The product of a regular form by a polynomial generalized: the case $x u=\lambda x^{2} v$

O.F. Kamech

M. Mejri *

Abstract

We consider the problem: given a regular form (linear functional) v, find all the regular forms u which satisfy the relation $x u=\lambda x^{2} v, \lambda \in \mathbb{C}-\{0\}$. We give the second-order recurrence relation of the orthogonal polynomial sequence with respect to u. Some examples are studied.

Introduction

In the present paper, we intend to study the following problem: Let v be a regular form (linear functional), R and D are non-zero polynomials. Find all regular forms u satisfying:

$$
\begin{equation*}
R u=D v . \tag{1}
\end{equation*}
$$

This problem has been studied in some particular cases. In fact the product of a linear form by a polynomial $(\mathrm{R}(\mathrm{x})=1)$ is studied in $[5,6,7]$ and the inverse problem $(D(x)=\lambda, \lambda \in \mathbb{C}-\{0\})$ is considered in [12,15,19,21]. More generally, when R and D have non-trivial common factor the authors of [13] found necessary and sufficient conditions for u to be a regular form. The case where $R=D$ is treated in $[2,3,12,14]$. The aim of this contribution is to analyze the case in which $R(x)=x$ and $D(x)=$ $\lambda x^{2}, \lambda \in \mathbb{C}-\{0\}$. We remark that R and D have a common factor and $R \neq D$. In fact, the inverse problem is studied in [23,24]. On the other hand, this situation generalizes the case treated in [14] (see (1.2) below).
In the first section, we will give the regularity conditions and the coefficients of the

[^0]second-order recurrence relation satisfied by the monic orthogonal sequence (MOPS) with respect to u. We will study the case where v is a symmetric form: the regularity conditions become simpler. The particular case where v is a symmetric positive definite form is analyzed. The second section is devoted to the case where v is a semi-classical. We will prove that u is also semi-classical form and some results concerning the class of u are given. In the last section, some examples will be treated. The regular forms found in theses examples are semi-classical of class $s \in\{1,2\}$. The integral representations of these regular forms and they coefficients of the secondorder recurrence satisfied by the MOPS with respect to u are given. As a result, we also found that the list given in [4] is not complete (see proposition 3.2 below).

1 The problem $\mathrm{xu}=\lambda \mathrm{x}^{2} \mathbf{v}$

1.1 The main problem

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and \mathcal{P}^{\prime} its dual. We denote by $\langle u, f\rangle$ the action of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$. Let us recall that a form u is called regular if there exists a monic polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}, \operatorname{deg} P_{n}=n, n \geq 0$ such that $\left\langle u, P_{n} P_{m}\right\rangle=r_{n} \delta_{n, m}, n, m \geq 0, r_{n} \neq 0, n \geq 0$. The left-multiplication $h w$ of the form w by a polynomial h is defined by $\langle h w, p\rangle:=\langle w, h p\rangle$ for all $p \in \mathcal{P}$.
We consider the following problem: given a regular form v, find all regular forms u satisfying

$$
\begin{equation*}
x u=\lambda x^{2} v, \lambda \in \mathbb{C}-\{0\}, \tag{1.1}
\end{equation*}
$$

with the constraints

$$
(u)_{0}=1,(v)_{0}=1
$$

where $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, are the moments of u. This is equivalent to

$$
\begin{equation*}
u=\lambda x v+\left(1-\lambda(v)_{1}\right) \delta, \tag{1.2}
\end{equation*}
$$

where $\langle\delta, f\rangle=f(0)$.
We see that when $1-\lambda(v)_{1} \neq 0$ and $x v$ is regular, we meet again the problem studied in [14].
We suppose that the form v possesses the following integral representation:

$$
\langle v, f\rangle=\int_{-\infty}^{+\infty} V(x) f(x) d x, \text { for each polynomial } f
$$

where V is a locally integrable function with rapid decay. Then the form u is represented by

$$
\begin{equation*}
\langle u, f\rangle=\lambda \int_{-\infty}^{+\infty} x V(x) f(x) d x+\left(1-\lambda(v)_{1}\right) f(0) \tag{1.3}
\end{equation*}
$$

Let $\left\{S_{n}\right\}_{n \geq 0}$ denote the sequence of monic orthogonal polynomials with respect to v, we have

$$
\begin{align*}
& S_{0}(x)=1 \quad, \quad S_{1}(x)=x-\xi_{0} \\
& S_{n+2}(x)=\left(x-\xi_{n+1}\right) S_{n+1}(x)-\sigma_{n+1} S_{n}(x), n \geq 0 \tag{1.4}
\end{align*}
$$

with

$$
\begin{equation*}
\xi_{n}=\frac{\left\langle v, x S_{n}^{2}(x)\right\rangle}{\left\langle v, S_{n}^{2}\right\rangle}, \quad \sigma_{n+1}=\frac{\left\langle v, S_{n+1}^{2}\right\rangle}{\left\langle v, S_{n}^{2}\right\rangle}, n \geq 0 . \tag{1.5}
\end{equation*}
$$

When u is regular, let $\left\{Z_{n}\right\}_{n \geq 0}$ be the corresponding monic orthogonal sequence

$$
\begin{align*}
& Z_{0}(x)=1, \quad Z_{1}(x)=x-\beta_{0} \\
& Z_{n+2}(x)=\left(x-\beta_{n+1}\right) Z_{n+1}(x)-\gamma_{n+1} Z_{n}(x), n \geq 0 \tag{1.6}
\end{align*}
$$

where $\gamma_{n+1} \neq 0$ for all $n \geq 0$.
From (1.1), we know that the existence of the sequence $\left\{Z_{n}\right\}_{n \geq 0}$ is among all the strictly quasi-orthogonal sequences of order one with respect to $\lambda x^{2} v=w,(w$ is not necessarily a regular form) $[8,16,18,20]$. This is

$$
\begin{align*}
& x^{2} Z_{0}(x)=S_{2}(x)+c_{1} S_{1}(x)+b_{0} \\
& \quad x^{2} Z_{n+1}(x)=S_{n+3}(x)+c_{n+2} S_{n+2}(x)+b_{n+1} S_{n+1}(x)+a_{n} S_{n}(x), n \geq 0 \tag{1.7}
\end{align*}
$$

with $a_{n} \neq 0, n \geq 0$.
By virtue of (1.7), we can deduce

$$
\begin{gather*}
S_{n+3}(0)+c_{n+2} S_{n+2}(0)+b_{n+1} S_{n+1}(0)+a_{n} S_{n}(0)=0, n \geq 0 . \tag{1.8}\\
x Z_{n+1}(x)=\left(\theta_{0} S_{n+3}\right)(x)+c_{n+2}\left(\theta_{0} S_{n+2}\right)(x)+b_{n+1}\left(\theta_{0} S_{n+1}\right)(x)+a_{n}\left(\theta_{0} S_{n}\right)(x) \\
n \geq 0 \tag{1.9}\\
Z_{n+1}(x)=\left(\theta_{0}^{2} S_{n+3}\right)(x)+c_{n+2}\left(\theta_{0}^{2} S_{n+2}\right)(x)+b_{n+1}\left(\theta_{0}^{2} S_{n+1}\right)(x)+a_{n}\left(\theta_{0}^{2} S_{n}\right)(x) \\
n \geq 0 \tag{1.10}
\end{gather*}
$$

with in general $\left(\theta_{c} f\right)(x):=\frac{f(x)-f(c)}{x-c}, c \in \mathbb{C}, f \in \mathcal{P}$.
Lemma 1.1. Let $\left\{Z_{n}\right\}_{n \geq 0}$ be a sequence of polynomials satisfying (1.7) where a_{n}, b_{n} and c_{n} are complex numbers such that $a_{n} \neq 0$ for all $n \geq 0$. The sequence $\left\{Z_{n}\right\}_{n \geq 0}$ is orthogonal with respect to u if and only if

$$
\begin{equation*}
\left\langle u, Z_{n+1}\right\rangle=0, n \geq 0 \tag{1.11}
\end{equation*}
$$

Proof.
The condition (1.11) is necessary from the definition of the orthogonality of $\left\{Z_{n}\right\}_{n \geq 0}$ with respect to u.
For $0 \leq k \leq n$ we have

$$
\begin{aligned}
\left\langle u, x^{k+1} Z_{n+1}(x)\right\rangle & =\left\langle x u, x^{k} Z_{n+1}(x)\right\rangle \\
& =\lambda\left\langle v, x^{k+2} Z_{n+1}(x)\right\rangle, n \geq 0(\text { by }(1.1)) .
\end{aligned}
$$

Taking the relation (1.7) into account, we get

$$
\begin{aligned}
\left\langle u, x^{k+1} Z_{n+1}(x)\right\rangle= & \lambda\left\langle v, x^{k} S_{n+3}(x)\right\rangle+\lambda c_{n+2}\left\langle v, x^{k} S_{n+2}(x)\right\rangle \\
& +\lambda b_{n+1}\left\langle v, x^{k} S_{n+1}(x)\right\rangle+\lambda a_{n}\left\langle v, x^{k} S_{n}(x)\right\rangle
\end{aligned}
$$

From the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$, we obtain

$$
\begin{gathered}
\left\langle u, x^{k+1} Z_{n+1}(x)\right\rangle=0, \quad 0 \leq k \leq n-1, n \geq 1, \\
\left\langle u, x^{n+1} Z_{n+1}(x)\right\rangle=\lambda a_{n}\left\langle v, S_{n}^{2}\right\rangle \neq 0, n \geq 0 .
\end{gathered}
$$

Consequently, the precedent relation and (1.11) prove that $\left\{Z_{n}\right\}_{n \geq 0}$ is orthogonal with respect to u. This proves the Lemma.

Based on (1.7) and (1.11), we get

$$
\begin{align*}
0 & =S_{n+3}(0)+c_{n+2} S_{n+2}(0)+b_{n+1} S_{n+1}(0)+a_{n} S_{n}(0), n \geq 0 \\
0 & =S_{n+3}^{\prime}(0)+c_{n+2} S_{n+2}^{\prime}(0)+b_{n+1} S_{n+1}^{\prime}(0)+a_{n} S_{n}^{\prime}(0), n \geq 0 \\
0 & =\left\langle u, Z_{n+1}\right\rangle \\
& =\left\langle u, \theta_{0}^{2} S_{n+3}\right\rangle+c_{n+2}\left\langle u, \theta_{0}^{2} S_{n+2}\right\rangle+b_{n+1}\left\langle u, \theta_{0}^{2} S_{n+1}\right\rangle+a_{n}\left\langle u, \theta_{0}^{2} S_{n}\right\rangle, n \geq 0, \tag{1.12}
\end{align*}
$$

with the following initial conditions:

$$
\begin{align*}
& 0=S_{2}(0)+c_{1} S_{1}(0)+b_{0} S_{0}(0) \\
& 0=S_{2}^{\prime}(0)+c_{1} S_{1}^{\prime}(0)+b_{0} S_{0}^{\prime}(0) \tag{1.13}
\end{align*}
$$

If we denote

$$
\Delta_{n}:=\left|\begin{array}{ccc}
S_{n+2}(0) & S_{n+1}(0) & S_{n}(0) \tag{1.14}\\
S_{n+2}^{\prime}(0) & S_{n+1}^{\prime}(0) & S_{n}^{\prime}(0) \\
\left\langle u, \theta_{0}^{2} S_{n+2}\right\rangle & \left\langle u, \theta_{0}^{2} S_{n+1}\right\rangle & \left\langle u, \theta_{0}^{2} S_{n}\right\rangle
\end{array}\right|, n \geq 0
$$

From the Cramer rule, we get

$$
\begin{align*}
\Delta_{n} a_{n} & =-\Delta_{n+1}, n \geq 0 . \tag{1.15}\\
\Delta_{n} b_{n+1} & =\left|\begin{array}{ccc}
S_{n+2}(0) & -S_{n+3}(0) & S_{n}(0) \\
S_{n+2}^{\prime}(0) & -S_{n+3}^{\prime}(0) & S_{n}^{\prime}(0) \\
\left\langle u, \theta_{0}^{2} S_{n+2}\right\rangle & -\left\langle u, \theta_{0}^{2} S_{n+3}\right\rangle & \left\langle u, \theta_{0}^{2} S_{n}\right\rangle
\end{array}\right|, n \geq 0 . \tag{1.16}\\
\Delta_{n} c_{n+2} & =\left|\begin{array}{ccc}
-S_{n+3}(0) & S_{n+1}(0) & S_{n}(0) \\
-S_{n+3}^{\prime}(0) & S_{n+1}^{\prime}(0) & S_{n}^{\prime}(0) \\
-\left\langle u, \theta_{0}^{2} S_{n+3}\right\rangle & \left\langle u, \theta_{0}^{2} S_{n+1}\right\rangle & \left\langle u, \theta_{0}^{2} S_{n}\right\rangle
\end{array}\right|, n \geq 0 . \tag{1.17}
\end{align*}
$$

Proposition 1.2. The form u is regular if and only if $\Delta_{n} \neq 0, n \geq 0$. In this case the coefficients of the second-order recurrence relation of $\left\{Z_{n}\right\}_{n \geq 0}$ are given by the following formulas:

$$
\begin{align*}
\gamma_{1} & =-\lambda \frac{\Delta_{1}}{\Delta_{0}} \tag{1.18}\\
\gamma_{n+2} & =\frac{\Delta_{n} \Delta_{n+2}}{\Delta_{n+1}^{2}} \sigma_{n+1}, n \geq 0 . \tag{1.19}\\
\beta_{0} & =\lambda b_{0} . \tag{1.20}\\
\beta_{n+1} & =-b_{n+1} \frac{\Delta_{n}}{\Delta_{n+1}} \sigma_{n+1}+c_{n+2}-\xi_{n+2}-\xi_{n+1}, n \geq 0 . \tag{1.21}
\end{align*}
$$

Proof.
Necessity.
Through (1.14), we have

$$
\begin{equation*}
\Delta_{0}=-S_{1}^{\prime}(0)\left\langle u, \theta_{0}^{2} S_{2}\right\rangle=-1 \tag{1.22}
\end{equation*}
$$

$\left\{Z_{n}\right\}_{n \geq 0}$ is orthogonal with respect to u, hence it is strictly quasi-orthogonal of order one with respect to $x^{2} v$, which satisfies (1.7) with $a_{n} \neq 0, n \geq 0$. This implies $\Delta_{n} \neq 0, n \geq 0$. Assuming the contrary, there exists an $n_{0} \geq 1$ such that $\Delta_{n_{0}}=0$. Then from (1.15), $\Delta_{0}=0$ becomes a contradiction.
Sufficiency.
Let

$$
\begin{align*}
& c_{1}=-S_{2}^{\prime}(0) . \tag{1.23}\\
& b_{0}=-c_{1} S_{1}(0)-S_{2}(0) . \tag{1.24}
\end{align*}
$$

Then the initial conditions (1.13) are satisfied.
Furthermore, the system (1.12) is a Cramer system whose solution is given by (1.15), (1.16) and (1.17). The numbers a_{n}, b_{n} and $c_{n}(n \geq 0)$ define a sequence of polynomials $\left\{Z_{n}\right\}_{n \geq 0}$ by (1.7). Therefore, it follows from (1.12) and Lemma 1.1 that u is regular ($\left\{Z_{n}\right\}_{n \geq 0}$ is the corresponding monic orthogonal polynomial sequence). Moreover, we have

$$
\left\langle u, Z_{n+1}^{2}\right\rangle=\left\langle u, x^{n+1} Z_{n+1}(x)\right\rangle=\lambda\left\langle v, x^{n+2} Z_{n+1}(x)\right\rangle, n \geq 0
$$

by (1.7) and the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$. We get

$$
\left\langle u, Z_{n+1}^{2}\right\rangle=\lambda a_{n}\left\langle v, S_{n}^{2}\right\rangle, n \geq 0
$$

Taking the relation (1.15) into account, we obtain

$$
\begin{equation*}
\left\langle u, Z_{n+1}^{2}\right\rangle=-\lambda \frac{\Delta_{n+1}}{\Delta_{n}}\left\langle v, S_{n}^{2}\right\rangle, n \geq 0 \tag{1.25}
\end{equation*}
$$

Making $n=0$ in the latter equation, we get (1.18).
On the other hand, we have

$$
\gamma_{n+2}=\frac{\left\langle u, Z_{n+2}^{2}\right\rangle}{\left\langle u, Z_{n+1}^{2}\right\rangle}, n \geq 0
$$

Based on the relation (1.25), we can deduce (1.19).
We have $\beta_{0}=\langle u, x\rangle=\lambda\left\langle v, x^{2} Z_{0}(x)\right\rangle$ and by (1.7) and the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$ we obtain (1.20).
From (1.9) and the orthogonality of $\left\{Z_{n}\right\}_{n \geq 0}$, we obtain

$$
\begin{equation*}
\left\langle u, x Z_{n+1}^{2}(x)\right\rangle=\left\langle u, Z_{n+1} \theta_{0} S_{n+3}\right\rangle+c_{n+2}\left\langle u, Z_{n+1}^{2}\right\rangle, n \geq 0 \tag{1.26}
\end{equation*}
$$

Using (1.4), we have

$$
\theta_{0} S_{n+3}=S_{n+2}-\xi_{n+2} \theta_{0} S_{n+2}-\sigma_{n+2} \theta_{0} S_{n+1}, n \geq 0
$$

Through the latter relation and the orthogonality of $\left\{Z_{n}\right\}_{n \geq 0}$, we get

$$
\left\langle u, Z_{n+1} \theta_{0} S_{n+3}\right\rangle=\left\langle u, Z_{n+1} S_{n+2}\right\rangle-\xi_{n+2}\left\langle u, Z_{n+1}^{2}\right\rangle, n \geq 0
$$

However, we have

$$
\begin{aligned}
\left\langle u, Z_{n+1} S_{n+2}\right\rangle & =\left\langle x u, Z_{n+1} S_{n+1}\right\rangle-\xi_{n+1}\left\langle u, Z_{n+1}^{2}\right\rangle(\text { by }(1.4)) \\
& =\lambda\left\langle v, x^{2} Z_{n+1}(x) S_{n+1}(x)\right\rangle-\xi_{n+1}\left\langle u, Z_{n+1}^{2}\right\rangle, n \geq 0,(\text { by }(1.1)) .
\end{aligned}
$$

On account of (1.7) and the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$, we get

$$
\left\langle u, Z_{n+1} S_{n+2}\right\rangle=\lambda b_{n+1}\left\langle v, S_{n+1}^{2}\right\rangle-\xi_{n+1}\left\langle u, Z_{n+1}^{2}\right\rangle, n \geq 0,
$$

then the latter becomes

$$
\left\langle u, Z_{n+1} \theta_{0} S_{n+3}\right\rangle=\lambda b_{n+1}\left\langle v, S_{n+1}^{2}\right\rangle-\left(\xi_{n+1}+\xi_{n+2}\right)\left\langle u, Z_{n+1}^{2}\right\rangle, n \geq 0 .
$$

Therefore, (1.26) can be written as the following

$$
\left\langle u, x Z_{n+1}^{2}(x)\right\rangle=\lambda b_{n+1}\left\langle v, S_{n+1}^{2}\right\rangle+\left(c_{n+2}-\xi_{n+1}-\xi_{n+2}\right)\left\langle u, Z_{n+1}^{2}\right\rangle, n \geq 0
$$

As a matter of fact, we get

$$
\beta_{n+1}=\frac{\left\langle u, x Z_{n+1}^{2}(x)\right\rangle}{\left\langle u, Z_{n+1}^{2}\right\rangle}=\lambda b_{n+1} \frac{\left\langle v, S_{n+1}^{2}\right\rangle}{\left\langle u, Z_{n+1}^{2}\right\rangle}+c_{n+2}-\xi_{n+1}-\xi_{n+2}, n \geq 0
$$

By virtue of (1.25), we can deduce (1.21).

1.2 The computation of Δ_{n}

As we have seen in the proposition 1.2, it is very important to have an explicit expression of Δ_{n}.
First, we need the following lemma:
Lemma 1.3. The following formulas hold

$$
\begin{align*}
\left\langle u, \theta_{0} S_{n}\right\rangle & =\lambda\left\langle v, S_{n}\right\rangle-\lambda S_{n}(0)+\left(1-\lambda(v)_{1}\right) S_{n}^{\prime}(0), n \geq 0 \tag{1.27}\\
\left\langle u, \theta_{0}^{2} S_{n}\right\rangle & =\frac{1}{2} S_{n}^{\prime \prime}(0)+\lambda\left(S_{n-1}^{(1)}(0)-S_{n}^{\prime}(0)-\frac{1}{2}(v)_{1} S_{n}^{\prime \prime}(0)\right), n \geq 0, \tag{1.28}\\
\left\langle v, S_{n}^{2}\right\rangle & =S_{n}(0) S_{n}^{(1)}(0)-S_{n+1}(0) S_{n-1}^{(1)}(0), n \geq 0 \tag{1.29}
\end{align*}
$$

with $S_{n}^{(1)}(x)=\left\langle v, \frac{S_{n+1}(x)-S_{n+1}(\xi)}{x-\xi}\right\rangle, n \geq 0$ and $S_{-1}^{(1)}(x)=0$.
Proof.
Both formulas (1.27) and (1.28) can be deduced from (1.2).
The formula (1.29) is proved in [23].
By (1.4), we successively obtain the following relations:

$$
\begin{align*}
S_{n+2}(0) & =-\xi_{n+1} S_{n+1}(0)-\sigma_{n+1} S_{n}(0), n \geq 0 . \tag{1.30}\\
S_{n+2}^{\prime}(0) & =S_{n+1}(0)-\xi_{n+1} S_{n+1}^{\prime}(0)-\sigma_{n+1} S_{n}^{\prime}(0), n \geq 0 . \tag{1.31}\\
\left(\theta_{0} S_{n+2}\right)(x) & =S_{n+1}(x)-\xi_{n+1}\left(\theta_{0} S_{n+1}\right)(x)-\sigma_{n+1}\left(\theta_{0} S_{n}\right)(x), n \geq 0 . \tag{1.32}\\
\left(\theta_{0}^{2} S_{n+2}\right)(x) & =\left(\theta_{0} S_{n+1}\right)(x)-\xi_{n+1}\left(\theta_{0}^{2} S_{n+1}\right)(x)-\sigma_{n+1}\left(\theta_{0}^{2} S_{n}\right)(x), n \geq 0 . \tag{1.33}
\end{align*}
$$

Using (1.33), we get

$$
\begin{equation*}
\left\langle u, \theta_{0}^{2} S_{n+2}\right\rangle=\left\langle u, \theta_{0} S_{n+1}\right\rangle-\xi_{n+1}\left\langle u, \theta_{0}^{2} S_{n+1}\right\rangle-\sigma_{n+1}\left\langle u, \theta_{0}^{2} S_{n}\right\rangle, n \geq 0 \tag{1.34}
\end{equation*}
$$

Taking the relations (1.30), (1.31) and (1.34) into account, we get (1.14) written as the following:

$$
\Delta_{n}=\left|\begin{array}{ccc}
0 & S_{n+1}(0) & S_{n}(0) \\
S_{n+1}(0) & S_{n+1}^{\prime}(0) & S_{n}^{\prime}(0) \\
\left\langle u, \theta_{0} S_{n+1}\right\rangle & \left\langle u, \theta_{0}^{2} S_{n+1}\right\rangle & \left\langle u, \theta_{0}^{2} S_{n}\right\rangle
\end{array}\right|, n \geq 0,
$$

that is

$$
\begin{aligned}
\Delta_{n}=-S_{n+1}(0)\left\{S_{n+1}(0)\langle u\right. & \left.\left., \theta_{0}^{2} S_{n}\right\rangle-S_{n}(0)\left\langle u, \theta_{0}^{2} S_{n+1}\right\rangle\right\} \\
& +\left\langle u, \theta_{0} S_{n+1}\right\rangle\left\{S_{n+1}(0) S_{n}^{\prime}(0)-S_{n}(0) S_{n+1}^{\prime}(0)\right\}, n \geq 0
\end{aligned}
$$

From the relations (1.27), (1.28) and (1.29), we get

$$
\begin{align*}
\Delta_{n}=\lambda\left\{S_{n+1}(0)\left\langle v, S_{n}^{2}\right\rangle-(v)_{1}(\right. & \frac{1}{2} \\
& \left.\left.S_{n+1}(0) \chi_{n}^{\prime}(0)-S_{n+1}^{\prime}(0) \chi_{n}(0)\right)\right\} \tag{1.35}\\
& +\frac{1}{2} S_{n+1}(0) \chi_{n}^{\prime}(0)-S_{n+1}^{\prime}(0) \chi_{n}(0), n \geq 0
\end{align*}
$$

with

$$
\begin{equation*}
\chi_{n}(x)=S_{n}(x) S_{n+1}^{\prime}(x)-S_{n+1}(x) S_{n}^{\prime}(x), n \geq 0 \tag{1.36}
\end{equation*}
$$

If the form u is regular, for (1.15), (1.16) and (1.17) we obtain

$$
\begin{align*}
a_{n} & =-\frac{\Delta_{n+1}}{\Delta_{n}}, n \geq 0 \tag{1.37}\\
b_{n+1} & =\Delta_{n}^{-1}\left(\lambda E_{n}+F_{n}\right)+\sigma_{n+2}, n \geq 0 \tag{1.38}\\
c_{n+2} & =-\Delta_{n}^{-1}\left(\lambda G_{n}+H_{n}\right)+\xi_{n+2}, n \geq 0 \tag{1.39}
\end{align*}
$$

where

$$
\begin{align*}
E_{n} & =S_{n+2}(0)\left(\Theta_{n}(0)+\frac{1}{2}(v)_{1} \mu_{n}^{\prime}(0)\right)-(v)_{1} S_{n+2}^{\prime}(0) \mu_{n}(0), n \geq 0 \tag{1.40}\\
F_{n} & =-\frac{1}{2} S_{n+2}(0) \mu_{n}^{\prime}(0)+S_{n+2}^{\prime}(0) \mu_{n}(0), n \geq 0 \tag{1.41}\\
G_{n} & =S_{n+2}(0)\left(\left\langle v, S_{n}^{2}\right\rangle-\frac{1}{2}(v)_{1} \chi_{n}^{\prime}(0)\right)+(v)_{1} \chi_{n}(0) S_{n+2}^{\prime}(0), n \geq 0 \tag{1.42}\\
H_{n} & =-S_{n+2}^{\prime}(0) \chi_{n}(0)+\frac{1}{2} S_{n+2}(0) \chi_{n}^{\prime}(0), n \geq 0 \tag{1.43}
\end{align*}
$$

with

$$
\begin{align*}
& \mu_{n}(x)=S_{n+2}(x) S_{n}^{\prime}(x)-S_{n+2}^{\prime}(x) S_{n}(x), n \geq 0 \tag{1.44}\\
& \Theta_{n}(x)=S_{n}(x) S_{n+1}^{(1)}(x)-S_{n+2}(x) S_{n-1}^{(1)}(x), n \geq 0 \tag{1.45}
\end{align*}
$$

1.3 The case where v is a symmetric form

In the following sequel we will assume that v is a symmetric regular form.
We need the following result:
Lemma 1.4. [23] When $\left\{S_{n}\right\}_{\geq 0}$ is a symmetric sequence, we have

$$
\begin{aligned}
S_{2 n}(0) & =\frac{(-1)^{n}}{\sigma_{2 n+1}} \prod_{\mu=0}^{n} \sigma_{2 \mu+1}, n \geq 0, \quad S_{2 n+1}(0)=0, n \geq 0 . \\
S_{2 n+1}^{(1)}(0) & =0, n \geq 0, \quad S_{2 n}^{\prime}(0)=0, n \geq 0 . \\
S_{2 n+1}^{\prime}(0) & =(-1)^{n} \Lambda_{n} \prod_{\mu=0}^{n} \sigma_{2 \mu}, n \geq 0, \quad S_{2 n+1}^{\prime \prime}(0)=0, n \geq 0
\end{aligned}
$$

where

$$
\begin{equation*}
\Lambda_{n}=\sum_{\nu=0}^{n} \frac{1}{\sigma_{2 \nu+1}} \prod_{\mu=0}^{\nu} \frac{\sigma_{2 \mu+1}}{\sigma_{2 \mu}}, n \geq 0 \tag{1.46}
\end{equation*}
$$

with $\sigma_{0}=(u)_{0}=1$.
Proposition 1.5. We have the following formulas:

$$
\left\{\begin{array}{l}
\Delta_{2 n}=\frac{(-1)^{n+1}}{\sigma_{2 n+1}}\left(\prod_{\mu=0}^{n} \sigma_{2 \mu}\right)^{2}\left(\prod_{\mu=0}^{n} \sigma_{2 \mu+1}\right) \Lambda_{n}^{2}, n \geq 0 \tag{1.47}\\
\Delta_{2 n+1}=\lambda(-1)^{n+1}\left(\prod_{\mu=0}^{n} \sigma_{2 \mu}\right)\left(\prod_{\mu=0}^{n} \sigma_{2 \mu+1}\right)^{2}, n \geq 0
\end{array}\right.
$$

Proof.
By virtue of lemma 1.4, for (1.36) we get

$$
\begin{align*}
\chi_{2 n}(0) & =\frac{\Lambda_{n}}{\sigma_{2 n+1}} \prod_{\mu=0}^{2 n+1} \sigma_{\mu}, n \geq 0 ; \chi_{2 n+1}(0)=\Lambda_{n} \prod_{\mu=0}^{2 n+1} \sigma_{\mu}, n \geq 0 . \tag{1.48}\\
\chi_{n}^{\prime}(0) & =0, n \geq 0
\end{align*}
$$

When v is a symmetric form, we have $(v)_{1}=0$, then (1.35) becomes

$$
\Delta_{n}=\lambda S_{n+1}(0)\left\langle v, S_{n}^{2}\right\rangle+\frac{1}{2} S_{n+1}(0) \chi_{n}^{\prime}(0)-S_{n+1}^{\prime}(0) \chi_{n}(0), n \geq 0
$$

by (1.48), we get (1.47).
Theorem 1.6. The form u is regular if and only if $\Lambda_{n} \neq 0, n \geq 0$.
Proof.
We get the desired result from the proposition 1.5.
Corollary 1.7. When v is a positive definite form u is a regular form.
Proof.
If v is a positive definite then $\sigma_{n}>0$. Therefore, we obtain $\Lambda_{n}>0, n \geq 0$, thus the desired result.

Proposition 1.8. When u is a regular form, we have

$$
\begin{align*}
a_{2 n} & =-\lambda \sigma_{2 n+1} \Lambda_{n}^{-2} \prod_{\mu=0}^{n} \frac{\sigma_{2 \mu+1}}{\sigma_{2 \mu}}, n \geq 0 \\
a_{2 n+1} & =\lambda^{-1} \sigma_{2 n+2}^{2} \Lambda_{n+1}^{2} \prod_{\mu=0}^{n} \frac{\sigma_{2 \mu}}{\sigma_{2 \mu+1}}, n \geq 0 \tag{1.49}\\
b_{2 n} & =\sigma_{2 n+1}, n \geq 0 \\
b_{2 n+1} & =\sigma_{2 n+2}+\Lambda_{n}^{-1} \prod_{\mu=0}^{n} \frac{\sigma_{2 \mu+1}}{\sigma_{2 \mu}}, n \geq 0 \tag{1.50}\\
c_{1} & =0 \\
c_{2 n+2} & =-\lambda \Lambda_{n}^{-2} \prod_{\mu=0}^{n} \frac{\sigma_{2 \mu+1}}{\sigma_{2 \mu}}, n \geq 0 \tag{1.51}\\
c_{2 n+3} & =\lambda^{-1} \Lambda_{n} \Lambda_{n+1} \sigma_{2 n+2} \prod_{\mu=0}^{n} \frac{\sigma_{2 \mu}}{\sigma_{2 \mu+1}}, n \geq 0 .
\end{align*}
$$

Proof.
On account of (1.47) and (1.37), we get (1.49).
By (1.13), it follows that

$$
\begin{equation*}
b_{0}=\sigma_{1}, \quad c_{1}=0 \tag{1.52}
\end{equation*}
$$

For (1.44) and (1.45) we have

$$
\begin{array}{r}
\mu_{n}(0)=0, n \geq 0 ; \quad \Theta_{n}(0)=0, n \geq 0 \\
\mu_{2 n}^{\prime}(0)=-2 \frac{\Lambda_{n}}{\sigma_{2 n+1}}\left(\prod_{\mu=0}^{n} \sigma_{2 \mu}\right)\left(\prod_{\mu=0}^{n} \sigma_{2 \mu+1}\right), n \geq 0 \quad, \quad \mu_{2 n+1}^{\prime}(0)=0, n \geq 0
\end{array}
$$

by the preceding relations and (1.48), for (1.40)-(1.43) we obtain

$$
\begin{array}{r}
E_{n}=0, n \geq 0 ; F_{2 n}=(-1)^{n+1} \frac{\Lambda_{n}}{\sigma_{2 n+1}}\left(\prod_{\mu=0}^{n} \sigma_{2 \mu}\right)\left(\prod_{\mu=0}^{n} \sigma_{2 \mu+1}\right)^{2}, n \geq 0 \\
F_{2 n+1}=0, n \geq 0 ; G_{2 n}=\frac{(-1)^{n+1}}{\sigma_{2 n+1}}\left(\prod_{\mu=0}^{n} \sigma_{2 \mu}\right)\left(\prod_{\mu=0}^{n} \sigma_{2 \mu+1}\right)^{2}, n \geq 0 \\
G_{2 n+1}=0, n \geq 0 ; H_{2 n}=0, n \geq 0 \\
H_{2 n+1}=(-1)^{n} \sigma_{2 n+2} \Lambda_{n} \Lambda_{n+1}\left(\prod_{\mu=0}^{n} \sigma_{2 \mu}\right)^{2} \prod_{\mu=0}^{n} \sigma_{2 \mu+1}, n \geq 0 .
\end{array}
$$

Taking the previous relations and (1.52) into account, the relations (1.38) and (1.39) give (1.50) and (1.51).

2 Some results on the semi-classical case

Let us recall that a form u is called semi-classical if it is regular and there exists two polynomials ϕ and ψ such that

$$
(\phi u)^{\prime}+\psi u=0
$$

where the distributional derivative w^{\prime} of a form w is defined by $\left\langle w^{\prime}, p\right\rangle=-\left\langle w, p^{\prime}\right\rangle, p \in$ \mathcal{P}.
The class of the semi-classical form u is $s=\max (\operatorname{deg} \phi-2, \operatorname{deg} \psi-1)$ if and only if the following condition is satisfied:

$$
\begin{equation*}
\prod_{c}\left(\left|\psi(c)+\phi^{\prime}(c)\right|+\left|\left\langle u, \theta_{c} \psi+\theta_{c}^{2} \phi\right\rangle\right|\right)>0 \tag{2.1}
\end{equation*}
$$

where $c \in\{x: \phi(x)=0\}[16]$.
In the following sequel, the form v is taken to be semi-classical of class s satisfying $(\phi v)^{\prime}+\psi v=0$.
From (1.1) when the form u is regular, it is also semi-classical and it satisfies

$$
(\tilde{\phi} u)^{\prime}+\tilde{\psi} u=0,
$$

with

$$
\begin{equation*}
\tilde{\phi}(x)=x^{2} \phi(x) \quad \text { and } \quad \tilde{\psi}(x)=x^{2} \psi(x)-3 x \phi(x) \tag{2.2}
\end{equation*}
$$

Lemma 2.1.

(a) We have the following formulas:

$$
\begin{array}{r}
\left(\theta_{c}(f g)\right)(x)=f(x)\left(\theta_{c} g\right)(x)+g(c)\left(\theta_{c} f\right)(x), f, g \in \mathcal{P} . \\
\left\langle x w, \theta_{c} f\right\rangle=\langle w, f\rangle+c\left\langle w, \theta_{c} f\right\rangle-(w)_{0} f(c), f \in \mathcal{P}, w \in \mathcal{P}^{\prime} . \tag{2.4}
\end{array}
$$

(b) Let $f, g \in \mathcal{P}, w \in \mathcal{P}^{\prime}$, if we have $(f w)^{\prime}+g w=0$ then $\langle w, g\rangle=0$.

Proposition 2.2. The class of u depends only on the zero $x=0$.
We use the following lemma to prove it:
Lemma 2.3. For all zero c of ϕ, we have

$$
\begin{align*}
\left\langle u, \theta_{c} \tilde{\psi}+\theta_{c}^{2} \tilde{\phi}\right\rangle=\lambda c^{3}\left\langle v, \theta_{c} \psi\right. & \left.+\theta_{c}^{2} \phi\right\rangle \\
& +\left(\psi(c)+\phi^{\prime}(c)\right)\left\{c+(u)_{1}-\lambda\left(c^{2}+c(v)_{1}+(v)_{2}\right)\right\} \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{\psi}(c)+\tilde{\phi}^{\prime}(c)=c^{2}\left(\psi(c)+\phi^{\prime}(c)\right) \tag{2.6}
\end{equation*}
$$

Proof.
Let c be a zero of ϕ, we can write the following equation:

$$
\begin{equation*}
\tilde{\phi}(x)=x^{2}(x-c)\left(\theta_{c} \phi\right)(x) . \tag{2.7}
\end{equation*}
$$

On account of (2.3), we successively obtain

$$
\begin{align*}
\left(\theta_{c}^{2} \tilde{\phi}\right)(x)=x^{2}\left(\theta_{c}^{2} \phi\right)(x) & +\phi^{\prime}(c)\left(\theta_{c}\left(t^{2}\right)\right)(x) \tag{2.8}\\
\left(\theta_{c} \tilde{\psi}\right)(x) & =x^{2}\left(\theta_{c} \psi\right)(x)+\psi(c)\left(\theta_{c}\left(t^{2}\right)\right)(x)-3 x\left(\theta_{c} \phi\right)(x) \tag{2.9}
\end{align*}
$$

Then

$$
\left\langle u, \theta_{c} \tilde{\psi}+\theta_{c}^{2} \tilde{\phi}\right\rangle=\left\langle x^{2} u, \theta_{c} \psi+\theta_{c}^{2} \phi\right\rangle-3\left\langle x u, \theta_{c} \phi\right\rangle+\left(\psi(c)+\phi^{\prime}(c)\right)\left\langle u, \theta_{c}\left(t^{2}\right)(x)\right\rangle,
$$

by (1.1), we have $x u=\lambda x^{2} v$ and $x^{2} u=\lambda x^{3} v$ therefore, it follows that

$$
\begin{align*}
\left\langle u, \theta_{c} \tilde{\psi}+\theta_{c}^{2} \tilde{\phi}\right\rangle=\lambda\left\langle x^{3} v, \theta_{c} \psi+\theta_{c}^{2} \phi\right\rangle-3 \lambda\left\langle x^{2} v, \theta_{c} \phi\right\rangle+ & (\psi(c) \\
& \left.+\phi^{\prime}(c)\right)\left\langle u, \theta_{c}\left(t^{2}\right)(x)\right\rangle . \tag{2.10}
\end{align*}
$$

Using (2.4), we get successively

$$
\begin{aligned}
\left\langle x^{3} v, \theta_{c} \psi+\theta_{c}^{2} \phi\right\rangle=\left\langle v, x^{2} \psi\right\rangle+c\langle v, x \psi\rangle+c^{2}\langle v, \psi\rangle & +\langle v, x \phi\rangle+2 c\langle v, \phi\rangle \\
& +3 c^{2}\langle v, \\
& \left.\theta_{c} \phi\right\rangle+c^{3}\left\langle v, \theta_{c} \psi+\theta_{c}^{2} \phi\right\rangle \\
& \quad\left(\psi(c)+\phi^{\prime}(c)\right)\left((v)_{2}+c(v)_{1}+c^{2}\right), \\
\left\langle x^{2} v, \theta_{c} \phi\right\rangle=\langle v, x \phi\rangle+c\langle v, \phi\rangle+c^{2}\langle v, & \left.\theta_{c} \phi\right\rangle
\end{aligned}
$$

Consequently (2.10) can be written

$$
\begin{aligned}
& \left\langle u, \theta_{c} \tilde{\psi}+\theta_{c}^{2} \tilde{\phi}\right\rangle=\lambda\left\langle v, x^{2} \psi-2 x \phi\right\rangle+\lambda c\langle v, x \psi-\phi\rangle+\lambda c^{2}\langle v, \psi\rangle \\
& \quad+\lambda c^{3}\left\langle v, \theta_{c} \psi+\theta_{c}^{2} \phi\right\rangle+\left\{\left\langle u, \theta_{c}\left(t^{2}\right)(x)\right\rangle-\lambda\left(c^{2}+c(v)_{1}+(v)_{2}\right)\right\}\left(\psi(c)+\phi^{\prime}(c)\right) .
\end{aligned}
$$

But $(\phi v)^{\prime}+\psi v=0$. Then $(x \phi v)^{\prime}+(x \psi-\phi) v=0$ and $\left(x^{2} \phi v\right)^{\prime}+\left(x^{2} \psi-2 x \phi\right) v=0$, by the lemma 2.1, we obtain

$$
\langle v, \psi\rangle=0, \quad\langle v, x \psi-\phi\rangle=0, \quad\left\langle v, x^{2} \psi-2 x \phi\right\rangle=0
$$

Therefore,

$$
\begin{aligned}
\left\langle u, \theta_{c} \tilde{\psi}+\theta_{c}^{2} \tilde{\phi}\right\rangle=\lambda c^{3}\left\langle v, \theta_{c} \psi\right. & \left.+\theta_{c}^{2} \phi\right\rangle \\
& +\left\{\left\langle u, \theta_{c}\left(t^{2}\right)(x)\right\rangle-\lambda\left(c^{2}+c(v)_{1}+(v)_{2}\right)\right\}\left(\psi(c)+\phi^{\prime}(c)\right) .
\end{aligned}
$$

On the other hand, $\left\langle u, \theta_{c}\left(t^{2}\right)(x)\right\rangle=\langle u, x+c\rangle=(u)_{1}+c$, thus (2.5).
From (2.2), we can deduce (2.6).
Proof of the proposition 2.2.
Let c be a zero of ϕ such that $c \neq 0$.
If $\psi(c)+\phi^{\prime}(c)=0$, using (2.5), $\left\langle u, \theta_{c} \tilde{\psi}+\theta_{c}^{2} \tilde{\phi}\right\rangle=\lambda c^{3}\left\langle v, \theta_{c} \psi+\theta_{c}^{2} \phi\right\rangle \neq 0$ since v is semi-classical of class s and so satisfies (2.1).
If $\psi(c)+\phi^{\prime}(c) \neq 0$, then $\tilde{\psi}(c)+\tilde{\phi}^{\prime}(c) \neq 0$, from (2.6).
In all cases, we cannot simplify (2.2) by $x-c$.
Proposition 2.4. Let v be a semi-classical form of class satisfying

$$
(\phi v)^{\prime}+\psi v=0
$$

and introduce

$$
\begin{align*}
& \vartheta_{1}:=\left(1-\lambda(v)_{1}\right) \phi(0), \tag{2.11}\\
& \vartheta_{2}:=\left(1-\lambda(v)_{1}\right)\left(\psi(0)-\phi^{\prime}(0)\right), \tag{2.12}\\
& \vartheta_{3}:=\left(1-\lambda(v)_{1}\right) \psi^{\prime}(0) . \tag{2.13}
\end{align*}
$$

The form u given by (1.1) is also a semi-classical of class \tilde{s} satisfying

$$
(\tilde{\phi} u)^{\prime}+\tilde{\psi} u=0
$$

Moreover,
(1) if $\vartheta_{1} \neq 0$, then $\tilde{s}=s+2$ and $\tilde{\phi}(x)=x^{2} \phi(x), \tilde{\psi}(x)=x_{\tilde{\phi}}^{2} \psi(x)-3 x \phi(x)$;
(2) if $\vartheta_{1}=0$ and $\vartheta_{2} \neq 0$ or $\phi(0) \neq 0$, then $\tilde{s}=s+1$ and $\tilde{\phi}(x)=x \phi(x), \tilde{\psi}(x)=$ $x \psi(x)-2 \phi(x)$;
(3) if $\vartheta_{1}=0, \vartheta_{2}=0, \phi(0)=0$ and $\vartheta_{3} \neq 0$ or $\psi(0) \neq 0$, then $\tilde{s}=s$ and $\tilde{\phi}(x)=\phi(x), \tilde{\psi}(x)=\psi(x)-\left(\theta_{0} \phi\right)(x)$.
Proof.
(1) From (2.2), we have

$$
\tilde{\psi}(0)+\tilde{\phi}^{\prime}(0)=0
$$

and

$$
\left\langle u, \theta_{0} \tilde{\psi}+\theta_{0}^{2} \tilde{\phi}\right\rangle=\langle u, x \psi(x)-2 \phi(x)\rangle=\langle x u, \psi\rangle-2\langle u, \phi\rangle .
$$

Taking into account the relation (1.2), we obtain

$$
\left\langle u, \theta_{0} \tilde{\psi}+\theta_{0}^{2} \tilde{\phi}\right\rangle=\lambda\left\langle v, x^{2} \psi(x)-2 x \phi(x)\right\rangle-2\left(1-\lambda(v)_{1}\right) \phi(0)
$$

But $(\phi v)^{\prime}+\psi v=0$, then $\left(x^{2} \phi(x) v\right)^{\prime}+\left(x^{2} \psi(x)-2 x \phi(x)\right) v=0$. By virtue of the lemma 2.1, we have $\left\langle v, x^{2} \psi(x)-2 x \phi(x)\right\rangle=0$ so, the latter becomes

$$
\begin{equation*}
\left\langle u, \theta_{0} \tilde{\psi}+\theta_{0}^{2} \tilde{\phi}\right\rangle=-2\left(1-\lambda(v)_{1}\right) \phi(0)=-2 \vartheta_{1} . \tag{2.14}
\end{equation*}
$$

Therefore, if $\vartheta_{1} \neq 0$, it is not possible to simplify from (2.1), which means that the class of u is $\tilde{s}=s+2$ and u satisfies

$$
\begin{equation*}
(\tilde{\phi} u)^{\prime}+\tilde{\psi} u=0, \tag{2.15}
\end{equation*}
$$

with

$$
\tilde{\phi}(x)=x^{2} \phi(x), \quad \tilde{\psi}(x)=x^{2} \psi(x)-3 x \phi(x) .
$$

(2) If $\vartheta_{1}=0$, by (2.14) and (2.15) u satisfies

$$
\begin{equation*}
\left(\tilde{\phi}_{0} u\right)^{\prime}+\tilde{\psi}_{0} u=0 \tag{2.16}
\end{equation*}
$$

with

$$
\tilde{\phi}_{0}(x)=x \phi(x), \quad \tilde{\psi}_{0}(x)=x \psi(x)-2 \phi(x) .
$$

Then

$$
\begin{equation*}
\tilde{\psi}_{0}(0)+\tilde{\phi}_{0}^{\prime}(0)=-\phi(0) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\langle u, \theta_{0} \tilde{\psi}_{0}+\theta_{0}^{2} \tilde{\phi}_{0}\right\rangle & =\left\langle u, \psi-\theta_{0} \phi\right\rangle \\
& =\lambda\left\langle v, x \psi(x)-x\left(\theta_{0} \phi\right)(x)\right\rangle+\left(1-\lambda(v)_{1}\right)\left(\psi(0)-\phi^{\prime}(0)\right) \\
& =\lambda\langle v, x \psi(x)-\phi(x)\rangle+\lambda \phi(0)+\left(1-\lambda(v)_{1}\right)\left(\psi(0)-\phi^{\prime}(0)\right) .
\end{aligned}
$$

But $(\phi v)^{\prime}+\psi v=0$, then $(x \phi(x) v)^{\prime}+(x \psi(x)-\phi(x)) v=0$. By lemma 2.1 we obtain $\langle v, x \psi(x)-\phi(x)\rangle=0$. As result, we get

$$
\begin{equation*}
\left\langle u, \theta_{0} \tilde{\psi}_{0}+\theta_{0}^{2} \tilde{\phi}_{0}\right\rangle=\lambda \phi(0)+\vartheta_{2} . \tag{2.18}
\end{equation*}
$$

On account of (2.17), (2.18) and (2.1), we can deduce that when $\phi(0) \neq 0$ or $\vartheta_{2} \neq 0$, it impossible to simplify equation (2.16), which means that the class of u is $\tilde{s}=s+1$. (3) When $\vartheta_{1}=0, \vartheta_{2}=0$ and $\phi(0)=0$, by (2.16) and (2.18) u satisfies

$$
\begin{equation*}
\left(\tilde{\phi}_{1} u\right)^{\prime}+\tilde{\psi}_{1} u=0, \tag{2.19}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{\phi}_{1}(x)=\phi(x), \quad \tilde{\psi}_{1}(x)=\psi(x)-\left(\theta_{0} \phi\right)(x) . \tag{2.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\tilde{\psi}_{1}(0)+\tilde{\phi}_{1}^{\prime}(0)=\psi(0), \tag{2.21}
\end{equation*}
$$

and

$$
\left\langle u, \theta_{0} \tilde{\psi}_{1}+\theta_{0}^{2} \tilde{\phi}_{1}\right\rangle=\left\langle u, \theta_{0} \psi\right\rangle=\lambda\left\langle v, x\left(\theta_{0} \psi\right)(x)\right\rangle+\left(1-\lambda(v)_{1}\right) \psi^{\prime}(0) .
$$

Consequently, it follows that

$$
\begin{equation*}
\left\langle u, \theta_{0} \tilde{\psi}_{1}+\theta_{0}^{2} \tilde{\phi}_{1}\right\rangle=-\lambda \psi(0)+\vartheta_{3} . \tag{2.22}
\end{equation*}
$$

From (2.21) and (2.22), we can deduce that if $\psi(0) \neq 0$ or $\vartheta_{3} \neq 0$ which means it is impossible to simplify (2.19) and $\tilde{s}=s$.

3 Some examples

3.1. Let us describe the case $v:=\mathcal{H}(\tau)$, where $\mathcal{H}(\tau)$ is the generalized Hermite form. Here is [5]

$$
\begin{equation*}
\xi_{n}=0, n \geq 0, \quad \sigma_{n+1}=\frac{n+1+\tau\left(1+(-1)^{n}\right)}{2}, n \geq 0 \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\prod_{\mu=0}^{n} \sigma_{2 \mu+1}=\frac{\Gamma(n+\tau+3 / 2)}{\Gamma(\tau+1 / 2)}, n \geq 0, \quad \prod_{\mu=0}^{n} \sigma_{2 \mu}=\Gamma(n+1), n \geq 0 \tag{3.2}
\end{equation*}
$$

We want

$$
\Lambda_{n}=\sum_{\nu=0}^{n} \frac{1}{\sigma_{2 \nu+1}} \prod_{\mu=0}^{\nu} \frac{\sigma_{2 \mu+1}}{\sigma_{2 \mu}}, n \geq 0
$$

From (3.1) and (3.2), we have

$$
\frac{1}{\sigma_{2 \nu+1}} \prod_{\mu=0}^{\nu} \frac{\sigma_{2 \mu+1}}{\sigma_{2 \mu}}=\frac{\Gamma(\nu+\tau+3 / 2)}{(\nu+\tau+1 / 2) \Gamma(\nu+1) \Gamma(\tau+1 / 2)}=\frac{1}{\Gamma(\tau+1 / 2)} h_{\nu}
$$

where

$$
h_{\nu}=\frac{\Gamma(\nu+\tau+1 / 2)}{\Gamma(\nu+1)}, \nu \geq 0
$$

fulfilling

$$
(\nu+1) h_{\nu+1}-\nu h_{\nu}=(\tau+1 / 2) h_{\nu},
$$

and so

$$
\Lambda_{n}=\frac{1}{\Gamma(\tau+1 / 2)} \sum_{\nu=0}^{n} h_{\nu}=\frac{1}{(\tau+1 / 2) \Gamma(\tau+1 / 2)} \sum_{\nu=0}^{n}\left\{(\nu+1) h_{\nu+1}-\nu h_{\nu}\right\} .
$$

We can deduce that

$$
\begin{equation*}
\Lambda_{n}=\frac{(n+1) h_{n+1}}{\Gamma(\tau+3 / 2)}=\frac{\Gamma(n+\tau+3 / 2)}{\Gamma(\tau+3 / 2) \Gamma(n+1)}, n \geq 0 \tag{3.3}
\end{equation*}
$$

Therefore we have the following table:
Table 1

Δ_{n}	$\Delta_{2 n}=(-1)^{n+1} \frac{\tau+1 / 2}{\Gamma^{3}(\tau+3 / 2)} \frac{\Gamma^{3}(n+\tau+3 / 2)}{n+\tau+1 / 2}, n \geq 0$,
$\Delta_{2 n+1}=(-1)^{n+1} \frac{\lambda}{\Gamma^{2}(\tau+1 / 2)} \Gamma(n+1) \Gamma^{2}(n+\tau+3 / 2), n \geq 0$.	
a_{n}	$a_{2 n}=-\lambda(\tau+1 / 2) \Gamma(\tau+3 / 2) \frac{\Gamma(n+1)}{\Gamma(n+\tau+1 / 2)}, n \geq 0$,
$a_{2 n+1}=\frac{1}{\lambda(\tau+1 / 2) \Gamma(\tau+3 / 2)} \frac{(n+\tau+3 / 2) \Gamma(n+\tau+5 / 2)}{\Gamma(n+1)}, n \geq 0$.	
b_{n}	$b_{2 n}=n+\tau+1 / 2, n \geq 0, b_{2 n+1}=n+\tau+3 / 2, n \geq 0$.
c_{n}	$c_{2 n+2}=-\lambda(\tau+1 / 2) \Gamma(\tau+3 / 2) \frac{\Gamma(n+1)}{\Gamma(n+\tau+3 / 2)}, n \geq 0$,
$c_{1}=0, c_{2 n+3}=\frac{1}{\lambda(\tau+1 / 2) \Gamma(\tau+3 / 2)} \frac{\Gamma(n+\tau+5 / 2)}{\Gamma(n+1)}, n \geq 0$.	
γ_{n+1}	$\gamma_{2 n+3}=-\lambda^{2}(\tau+1 / 2)^{2} \Gamma^{2}(\tau+3 / 2) \frac{\Gamma^{2}(n+2)}{\Gamma^{2}(n+\tau+5 / 2)}, n \geq 0$,
β_{n}	

Proposition 3.1. If $v=\mathcal{H}(\tau)$ is the generalized Hermite form, then the form u given by (1.1) possesses the following integral representation:

$$
\begin{equation*}
\langle u, f\rangle=\frac{\lambda}{\Gamma(\tau+1 / 2)} \int_{-\infty}^{+\infty} x|x|^{2 \tau} e^{-x^{2}} f(x) d x+f(0), \forall f \in \mathcal{P}, \Re \tau>-1 / 2 . \tag{3.4}
\end{equation*}
$$

It is a quasi-antisymmetric and semi-classical form of class s satisfying the following functional equation

$$
\begin{align*}
& \left(x^{2} u\right)^{\prime}+\left(2 x^{3}-(2 \tau+3) x\right) u=0, \quad \tau \neq-1, \quad s=2 . \tag{3.5}\\
& (x u)^{\prime}+2 x^{2} u=0, \quad \tau=-1, \quad s=1 . \tag{3.6}
\end{align*}
$$

Proof.

It is well known that the generalized Hermite form possesses the following integral representation [5]

$$
\langle v, f\rangle=\int_{-\infty}^{+\infty} V(x) f(x) d x, \forall f \in \mathcal{P}
$$

with $V(x)=\frac{1}{\Gamma(\tau+1 / 2)}|x|^{2 \tau}, x \in \mathbb{R}, \Re \tau>-1 / 2$. Following from (1.3), we easily obtain (3.4).
Also, the form u is quasi-antisymmetric because it satisfies

$$
\left\langle u, x^{2 n+2}\right\rangle=\lambda\left\langle v, x^{2 n+3}\right\rangle=0, n \geq 0
$$

When $\tau=0, v$ is the classical Hermite form. The latter satisfies [17]

$$
\left(\phi_{0} v\right)^{\prime}+\psi_{0} v=0,
$$

with $\phi_{0}(x)=1, \psi_{0}(x)=2 x$. Therefore, (2.15) becomes $\vartheta_{1}=1 \neq 0$. By virtue of the proposition 2.4, we get

$$
\begin{equation*}
\left(\tilde{\phi}_{0} u\right)^{\prime}+\tilde{\psi}_{0} u=0, \tag{3.7}
\end{equation*}
$$

where $\tilde{\phi}_{0}(x)=x^{2}, \quad \tilde{\psi}_{0}(x)=2 x^{3}-3 x$, with u a semi-classical form of class $s=2$.
When $\tau \neq 0$, the generalized Hermite form is a semi-classical of class one and satisfies [1]

$$
\left(\phi_{1} v\right)^{\prime}+\psi_{1} v=0,
$$

with $\phi_{1}(x)=x, \quad \psi_{1}(x)=2 x^{2}-2 \tau-1$. In this case, for (2.15) and (2.16) we have

$$
\vartheta_{1}=0, \quad \vartheta_{2}=-2(\tau+1) .
$$

If $\tau \neq-1$, by virtue of the proposition 2.4 , we get

$$
\begin{equation*}
\left(\tilde{\phi}_{1} u\right)^{\prime}+\tilde{\psi}_{1} u=0, \tag{3.8}
\end{equation*}
$$

with $\tilde{\phi}_{1}(x)=x^{2}, \quad \tilde{\psi}_{1}(x)=2 x^{3}-(2 \tau+3) x$ and u a semi-classical form of class $s=2$. Then, (3.8) gives (3.5).
When $\tau=-1$, we have $\psi_{1}(0)=1 \neq 0$, by virtue of the proposition 2.4 , we can deduce (3.6).

Proposition 3.2. When $\tau=-1$, the form u satisfying the equation (3.6) has the following integral representation:

$$
\begin{equation*}
\langle u, f\rangle=-\frac{\lambda}{2 \Gamma(1 / 2)} P \int_{-\infty}^{+\infty} \frac{e^{-x^{2}}}{x} f(x) d x+f(0), \forall f \in \mathcal{P} \tag{3.9}
\end{equation*}
$$

where [7]

$$
P \int_{-\infty}^{+\infty} \frac{V(x)}{x} d x=\lim _{\epsilon \rightarrow 0}\left(\int_{-\infty}^{-\epsilon} \frac{V(x)}{x} d x+\int_{\epsilon}^{+\infty} \frac{V(x)}{x} d x\right) .
$$

Proof.
By virtue of the previous proposition, the form u is quasi antisymmetric

$$
\begin{equation*}
(u)_{2 n+2}=0, n \geq 0 . \tag{3.10}
\end{equation*}
$$

On account of (1.1), we get $\langle x u, 1\rangle=\lambda\left\langle x^{2} v, 1\right\rangle$ and we have

$$
(u)_{1}=\lambda(v)_{2}=\lambda \sigma_{1} .
$$

By (3.1), we obtain

$$
\begin{equation*}
(u)_{1}=-\frac{\lambda}{2} . \tag{3.11}
\end{equation*}
$$

From the functional equation (3.6), we get

$$
\left\langle(x u)^{\prime}+2 x^{2} u, x^{2 n+1}\right\rangle=0, n \geq 0
$$

which is equivalent to

$$
(u)_{2 n+3}=(n+1 / 2)(u)_{2 n+1}, \quad n \geq 0
$$

consequently

$$
(u)_{2 n+3}=\frac{\Gamma(n+3 / 2)}{\Gamma(1 / 2)}(u)_{1}, n \geq 0
$$

By (3.11), we can deduce that

$$
\begin{equation*}
(u)_{2 n+1}=-\frac{\lambda}{2 \Gamma(1 / 2)} \Gamma(n+1 / 2), n \geq 0 . \tag{3.12}
\end{equation*}
$$

From the definition of the gamma function, we get

$$
\begin{aligned}
\left\langle u, x^{2 n+1}\right\rangle & =-\frac{\lambda}{2 \Gamma(1 / 2)} \int_{0}^{+\infty} x^{n-1 / 2} e^{-x} d x=-\frac{\lambda}{\Gamma(1 / 2)} \int_{0}^{+\infty} x^{2 n} e^{-x^{2}} d x \\
& =-\frac{\lambda}{2 \Gamma(1 / 2)} \int_{-\infty}^{+\infty} x^{2 n} e^{-x^{2}} d x, n \geq 0
\end{aligned}
$$

Then, we can deduce

$$
\left\langle u, x^{2 n+1}\right\rangle=-\frac{\lambda}{2 \Gamma(1 / 2)} \lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{-\epsilon} \frac{e^{-x^{2}}}{x} x^{2 n+1} d x+\int_{\epsilon}^{+\infty} \frac{e^{-x^{2}}}{x} x^{2 n+1} d x\right), n \geq 0 .
$$

On account of (3.10), we can write

$$
\left\langle u, x^{n}\right\rangle=-\frac{\lambda}{2 \Gamma(1 / 2)} \lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{-\epsilon} \frac{e^{-x^{2}}}{x} x^{n} d x+\int_{\epsilon}^{+\infty} \frac{e^{-x^{2}}}{x} x^{n} d x\right), n \geq 1
$$

taking (3.11) into account, we get

$$
\left\langle u, x^{n}\right\rangle=-\frac{\lambda}{2 \Gamma(1 / 2)} \lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{-\epsilon} \frac{e^{-x^{2}}}{x} x^{n} d x+\int_{\epsilon}^{+\infty} \frac{e^{-x^{2}}}{x} x^{n} d x\right)-\frac{\lambda}{2}\left\langle\delta, x^{n}\right\rangle, n \geq 0
$$

Hence (3.9).

Remark. The integral representation given in (3.9) does not exist in the list given in [4].
3.2. Let us describe the case $v:=\mathcal{J}_{(1 / 2,1 / 2)}$. It is the second kind Chebyshev functional, which is a particular case of the Jacobi form $\mathcal{J}_{(\alpha, \beta)}$ for $\alpha=\beta=1 / 2$. Here is [5]:

$$
\begin{equation*}
\xi_{n}=0, n \geq 0 \quad, \quad \sigma_{n+1}=\frac{1}{4}, n \geq 0 \tag{3.13}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\prod_{\mu=0}^{n} \sigma_{2 \mu+1}=\frac{1}{4^{n+1}}, n \geq 0 \quad, \quad \prod_{\mu=0}^{n} \sigma_{2 \mu}=\frac{1}{4^{n}}, n \geq 0 \tag{3.14}
\end{equation*}
$$

So, for (1.46) we get

$$
\begin{equation*}
\Lambda_{n}=n+1, n \geq 0 \tag{3.15}
\end{equation*}
$$

Therefore, we obtain the table below:
Table 2

Δ_{n}	$\Delta_{2 n}=(-1)^{n+1} \frac{(n+1)^{2}}{4^{3 n}}, n \geq 0, \Delta_{2 n+1}=\lambda \frac{(-1)^{n+1}}{4^{3 n+2}}, n \geq 0$.
a_{n}	$a_{2 n}=-\frac{\lambda}{4^{2}(n+1)^{2}}, n \geq 0, a_{2 n+1}=\frac{(n+2)^{2}}{4 \lambda}, n \geq 0$.
b_{n}	$b_{2 n}=\frac{1}{4}, n \geq 0, b_{2 n+1}=\frac{n+2}{4(n+1)}, n \geq 0$.
c_{n}	$c_{1}=0, c_{2 n+3}=\frac{(n+1)(n+2)}{\lambda}, n \geq 0, c_{2 n+2}=-\frac{\lambda}{4(n+1)^{2}}, n \geq 0$.
γ_{n+1}	$\gamma_{2 n+2}=-\lambda^{-2}(n+1)^{2}(n+2)^{2}, n \geq 0, \gamma_{2 n+1}=-\frac{\lambda^{2}}{4^{2}(n+1)^{2}}, n \geq 0$.
β_{n}	$\beta_{0}=\frac{\lambda}{4}, \beta_{2 n+2}=\frac{\lambda}{4(n+2)^{2}}+(n+1)(n+2) \lambda^{-1}, n \geq 0$ $\beta_{2 n+1}=-\frac{\lambda}{4(n+1)^{2}}-(n+1)(n+2) \lambda^{-1}, n \geq 0$

Proposition 3.3. If $v=\mathcal{J}_{(1 / 2,1 / 2)}$, the second kind Chebyshev form, then the form u given by (1.1) possesses the following integral representation:

$$
\begin{equation*}
\langle u, f\rangle=f(0)+\lambda \sqrt{\frac{2}{\pi}} \int_{-1}^{1} x \sqrt{1-x^{2}} f(x) d x, f \in \mathcal{P} \tag{3.16}
\end{equation*}
$$

The form u is a quasi-antisymmetric and semi-classical of class $s=2$ satisfying the following functional equation:

$$
\begin{equation*}
\left(x^{2}\left(x^{2}-1\right) u\right)^{\prime}-3 x\left(2 x^{2}-1\right) u=0 \tag{3.17}
\end{equation*}
$$

Proof.
It is well known that the second kind Chebyshev form possesses the following integral representation [5]:

$$
\langle v, f\rangle=\int_{-1}^{1} V(x) d x, \forall f \in \mathcal{P}
$$

with $\left.V(x)=\sqrt{\frac{2}{\pi}} \sqrt{1-x^{2}}, x \in\right]-1,1[$. Following from (1.3), we get (3.16).
Also, u is quasi-antisymmetric because it satisfies

$$
\left\langle u, x^{2 n+2}\right\rangle=\lambda\left\langle v, x^{2 n+3}\right\rangle=0, n \geq 0
$$

The form v is classical and it satisfies [17]

$$
\left(\left(x^{2}-1\right) v\right)^{\prime}-3 x v=0
$$

Then, $\vartheta_{1}=-1 \neq 0$, by virtue of the proposition 2.4 , we get (3.17).
3.3 Let us describe $v=\mathcal{J}_{(-1 / 2,1 / 2)}$, the third kind Chebyshev form. The latter is the co-recursive of the second kind Chebyshev form. We have [5]

$$
\begin{equation*}
\xi_{0}=-\frac{1}{2}, \quad \xi_{n+1}=0, n \geq 0, \quad \sigma_{n+1}=\frac{1}{4}, n \geq 0 \tag{3.18}
\end{equation*}
$$

We have the following results:
Lemma 3.4. [23] The following formulas hold

$$
\begin{aligned}
& S_{2 n}(0)=\frac{(-1)^{n}}{2^{2 n}}, n \geq 0, \quad S_{2 n+1}(0)=\frac{(-1)^{n}}{2^{2 n+1}}, n \geq 0 \\
& S_{2 n}^{(1)}(0)=\frac{(-1)^{n}}{2^{2 n}}, n \geq 0, \quad S_{2 n+1}^{(1)}(0)=0, n \geq 0 \\
& S_{2 n}^{\prime}(0)=(-1)^{n+1} \frac{n}{2^{2 n-1}}, n \geq 0, S_{2 n+1}^{\prime}(0)=(-1)^{n} \frac{n+1}{2^{2 n}}, n \geq 0 \\
& S_{2 n}^{\prime \prime}(0)=(-1)^{n+1} \frac{n(n+1)}{2^{2 n-2}}, n \geq 0, S_{2 n+1}^{\prime \prime}(0)=(-1)^{n+1} \frac{n(n+1)}{2^{2 n-1}}, n \geq 0
\end{aligned}
$$

Following the previous lemma, for (1.36), (1.44) and (1.45) we get

$$
\begin{aligned}
& \chi_{2 n}(0)=\frac{2 n+1}{2^{4 n}}, n \geq 0 \quad, \quad \chi_{2 n+1}(0)=\frac{n+1}{2^{4 n+1}}, n \geq 0 \\
& \chi_{2 n}^{\prime}(0)=0, n \geq 0, \quad \chi_{2 n+1}^{\prime}(0)=\frac{n+1}{2^{4 n}}, n \geq 0 \\
& \mu_{2 n}(0)=\frac{-1}{2^{4 n+1}}, n \geq 0 \quad, \quad \mu_{2 n+1}(0)=\frac{1}{2^{4 n+3}}, n \geq 0 \\
& \mu_{2 n}^{\prime}(0)=-\frac{n+1}{2^{4 n-1}}, n \geq 0 \quad, \quad \mu_{2 n+1}^{\prime}(0)=-\frac{n+1}{2^{4 n+1}}, n \geq 0 \\
& \Theta_{n}(0)=0, n \geq 0,\left\langle v, S_{n}^{2}\right\rangle=\frac{1}{4^{n}}, n \geq 0,(v)_{1}=-\frac{1}{2}
\end{aligned}
$$

Then, we obtain

$$
\begin{align*}
\Delta_{2 n} & =\lambda \frac{(-1)^{n+1}}{2^{6 n+1}}\left(\left(1+2 \lambda^{-1}\right)(n+1)(2 n+1)-1\right), n \geq 0 \tag{3.19}\\
\Delta_{2 n+1} & =\lambda \frac{(-1)^{n+1}}{2^{6 n+4}}\left(\left(1+2 \lambda^{-1}\right)(n+1)(2 n+3)+1\right), n \geq 0
\end{align*}
$$

On account of the proposition 1.2 , the form u is regular if and only if

$$
\begin{equation*}
t(n+1)(2 n+1)-1 \neq 0, n \geq 0, t(n+1)(2 n+3)+1 \neq 0, n \geq 0 \tag{3.20}
\end{equation*}
$$

where $t=1+2 \lambda^{-1}$.

We assume that the previous conditions are satisfied. Therefore, we get the table below:
Table 3

a_{n}	$a_{2 n}=-\frac{1}{8} \frac{t(n+1)(2 n+3)+1}{t(n+1)(2 n+1)-1}, \quad n \geq 0, a_{2 n+1}=\frac{1}{8} \frac{t(n+2)(2 n+3)-1}{t(n+1)(2 n+3)+1}, \quad n \geq 0 .$
b_{n}	$b_{0}=\frac{1}{2}, \quad b_{2 n+2}=\frac{1}{4} \frac{t(n+2)(2 n+3)+1}{t(n+1)(2 n+3)+1}, \quad n \geq 0, \quad b_{2 n+1}=\frac{1}{4} \frac{t(n+1)(2 n+3)-1}{t(n+1)(2 n+1)-1}, \quad n \geq 0$.
c_{n}	$c_{1}=-\frac{1}{2}, c_{2 n+3}=\frac{1}{2} \frac{t(n+1)(2 n+3)-1}{t(n+1)(2 n+3)+1}, n \geq 0, \quad c_{2 n+2}=-\frac{1}{2} \frac{t(n+1)(2 n+1)+1}{t(n+1)(2 n+1)-1}, n \geq 0$.
γ_{n+1}	$\begin{gathered} \gamma_{1}=-\frac{\lambda(2 \lambda+3)}{8}, \gamma_{2 n+3}=-\frac{1}{4} \frac{(t(n+1)(2 n+3)+1)(t(n+2)(2 n+5)-1)}{(t(n+2)(2 n+3)-1)^{2}}, n \geq 0, \\ \gamma_{2 n+2}=-\frac{1}{4} \frac{(t(n+1)(2 n+1)-1)(t(n+2)(2 n+3)-1)}{(t(n+1)(2 n+3)+1)^{2}}, n \geq 0 . \end{gathered}$
β_{n}	$\begin{gathered} \beta_{0}=\frac{\lambda}{2}, \quad \beta_{2 n+2}=\frac{t^{2}(n+1)(n+2)(2 n+3)^{2}+1}{(t(n+2)(2 n+3)-1)(t(n+1)(2 n+3)+1)}, n \geq 0, \\ \beta_{2 n+1}=-\frac{t^{2}(n+1)^{2}(2 n+1)(2 n+3)+1}{(t(n+1)(2 n+3)+1)(t(n+1)(2 n+1)-1)}, n \geq 0 . \end{gathered}$

Proposition 3.5. If $v=\mathcal{J}_{(-1 / 2,1 / 2)}$, the third kind Chebyshev form, then the form u given by (1.1) possesses the following integral representation:

$$
\begin{equation*}
\langle u, f\rangle=\left(1+\frac{1}{2} \lambda\right) f(0)+\frac{\lambda}{\pi} \int_{-1}^{1} x \sqrt{\frac{1-x}{1+x}} f(x) d x, f \in \mathcal{P} \tag{3.21}
\end{equation*}
$$

The form u is a semi-classical form of class s satisfying the following functional equation:

$$
\begin{align*}
& \lambda \neq-2, s=2, \quad\left(x^{2}\left(x^{2}-1\right) u\right)^{\prime}-x\left(5 x^{2}+x-3\right) u=0 \\
& \lambda=-2, \quad s=1, \quad\left(x\left(x^{2}-1\right) u\right)^{\prime}-\left(4 x^{2}+x-2\right) u=0 \tag{3.22}
\end{align*}
$$

Proof.
It is well known that $v=\mathcal{J}_{(-1 / 2,1 / 2)}$ possesses the following integral representation [5]:

$$
\langle v, f\rangle=\int_{-1}^{1} V(x) f(x) d x, f \in \mathcal{P}
$$

with $\left.V(x)=\frac{1}{\pi} \sqrt{\frac{1-x}{1+x}}, x \in\right]-1,1[$. Following from (1.3), we easily obtain (3.21). The form v is classical and satisfies [17]

$$
(\phi v)^{\prime}+\psi v=0
$$

with $\phi(x)=x^{2}-1, \psi(x)=-2 x-1$. Then, (2.15) and (2.16) become

$$
\vartheta_{1}=-\frac{1}{2}(\lambda+2), \quad \vartheta_{2}=-\frac{1}{2}(\lambda+2),
$$

and $\phi(0)=-1 \neq 0$.
The proposition 2.4 is enough to obtain (3.22).
3.4. Let us describe the case where v is the form given in $[11,22]$. We have

$$
\begin{equation*}
\xi_{n}=(-1)^{n}, n \geq 0, \quad \sigma_{n+1}=-\frac{1}{4}, n \geq 0 \tag{3.23}
\end{equation*}
$$

Lemma 3.6. We have the following formulas:

$$
\begin{align*}
& S_{n}(0)=(-1)^{\nu_{n}} \frac{n+1}{2^{n}}, n \geq 0 . \tag{3.24}\\
& S_{n}^{(1)}(0)=(-1)^{n+\nu_{n}} \frac{n+1}{2^{n}}, n \geq 0 . \tag{3.25}\\
& S_{n}^{\prime}(0)=(-1)^{\nu_{n}}\left((-1)^{n}-1\right) \frac{n+1}{2^{n+1}}, n \geq 0 \tag{3.26}\\
& S_{n}^{\prime \prime}(0)=\frac{(-1)^{1+\nu_{n}}}{3.2^{n+2}}(n+1)\left(2 n-1+(-1)^{n}\right)\left(2 n+5-(-1)^{n}\right), n \geq 0, \tag{3.27}
\end{align*}
$$

where

$$
\begin{equation*}
\nu_{n}=\frac{2 n+1-(-1)^{n}}{4}, n \geq 0 \tag{3.28}
\end{equation*}
$$

Proof.
In this case, (1.4) becomes

$$
\begin{align*}
& S_{0}(x)=1 \quad, \quad S_{1}(x)=x-1 \\
& S_{n+2}(x)=\left(x+(-1)^{n}\right) S_{n+1}(x)+\frac{1}{4} S_{n}(x), n \geq 0 . \tag{3.29}
\end{align*}
$$

So, we get

$$
\begin{align*}
& S_{0}(0)=1, \quad S_{1}(0)=-1, \quad S_{2}(0)=-\frac{3}{4} \tag{3.30}\\
& S_{n+2}(0)=(-1)^{n} S_{n+1}(0)+\frac{1}{4} S_{n}(0), n \geq 0 . \tag{3.31}
\end{align*}
$$

From (3.31), we can deduce the following relations:

$$
\begin{align*}
& S_{2 n+1}(0)=S_{2 n+2}(0)-\frac{1}{4} S_{2 n}(0), n \geq 0 . \tag{3.32}\\
& S_{2 n+3}(0)=-S_{2 n+2}(0)+\frac{1}{4} S_{2 n+1}(0), n \geq 0 . \tag{3.33}
\end{align*}
$$

On account of (3.32), the relation (3.33) becomes

$$
S_{2 n+4}(0)+\frac{1}{2} S_{2 n+2}(0)+\frac{1}{16} S_{2 n}(0)=0, n \geq 0,
$$

by (3.30), we can deduce that

$$
\begin{equation*}
S_{2 n}(0)=(-1)^{n} \frac{2 n+1}{2^{2 n}}, n \geq 0 \tag{3.34}
\end{equation*}
$$

By virtue of the previous relation and (3.32), we obtain

$$
\begin{equation*}
S_{2 n+1}(0)=(-1)^{n+1} \frac{n+1}{2^{2 n}}, n \geq 0 \tag{3.35}
\end{equation*}
$$

The relations (3.34) and (3.35) produce (3.24).
The sequence $\left\{S_{n}^{(1)}\right\}_{n \geq 0}$ satisfies the following recurrence relation

$$
\begin{align*}
& S_{0}^{(1)}(x)=1, \quad S_{1}^{(1)}(x)=x+1 \\
& S_{n+2}^{(1)}(x)=\left(x-(-1)^{n}\right) S_{n+1}^{(1)}(x)+\frac{1}{4} S_{n}^{(1)}(x), n \geq 0 . \tag{3.36}
\end{align*}
$$

The above analogous calculations give (3.25).
From (3.29), we obtain

$$
\begin{align*}
& S_{0}^{\prime}(0)=0 \quad, \quad S_{2}^{\prime}(0)=0 \tag{3.37}\\
& S_{n+2}^{\prime}(0)=(-1)^{n} S_{n+1}^{\prime}(0)+\frac{1}{4} S_{n}^{\prime}(0)+S_{n+1}(0), n \geq 0 . \tag{3.38}
\end{align*}
$$

Following (3.38), we get

$$
\begin{align*}
& S_{2 n+1}^{\prime}(0)=S_{2 n+2}^{\prime}(0)-\frac{1}{4} S_{2 n}^{\prime}(0)-S_{2 n+1}(0), n \geq 0 \tag{3.39}\\
& S_{2 n+2}^{\prime}(0)=-S_{2 n+3}^{\prime}(0)+\frac{1}{4} S_{2 n+1}^{\prime}(0)+S_{2 n+2}(0), n \geq 0 \tag{3.40}
\end{align*}
$$

On account of (3.39), equation (3.40) can be written as following:

$$
S_{2 n+4}^{\prime}(0)+\frac{1}{2} S_{2 n+2}^{\prime}(0)+\frac{1}{16} S_{2 n}^{\prime}(0)=S_{2 n+3}(0)-\frac{1}{4} S_{2 n+1}(0)+S_{2 n+2}(0), n \geq 0
$$

By (3.24) and (3.37), we can deduce that

$$
\begin{equation*}
S_{2 n}^{\prime}(0)=0, n \geq 0 \tag{3.41}
\end{equation*}
$$

By virtue of the preceding relation and (3.24), equation (3.39) becomes

$$
\begin{equation*}
S_{2 n+1}^{\prime}(0)=(-1)^{n} \frac{n+1}{2^{2 n}}, n \geq 0 \tag{3.42}
\end{equation*}
$$

Then, (3.41) and (3.42) give (3.26).
On account of (3.29), we obtain

$$
\begin{align*}
& S_{0}^{\prime \prime}(0)=0, S_{1}^{\prime \prime}(0)=0, S_{2}^{\prime \prime}(0)=2 \tag{3.43}\\
& S_{n+2}^{\prime \prime}(0)=(-1)^{n} S_{n+1}^{\prime \prime}(0)+\frac{1}{4} S_{n}^{\prime \prime}(0)+2 S_{n+1}^{\prime}(0), n \geq 0 \tag{3.44}
\end{align*}
$$

Therefore, by (3.44), it follows that

$$
\begin{align*}
& S_{2 n+1}^{\prime \prime}(0)=S_{2 n+2}^{\prime \prime}(0)-\frac{1}{4} S_{2 n}^{\prime \prime}(0)-2 S_{2 n+1}^{\prime}(0), n \geq 0 \tag{3.45}\\
& S_{2 n+3}^{\prime \prime}(0)=-S_{2 n+2}^{\prime \prime}(0)+\frac{1}{4} S_{2 n+1}^{\prime \prime}(0)+2 S_{2 n+2}^{\prime}(0), n \geq 0 \tag{3.46}
\end{align*}
$$

By (3.45) and (3.26), equation (3.46) can be written as

$$
S_{2 n+4}^{\prime \prime}(0)+\frac{1}{2} S_{2 n+2}^{\prime \prime}(0)+\frac{1}{16} S_{2 n}^{\prime \prime}(0)=(-1)^{n+1} \frac{4 n+6}{4^{n+1}}, n \geq 0
$$

Then, we get

$$
\begin{equation*}
S_{2 n}^{\prime \prime}(0)=(-1)^{n+1} \frac{n(n+1)(2 n+1)}{3 \cdot 2^{2 n-2}}, n \geq 0 \tag{3.47}
\end{equation*}
$$

On account of (3.47), (3.26) and (3.45), we obtain

$$
\begin{equation*}
S_{2 n+1}^{\prime \prime}(0)=(-1)^{n} \frac{n(n+1)(n+2)}{3 \cdot 2^{2 n-2}}, n \geq 0 \tag{3.48}
\end{equation*}
$$

Then (3.47) and (3.48) give (3.27).
Following from lemma 3.6 , for (1.36), (1.44) and (1.45) we get

$$
\begin{aligned}
& \chi_{n}(0)=\frac{(n+1)(n+2)}{2^{2 n+1}}, n \geq 0, \\
& \chi_{n}^{\prime}(0)=(-1)^{n} \frac{(n+1)(n+2)}{3 \cdot 2^{2 n+1}}\left(2 n+3-3(-1)^{n}\right), n \geq 0, \\
& \mu_{n}(0)=0, n \geq 0, \mu_{n}^{\prime}(0)=-\frac{(n+1)(n+2)(n+3)}{3 \cdot 2^{2 n}}, n \geq 0, \\
& \Theta_{n}(0)=\frac{1}{2^{2 n}}, n \geq 0 .
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
\Delta_{n}=\frac{(-1)^{n+1+\nu_{n+1}}}{3 \cdot 2^{3 n+2}}(n+2) t_{n}, n \geq 0 \tag{3.49}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{n}=(n+1)(n+2)(n+3)(\lambda-1)-6 \lambda . \tag{3.50}
\end{equation*}
$$

On account of the proposition 1.2 , the form u is regular if and only if $t_{n} \neq 0, n \geq 0$.
We assume that the previous condition is satisfied. Therefore, we obtain the following table:
Table 4

a_{n}	$\frac{(-1)^{n}}{8} \frac{n+3}{n+2} \frac{t_{n+1}}{t_{n}}, n \geq 0$.
b_{n}	$b_{0}=\frac{3}{4}, b_{n+1}=\frac{n+4}{4(n+2)}, n \geq 0$.
c_{n}	$c_{1}=0, c_{n+2}=\frac{(-1)^{n}}{2} \frac{n+1}{n+2} \frac{t_{n+1}}{t_{n}}, n \geq 0$.
γ_{n+1}	$\gamma_{1}=-\lambda \frac{t_{1}}{2^{5}}, \gamma_{n+2}=\frac{(n+2)(n+4)}{4(n+3)^{2}} \frac{t_{n} t_{n+2}}{t_{n+1}^{2}}, n \geq 0$.
β_{n}	$\beta_{0}=\frac{3}{4} \lambda, \beta_{n+1}=\frac{(-1)^{n}}{2}\left\{\frac{n+1}{n+2} \frac{t_{n+1}}{t_{n}}-\frac{n+4}{n+3} \frac{t_{n}}{t_{n+1}}\right\}, n \geq 0$.

Proposition 3.7. The form u given by (1.1) have the following integral representation:

$$
\begin{equation*}
\langle u, f\rangle=\frac{2 \lambda}{\pi} \int_{-1}^{1} x^{2} \sqrt{\frac{1-x}{1+x}} f(x) d x+(1-\lambda) f(0), f \in \mathcal{P} \tag{3.51}
\end{equation*}
$$

The form u is a semi-classical form of class s satisfying the following functional equation:

$$
\begin{align*}
& \lambda \neq 1, \quad s=2, \quad\left(x^{2}\left(x^{2}-1\right) u\right)^{\prime}+\left(-6 x^{3}+x^{2}+4 x\right) u=0, \tag{3.52}\\
& \lambda=1, \quad s=1, \quad\left(x\left(x^{2}-1\right) u\right)^{\prime}+\left(-5 x^{2}+x+3\right) u=0 . \tag{3.53}
\end{align*}
$$

Proof.
The form v has the following integral representation [22]:

$$
\langle v, f\rangle=\int_{-1}^{1} V(x) f(x) d x, f \in \mathcal{P},
$$

with $\left.V(x)=\frac{2}{\pi} x \sqrt{\frac{1-x}{1+x}}, x \in\right]-1,1\left[\right.$ and $(v)_{1}=1$. Following from (1.3) we obtain (3.51). The form v is a semi-classical of class one and satisfies [22]

$$
(\phi v)^{\prime}+\psi v=0
$$

where $\phi(x)=x\left(x^{2}-1\right), \psi(x)=-4 x^{2}+x+2$. Then $\vartheta_{1}=0, \vartheta_{2}=3(1-\lambda), \vartheta_{3}=0$, $\phi(0)=0$ and $\psi(0)=2 \neq 0$.
By virtue of the proposition 2.4 we get (3.52) and (3.53).

Acknowledgments

The authors would like to express their deepest gratitude to the referee for the valuable suggestions pertaining to both the formulations and bibliography.

References

[1] J.Alaya, P.Maroni, Semi-classical Laguerre-Hahn forms defined by pseudo-functions. Methods Appl. Anal.3(1) (1996) 12-30.
[2] M. Alfaro, F. Marcellán, A. Peña, M. Rezola, On rational transformations of linear functional: Direct problem. J. Math. Anal. Appl. 298 (2004) 171-183.
[3] R. Álvarez-Nodarse, J. Arvesú, F. Marcellán, Modifications of quasi-definite linear functionals via addition of delta and derivatives of delta Dirac functions.

Indag. Math. 15(1)(2004)1-20.
[4] S. Belmehdi, On semi-classical linear functionals of class $s=1$. Classification and integral representations, Indag. Math. 3(1992) 253-275.
[5] T. S. Chihara, An introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
[6] E. B. Christoffel, Über die Gaussiche quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math. 55(1858) 61-82.
[7] K. T. R. Davies, M. L. Glasser, V. Protopopescu, F. Tbakin, Mathematics of principal value and applications to nuclear physics, transport theory and condensed matter physics. Math. Models Methods Appl. Sci. 6(1996)833-885.
[8] D. Dickinson, On quasi-orthogonal polynomials. Proc. Amer. Math. Soc. 12(1961) 185-194.
[9] J. Dini, P. Maroni, Sur la multiplication d'une forme semi-classique par un polynôme. Pupl. Sem. Math. 3 (1989).
[10] C. Fox, A generalization of the Cauchy Principal Value. Canad. J. Math. 9(1957)110$11 \%$.
[11] Ya L. Geronimus, Sur quelques equations aux différences finies et les systèmes correspondants des polynômes orthogonaux, Comptes Rendus (Doklady) de l'Academ. Sci. l'URSS, 29 (1940), 536-538.
[12] D. H. Kim, K. H. Kwon, S. B. Park, Delta perturbation of moment functional. Appl. Analysis. 74 (2000) 463-47\%.
[13] J. H. Lee, K. H. Kwon, Division problem of moment functional. Rock. Mount. J. Math. 32(2)(2002) 739-758.
[14] F. Marcellán, P. Maroni, Sur l'adjonction d'une masse de Dirac à une forme régulière et semi-classique. Annali Mat. Pura ed appl. 12 (1992) 1-22.
[15] P. Maroni, Sur la suite de polynômes orthogonaux associée à la forme $u=\delta_{c}+\lambda(x-$ c) ${ }^{-1}$ L. Period. Math. Hungar. 21(3) (1990) 223-248.
[16] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. in: C. Brezinski, et al. (Eds.), Orthogonal polynomials and Their Applications, IMACS Ann. Comput. Appl. Math., Vol. 9, Baltzer, Basel, 1991, 95-130.
[17] P. Maroni, Variations around classical orthogonal polynomials. Connected problems. J. Comput. Appl. Math. 48 (1993) 133-155.
[18] P. Maroni, Tchebychev forms and their perturbed as second degree forms. Ann. Num. Math. 2(1995)123-143.
[19] P. Maroni, On a regular form defined by a pseudo-function. Numer. Algorithms. 11(1996) 243-254.
[20] P. Maroni, Semi-classical character and finite-type relations between polynomial sequences. Appl. Num. Math. 31 (1999) 295-330.
[21] P. Maroni, I. Nicolau, On the inverse problem of the product of a form by a polynomial: The cubic case. Appl. Num. Math. 45 (2003) 419-451.
[22] P. Maroni, M. Ihsen Tounsi, The second-order self associate orthogonal polynomials. J. Appl. Math. 2(2004) 137-167.
[23] M, Mejri, Division problem of a regular forms: the case $x^{2} u=\lambda v$, submitted.
[24] J. Petronilho, On the linear functionals associated to linearly related sequences of orthogonal polynomials. J. Math. Anal. Appl. 315(2006)379-393.

Institut Préparatoire aux Etudes d'Ingénieurs El Manar 2092 El Manar, B.P 244 Tunis Tunisia.
E-mail: Olfa.Kamech@ipeiem.rnu.tn
Institut Supérieur des Sciences Appliquées et de Technologie Rue Omar Ibn El Khattab Gabès 6072 Tunisia.
E-mail: mejri_manoubi@yahoo.fr, Manoubi.Mejri@issatgb.rnu.tn

[^0]: * corresponding author

 Received by the editors December 2006-In revised form in June 2007. Communicated by A. Bultheel.
 1991 Mathematics Subject Classification : 42C05,33C45.
 Key words and phrases : Orthogonal polynomials, quasi-definite forms.

