral representation [22]:

〈v, f〉 =

1
∫

−1

V (x)f(x)dx, f ∈ P,
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with V (x) = 2
πx

√

1−x
1+x , x ∈] − 1, 1[ and (v)1 = 1. Following from (1.3) we obtain (3.51).

The form v is a semi-classical of class one and satisfies [22]

(φv)′ + ψv = 0,

where φ(x) = x(x2 − 1), ψ(x) = −4x2 + x + 2. Then ϑ1 = 0, ϑ2 = 3(1 − λ), ϑ3 = 0,
φ(0) = 0 and ψ(0) = 2 6= 0.
By virtue of the proposition 2.4 we get (3.52) and (3.53).
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