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Abstract

In this work we study bifurcation of forms of equilibrium of a thin circular
elastic plate lying on an elastic base under the action of a compressive force
(see Picture 1). The forms of equilibrium may be found as solutions of the von
Kármán equations with two real positive parameters defined on the unit disk
in R

2 centered at the origin. These equations are equivalent to an operator
equation F (x, p) = 0 in the real Hölder spaces with a nonlinear S1-equivariant
Fredholm map of index 0. For the existence of bifurcation at a point (0, p) it
is necessary that dim KerF ′

x(0, p) > 0. The space Ker F ′
x(0, p) can be at most

four-dimensional. We apply the Crandall-Rabinowitz theorem to prove that
if dim Ker F ′

x(0, p) = 3 then there is bifurcation of radial solutions at (0, p).
What is more, using the Lyapunov-Schmidt finite-dimensional reduction we
investigate the number of branches of radial bifurcation at (0, p).

1 Introduction

Let C4,µ
0,0

(
Ω
)

denote the subspace of such functions f : Ω → R from the real Hölder

space C4,µ
(
Ω
)

that satisfy the following boundary conditions:

f |∂Ω = ∆f |∂Ω = 0,

where ∆ is the Laplace operator, Ω = {(u, v) ∈ R
2 : u2+v2 < 1} and µ ∈ (0, 1). The

operators ∆2 : C4
(
Ω
)
→ C

(
Ω
)

and [·, ·] : C2
(
Ω
)
× C2

(
Ω
)
→ C

(
Ω
)

are defined
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by:

∆2f =
∂4f

∂u4
+ 2

∂4f

∂u2∂v2
+

∂4f

∂v4
, [f, g] =

∂2f

∂u2

∂2g

∂v2
− 2

∂2f

∂u∂v

∂2g

∂u∂v
+

∂2f

∂v2

∂2g

∂u2
.

Our purpose is to investigate bifurcation of forms of equilibrium of a thin circular
elastic plate lying on an elastic base under the action of a compressive force. This
physical phenomenon is strictly connected with the von Kármán equations (see [3])
given as follows:






∆2w − [w, σ] + 2α∆w + βw − γw3 = 0
∆2σ + 1

2
[w, w] = 0 in Ω,

∆w = w = 0
∆σ = σ = 0 on ∂Ω,

(1)

where w, σ ∈ C4,µ
0,0

(
Ω
)
, w(u, v) is a deflection function, σ(u, v) is a stress function,

α > 0 is a value of the compressive force, β > 0 and γ > 0 are parameters of the
elastic foundation. More precisely, the solutions (w, σ) of the system (1) lying in a
small neighbourhood of the point (0, 0) are forms of equilibrium of the plate. In the
remainder of this paper we assume γ to be constant.

In the last twenty years many authors have studied von Kármán equations of
different types. The classical works on this subject are [1, 2, 4, 5, 6, 11, 17, 21, 23],
and modern ones are [3, 7, 9, 10, 16, 19].

The studies, including the elasticity of foundation, by the use of bifurcation
theory have been started by Yu. Morozov in [18]. Morozov investigated the forms
of equilibrium of a homogenous finite beam clamped at the edges to the foundation.
He proved that if we consider additional nonlinear terms corresponding to an elastic
foundation then subcritical branches of solutions at a bifurcation point will occur.
In [12] we came to the same conclusion for simple bifurcation points in the solution
set of (1).

This paper is a continuation of our earlier results in [12, 13, 15]. To study
bifurcation we apply methods of nonlinear analysis and representation theory.

Ω v

u

w

α

α

α

α

β

Picture 1.
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Let X = C4,µ
0,0

(
Ω
)
× C4,µ

0,0

(
Ω
)

and Y = C0,µ
(
Ω
)
× C0,µ

(
Ω
)
. The system (1) is

equivalent to an operator equation

F (x, p) = 0 (2)

with the nonlinear map F : X × R
2
+ → Y given by

F (x, p) =
(
∆2w − [w, σ] + 2α∆w + βw − γw3,−∆2σ − 1

2
[w, w]

)
, (3)

where x = (w, σ) and p = (α, β).
In [12] we showed that F is C∞ and F ′

x(0, p) : X → Y is a Fredholm map of
index 0 for each p ∈ R

2
+. We also proved that F is a variational gradient for the

energy functional E : X × R
2
+ → R defined by

E (x, p) =
1

2π

∫∫

Ω

(
(∆w)2 − (∆σ)2 − [w, w]σ

)
dudv

− 1

2π

∫∫

Ω
2α




(

∂w

∂u

)2

+

(
∂w

∂v

)2


 dudv

+
1

2π

∫∫

Ω

(
βw2 − 1

2
γw4

)
dudv, (4)

with respect to the standard inner product in L2 (Ω)×L2 (Ω). Let Γ = {(0, p) : p ∈
R

2
+} be a subset of X × R

2
+. Every point in Γ is said to be a trivial solution of the

equation (2). A point (x, p) ∈ X × R
2
+ such that F (x, p) = 0 and x 6= 0 is called

a nontrivial solution of (2). We say that (0, p) ∈ Γ is a bifurcation point of (2) (or
there is bifurcation at (0, p)) if in every neighbourhood of this point there exists a
nontrivial solution of (2). For (0, p) ∈ Γ, set

N(p) = Ker F ′
x(0, p).

A bifurcation point (0, p) ∈ Γ is called either simple if dim N(p) = 1 or multiple

if dim N(p) ≥ 2. Applying the implicit function theorem we conclude that for
bifurcation at a point (0, p) ∈ Γ it is necessary that dim N(p) > 0. In [12] we proved
that dim N(p) is no greater than 4. We showed that if dimN(p) = 1 then there
exists bifurcation of the Crandall-Rabinowitz type at (0, p). The proof was based
on the Crandall-Rabinowitz theorem (see [8, 20]). In [13] we proved that a sufficient
condition for bifurcation at (0, p) is dim N(p) > 0. In [15] we described the solution
set of (1) in a small neighbourhood of a simple bifurcation point.

In this paper we discuss the case dim N(p) = 3. Our investigations are based
on S1-symmetries. We notice that the subspace of S1-equivariant functions in N(p)
is one-dimensional. It implies that (0, p) ∈ Γ is a simple degeneracy point of the
restriction of F to the subspace of S1-equivariant functions in X. By the use of the
Crandall-Rabinowitz theorem we prove that there is bifurcation of radial solutions at
(0, p). Next, applying the Lyapunov-Schmidt finite-dimensional reduction we study
the number of branches of radial bifurcation at (0, p).

In case dim N(p) is 2 or 4 this method breaks down, because the subspace of
S1-equivariant functions in N(p) is not one-dimensional.
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2 S1-invariant subspaces in the space N(p)

At the beginning we introduce some notations. We will denote by S1 the set {eiΘ :
0 ≤ Θ < 2π}. Obviously, S1 with the multiplication of complex numbers is an
abelian group. Define G = {TΘ : 0 ≤ Θ < 2π}, where TΘ : R

2 → R
2 is a rotation

through Θ. The group G is a linear representation of S1 in GL (R2).

Definition 2.1. A set U ⊂ R
2 is called S1-invariant if TΘ(u, v) ∈ U for all (u, v) ∈

U and Θ ∈ [0, 2π).

Definition 2.2. Let U ⊂ R
2 be S1-invariant. A map f : U → R

n is said to be

S1-equivariant if f (TΘ(u, v)) = f(u, v) for all Θ ∈ [0, 2π) and (u, v) ∈ U .

Property 2.1. Let U ⊂ R
2 be an S1-invariant set. The following conditions are

equivalent.

(i) f : U → R
n is an S1-equivariant map.

(ii) There exists a map g : R → R
n such that f(u, v) = g(

√
u2 + v2) for each

(u, v) ∈ U .

Let Z ⊂ {f : U → R
n} be a linear space, where U ⊂ R

2 is S1-invariant. We will
denote by ZS1

the subspace of all S1-equivariant functions in Z, i.e.

ZS1

= {f ∈ Z : f ◦ TΘ = f for each Θ ∈ [0, 2π)}.
Clearly, the unit ball Ω, its boundary ∂Ω and closure Ω are S1-invariant sets. Define

Cm,µ
0

(
Ω
)

= {f ∈ Cm,µ
(
Ω
)

: f |∂Ω = 0}.

Let (r, ϕ) denote the polar coordinates of a point (u, v) ∈ Ω. It is well known that

λ is an eigenvalue of ∆ : Cm,µ
0

(
Ω
)
→ Cm−2,µ

(
Ω
)
, m ≥ 2, iff λ < 0 and

√
−λ is zero

of one of the Bessel functions

Jk (s) =
1

π

∫ π

0
cos (s sin t − kt) dt, k ∈ N ∪ {0}.

If J0(
√
−λ) = 0 then dim Ker(∆ − λI) = 1 and Ker(∆ − λI) = span{J0(

√
−λr)}.

If Jk(
√
−λ) = 0 and k 6= 0 then dim Ker(∆ − λI) = 2 and Ker(∆ − λI) =

span{Jk(
√
−λr) cos(kϕ), Jk(

√
−λr) sin(kϕ)}. Here and subsequently, I stands for

the natural embedding of Cm,µ
(
Ω
)

into Cm−2,µ
(
Ω
)

for m ≥ 2, i.e. I(x) = x.

We now turn our attention to the space N(p). It was computed in [12] that

F ′
x(x, p)(z, η) =

(
∆2z − [z, σ] − [w, η] + 2α∆z + βz − 3γw2z,−∆2η − [w, z]

)
, (5)

and so
F ′

x(0, p)(z, η) =
(
∆2z + 2α∆z + βz,−∆2η

)
(6)

for z, η ∈ C4,µ
0,0 (Ω). One knows that ∆: Cm,µ

0 (Ω) → Cm−2,µ(Ω), m ≥ 2, is an

isomorphism. Hence ∆2 : C4,µ
0,0 (Ω) → C0,µ(Ω) is an isomorphism and, in consequence,

N(p) = Ker(∆2 + 2α∆ + βI) × {0}, (7)

where ∆2 + 2α∆ + βI : C4,µ
0,0 (Ω) → C0,µ(Ω). Fix p = (α, β) ∈ R

2
+. Set δ = α2 − β.

If δ ≥ 0 then a and b are defined as follows: a = −α −
√

δ, b = −α +
√

δ.
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Assumptions Results

δ a and b dim N (p) base of N (p) dim N(p)S1

1. − not defined 0 ∅ 0

2. + ∀k≥0 Jk

(√−a
)
6= 0 0 ∅ 0

or 0 Jk

(√
−b
)
6= 0

3. 0 J0

(√−a
)

= 0 1 e1 (u, v) =
(
J0

(√−ar
)
, 0
)

1

4. + ∀k≥0 Jk

(√
−b
)
6= 0 1 e1 (u, v) =

(
J0

(√−ar
)
, 0
)

1

J0

(√−a
)

= 0

5. + ∀k≥0 Jk

(√−a
)
6= 0 1 e1 (u, v) =

(
J0

(√
−br

)
, 0
)

1

J0

(√
−b
)

= 0

6. 0 ∃k>0 Jk

(√−a
)

= 0 2 e1 (u, v) =
(
Jk

(√−ar
)

cos (kϕ) , 0
)

0

e2 (u, v) =
(
Jk

(√−ar
)

sin (kϕ) , 0
)

7. + J0

(√−a
)

= 0 2 e1 (u, v) =
(
J0

(√−ar
)
, 0
)

2

J0

(√
−b
)

= 0 e2 (u, v) =
(
J0

(√
−br

)
, 0
)

8. + ∀l≥0 Jl

(√
−b
)
6= 0 2 e1 (u, v) =

(
Jk

(√−ar
)

cos (kϕ) , 0
)

0

∃k>0 Jk

(√−a
)

= 0 e2 (u, v) =
(
Jk

(√−ar
)

sin (kϕ) , 0
)

9. + ∀k≥0 Jk

(√−a
)
6= 0 2 e1 (u, v) =

(
Jl

(√
−br

)
cos (lϕ) , 0

)
0

∃l>0 Jl

(√
−b
)

= 0 e2 (u, v) =
(
Jl

(√
−br

)
sin (lϕ) , 0

)

10. + ∃k>0 Jk

(√−a
)

= 0 3 e1 (u, v) =
(
Jk

(√−ar
)

cos (kϕ) , 0
)

1

J0

(√
−b
)

= 0 e2 (u, v) =
(
Jk

(√−ar
)

sin (kϕ) , 0
)

e3 (u, v) =
(
J0

(√
−br

)
, 0
)

11. + ∃k>0 Jk

(√
−b
)

= 0 3 e1 (u, v) =
(
J0

(√−ar
)
, 0
)

1

J0

(√−a
)

= 0 e2 (u, v) =
(
Jk

(√
−br

)
cos (kϕ) , 0

)

e3 (u, v) =
(
Jk

(√
−br

)
sin (kϕ) , 0

)

12. + ∃k,l>0 Jk

(√−a
)

= 0 4 e1 (u, v) =
(
Jk

(√−ar
)

cos (kϕ) , 0
)

0

Jl

(√
−b
)

= 0 e2 (u, v) =
(
Jk

(√−ar
)

sin (kϕ) , 0
)

e3 (u, v) =
(
Jl

(√
−br

)
cos (lϕ) , 0

)

e4 (u, v) =
(
Jl

(√
−br

)
sin (lϕ) , 0

)

Table 1.
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Lemma 2.2 (see [12]). Let ∆ − aI, ∆ − bI : C2,µ
0

(
Ω
)
→ C0,µ

(
Ω
)
. The following

implications hold.

(i) If δ < 0 then Ker(∆2 + 2α∆ + βI) = {0}.

(ii) If δ = 0 then Ker(∆2 + 2α∆ + βI) = Ker(∆ − aI).

(iii) If δ > 0 then Ker(∆2 + 2α∆ + βI) = Ker(∆ − aI) ⊕ Ker(∆ − bI).

Applying Lemma 2.2 and the description of eigenspaces of ∆ on Ω we receive
the dimension and the base of N(p). The results are announced in Table 1.

In Table 1 the character ’+’ means positive and the character ’−’ means negative.
Combining the results of Table 1 with Property 2.1 we can determine the base of
N(p)S1

.

3 The properties of F and F |XS1×R
2
+

Let U ⊂ R
2 be S1-invariant. Assume that Λ ⊂ R

k and E1, E2 ⊂ {f : U → R
n}

are real linear subspaces such that if f ∈ Ei and Θ ∈ [0, 2π) then f ◦ TΘ ∈ Ei for
i = 1, 2. We will say that

(i) P : E1 → E2 is S1-equivariant if P (f ◦ TΘ) = P (f) ◦ TΘ for Θ ∈ [0, 2π) and
f ∈ E1;

(ii) T : E1 × Λ → E2 is S1-equivariant if T (·, λ) : E1 → E2 is S1-equivariant for
each λ ∈ Λ.

Let F S1

denote the restriction of F given by (3) to the space XS1 × R
2
+. In this

section we will look more closely at the operators F and F S1

. Let us remark that if
f belongs to a Hölder space then for each Θ ∈ [0, 2π) a function f ◦ TΘ lies in this
space, too. It follows from the fact that Ω and ∂Ω are S1-invariant sets.

Theorem 3.1. The operator F : X ×R
2
+ → Y defined by (3) is S1-equivariant, i.e.

F (x ◦ TΘ, p) = F (x, p) ◦ TΘ

for all x ∈ X, p ∈ R
2
+ and Θ ∈ [0, 2π).

Proof. It is known that the Laplace operator on Ω is S1-equivariant. Therefore
it suffices to show that [w ◦ TΘ, σ ◦ TΘ] = [w, σ] ◦ TΘ for all w, σ ∈ C4,µ

0,0

(
Ω
)

and

Θ ∈ [0, 2π).

Fix w, σ ∈ C4,µ
0,0

(
Ω
)

and Θ ∈ [0, 2π). Applying twice the theorem on the derivative
of superposition we get

∂2 (w ◦ TΘ)

∂u2
(u, v) =

∂2w

∂u2
(TΘ (u, v)) cos2 Θ + 2

∂2w

∂u∂v
(TΘ (u, v)) sin Θ cos Θ (8)

+
∂2w

∂v2
(TΘ (u, v)) sin2 Θ,
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∂2 (w ◦ TΘ)

∂v2
(u, v) =

∂2w

∂u2
(TΘ (u, v)) sin2 Θ − 2

∂2w

∂u∂v
(TΘ (u, v)) sin Θ cos Θ (9)

+
∂2w

∂v2
(TΘ (u, v)) cos2 Θ

and

∂2 (w ◦ TΘ)

∂u∂v
(u, v) = −∂2w

∂u2
(TΘ (u, v)) sin Θ cos Θ + 2

∂2w

∂u∂v
(TΘ (u, v)) cos2 Θ (10)

− 2
∂2w

∂u∂v
(TΘ (u, v)) sin2 Θ +

∂2w

∂v2
(TΘ (u, v)) sin Θ cos Θ

for (u, v) ∈ Ω. Combining (8), (9) and (10) we have [w ◦ TΘ, σ ◦ TΘ] (u, v) = [w, σ] ◦
TΘ (u, v). �

It is clear that subspaces of S1-equivariant functions in the Hölder spaces are
closed linear ones. Furthermore, they are mapped into spaces of S1-equivariant func-
tions by any S1-equivariant operator. Since F is S1-equivariant, we have F S1

: XS1×
R

2
+ → Y S1

.
The remainder of this section is devoted to the study of the Fréchet derivative

of F with respect to x at a point (0, p) ∈ X × R
2
+.

Theorem 3.2. The map F S1

: XS1 × R
2
+ → Y S1

given by (3) is C∞ with respect

to all variables. Moreover, for each p ∈ R
2
+, (F S1

)′x(0, p) : XS1 → Y S1

is a linear

Fredholm map of index 0.

The proof of Theorem 3.2 is similar in spirit to the proof of Theorem 2.2 of [12].

Proof. Since F is C∞, its restriction F S1

is also C∞. The task is now to check the
second part of the claim. Fix p ∈ R

2
+. We can write F ′

x(0, p) in the form

F ′
x(0, p)(z, η) = A(z, η) + B(z, η), (11)

where the operators A, B : X → Y are given as follows:

A(z, η) =
(
∆2z,−∆2η

)
, B(z, η) = (2α∆z + βz, 0) .

Define AS1

= A|
XS1 and BS1

= B|
XS1 . In the proof of Theorem 2.2 of [12] we

showed that A is a linear Fredholm map of index 0 and B is completely continuous.
Since ∆2 : C4,µ

0,0

(
Ω
)
→ C0,µ

(
Ω
)

is an S1-equivariant isomorphism, we receive that

∆2 : C4,µ
0,0

(
Ω
)S1

→ C0,µ
(
Ω
)S1

is one-to-one. We show that the restriction of ∆2 to

C4,µ
0,0

(
Ω
)S1

is onto C0,µ
(
Ω
)S1

. Take f ∈ C0,µ
(
Ω
)S1

. There exists g ∈ C4,µ
0,0

(
Ω
)

such

that ∆2g = f . We have

∆2g =
(
∆2g

)
◦ TΘ = ∆2 (g ◦ TΘ)

for each Θ ∈ [0, 2π) and, in consequence, g = g ◦ TΘ. From this g ∈ C4,µ
0,0

(
Ω
)S1

.

Summarizing, we have just proved that A : XS1 → Y S1

is an isomorphism. Thus
A : XS1 → Y S1

is a Fredholm map of index 0. Additionally, B : XS1 → Y S1

is
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completely continuous, which follows immediately from two facts: (1) B : X → Y
is completely continuous; (2) Y S1

is a closed linear subspace of Y . From the above
we deduce that

(F S1

)′x(0, p) = AS1

+ BS1

. (12)

Therefore (F S1

)′x(0, p) is a linear Fredholm map of index 0. �

4 Theorems on existence of radial bifurcation

We say that there is radial bifurcation at (0, p) ∈ Γ if in every neighbourhood of
this point there is a nontrivial radial solution of (2). A curve of nontrivial solutions
starting with a bifurcation point is said to be a branch of bifurcation.

In Section 4 we formulate a sufficient condition for radial bifurcation at a point
(0, p) ∈ Γ such that dim N(p) = 3. We also investigate the number of branches
of nontrivial radial solutions bifurcating from such a point. Our proof is based on
the Crandall-Rabinowitz theorem on simple bifurcation points (see [8, 20]) and the
Lyapunov-Schmidt finite-dimensional reduction (see [20]).

Here and subsequently, Mǫ(x) denotes an open ball of radius ǫ centered at x
in a metric space M . For simplicity of notation, in general theorems we use the
same letters F, E and X, Y for maps and spaces, respectively, as in von Kármán’s
problem.

Theorem 4.1 (Crandall, Rabinowitz). Let X, Y be real Banach spaces and F be a

Cq map from a neighbourhood of (x0, λ0) ∈ X × R into Y , where q ≥ 2. Assume

that

(i) F (x0, λ0) = 0,

(ii) F ′
λ(x0, λ0) = 0,

(iii) dim Ker F ′
x(x0, λ0) = 1, F ′

x(x0, λ0)e = 0, e 6= 0,

(iv) codim Im F ′
x(x0, λ0) = 1,

(v) F ′′
λλ(x0, λ0) ∈ Im F ′

x(x0, λ0),

(vi) F ′′
xλ(x0, λ0)e /∈ Im F ′

x(x0, λ0).

Then the solution set of the equation F (x, λ) = 0 in a certain neighbourhood of

(x0, λ0) is the union of two Cq−2 curves Γ1 and Γ2 that intersect at (x0, λ0) only.

Moreover, if q ≥ 3 then

Γ1 = {(x1(λ), λ) : λ ∈ Rǫ(λ0)}, x1(λ0) = x0, x′
1(λ0) = 0,

and

Γ2 = {(x2(t), λ(t)) : t ∈ Rǫ(0)}, x2(0) = x0, x′
2(0) = e, λ(0) = λ0.

Theorem 4.2. Let X, Y be real Banach spaces continuously embedded in a real

Hilbert space H with scalar product (·, ·)H : H × H → R and let E : X̺(x0) ×
R̺(λ0) → R be a Cq+1 functional, where q ≥ 2. Consider the equation

F (x, λ) = 0 (13)
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with a real parameter λ, where F : X̺(x0) × R̺(λ0) → Y belongs to the class Cq.

Assume that

(C1) F (x0, λ) = 0 for every λ ∈ R̺(λ0),

(C2) dim Ker F ′
x(x0, λ0) = 1, F ′

x(x0, λ0)e = 0, (e, e)H = 1,

(C3) codim Im F ′
x(x0, λ0) = 1,

(C4) E ′
x(x, λ)h = ( F (x, λ) , h )H for all (x, λ) ∈ X̺(x0) × R̺(λ0) and for each

h ∈ X,

(C5) E ′′′
xxλ (x0, λ0) ee 6= 0.

Then the solution set of (13) in a small neighbourhood of (x0, λ0) is the union of

Γ1 = {(x0, λ) : λ ∈ R̺(λ0)}

and the Cq−2 curve Γ2. Γ1 and Γ2 intersect at (x0, λ0) only. Moreover, if q ≥ 3 then

Γ2 is parametrized as follows:

Γ2 = {(x(t), λ(t)) : t ∈ Rǫ(0)},

where x(0) = x0, λ(0) = λ0 and x′(0) = e.

Proof. It is sufficient to show that conditions (C1) − (C5) imply conditions (i)-(vi).
First we prove that

Ker F ′
x(x, λ)⊥ Im F ′

x(x, λ) (14)

for all (x, λ) ∈ X̺(x0) × R̺(λ0). From (C4) it follows that

E ′′
xx(x, λ)hg = (F ′

x(x, λ)h, g)H = (F ′
x(x, λ)g, h)H

for all h, g ∈ X. Hence for h ∈ X and g ∈ Ker F ′
x(x, λ) we get (F ′

x(x, λ)h, g)H =
(F ′

x(x, λ)g, h)H = (0, h)H = 0. Differentiating E ′′
xx(x, λ) with respect to λ we receive

E ′′′
xxλ(x, λ)hg = (F ′′

xλ(x, λ)h, g)H

for all h, g ∈ X. Thus E ′′′
xxλ(x0, λ0)ee = (F ′′

xλ(x0, λ0)e, e)H . By (C5) we have
(F ′′

xλ(x0, λ0)e, e)H 6= 0. From this and (14) we get F ′′
xλ(x0, λ0)e /∈ Im F ′

x(x0, λ0).
Finally, (C1) implies (i), (ii) and (v). �

Let H = L2 (Ω)×L2 (Ω). The function (·, ·)H : H×H → R given by the formula

((z, η) , (z1, η1))H =
1

π

∫∫

Ω
(zz1 + ηη1) dudv (15)

is an inner product in H . Furthermore, the pair (H, (·, ·)H) is a Hilbert space. The

Banach spaces X = C4,µ
0,0

(
Ω
)
× C4,µ

0,0

(
Ω
)

and Y = C0,µ
(
Ω
)
× C0,µ

(
Ω
)

are easily

checked to be continuously embedded in H . Hence their closed linear subspaces XS1

and Y S1

are also Banach spaces continuously embedded in H . In [12] we showed
that for each p ∈ R

2
+ the map F (·, p) : X → Y defined by (3) is a variational
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gradient of the functional E(·, p) : X → R defined by (4) with respect to the scalar
product in H , i.e.

E ′
x(x, p)h = (F (x, p), h)H (16)

for x, h ∈ X (see Theorem 2.4 of [12]). From now on, we will denote by ES1

the
restriction of E to the space XS1 × R

2
+. Let us note the important consequence of

the above fact.

Conclusion 4.3. For each p ∈ R
2
+ the map F S1

(·, p) : XS1 → Y S1

is a variational

gradient of the functional ES1

(·, p) : XS1 → R with respect to the inner product in

H, i.e.

(ES1

)′x(x, p)h =
(
F S1

(x, p), h
)

H
(17)

for x, h ∈ XS1

.

Theorem 4.4. Let p0 = (α0, β0) ∈ R
2
+ satisfy the following condition

dim N(p0) = 3, (F S1

)′x(0, p0)e = 0, (e, e)H = 1, e = (e1, 0). (18)

Then (0, α0) ∈ XS1 × R+ is a bifurcation point of the equation

F S1

(x, α, β0) = 0. (19)

The solution set of (19) in a small neighbourhood of (0, α0) is the union of the curve

of trivial solutions

Γ1,α = {(0, α) : α ∈ R+}
and the C∞ curve Γ2,α. Γ1,α and Γ2,α intersect at (0, α0) only. Moreover, Γ2,α is

parametrized as follows:

Γ2,α = {(x(t), α(t)) : t ∈ Rǫ(0)},

where x(0) = 0, α(0) = α0 and x′(0) = e.

From (7) it follows that if e ∈ N(p0) then e = (e1, 0) and e1 ∈ Ker(∆+2α0∆+β0I).

Proof. As α0 is positive, there exists ̺ > 0 such that R̺ (α0) ⊂ R+. We verify
that the operator F S1

(·, ·, β0) : XS1

̺ (0) × R̺(α0) → Y S1

satisfies the assumptions
of Theorem 4.2. Substituting p = (α, β0) and x = 0 into (3) we get

F S1

(0, α, β0) = 0

for each α ∈ R̺(α0). By Theorem 3.2, the map F S1

(·, α0, β0) : XS1 → Y S1

is C∞

and (F S1

)′x(0, α0, β0) : XS1 → Y S1

is a Fredholm map of index 0. Therefore

dim N(p0)
S1

= codim Im(F S1

)′x(0, α0, β0). (20)

From Table 1 it follows that
dim N(p0)

S1

= 1. (21)

Combining (21) with (20) we have

codim Im(F S1

)′x(0, α0, β0) = 1.
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Conclusion 4.3 says that for each α ∈ R+ and for all x, h ∈ XS1

(ES1

)′x(x, α, β0)h =
(
F S1

(x, α, β0), h
)

H
. (22)

Notice that we have just proved that assumptions (C1) − (C4) of Theorem 4.2 are
fulfilled. To finish the proof we have to show that assumption (C5) of Theorem 4.2
holds. Since the spaces XS1

, Y S1

are continuously embedded in H , differentiating
both sides of the equality (22) with respect to x we obtain

(ES1

)′′xx(x, α, β0)hg =
(
(F S1

)′x(x, α, β0)h, g
)

H
(23)

for x, h, g ∈ XS1

and α ∈ R+. Applying (5), (15) and (23) we have

(ES1

)′′xx(x, α, β0)hg =
1

π

∫∫

Ω

(
∆2z − [z, σ] − [w, η] + 2α∆z + β0z − 3γw2z

)
z1dudv

+
1

π

∫∫

Ω

(
−∆2η − [w, z]

)
η1dudv,

where x = (w, σ), h = (z, η), g = (z1, η1). Hence

(ES1

)′′′xxα(x, α, β0)hg =
1

π

∫∫

Ω
2 (∆z) z1dudv.

Taking x = 0, α = α0 and h = g = e, we get

(ES1

)′′′xxα(0, α0, β0)ee =
1

π

∫∫

Ω
2 (∆e1) e1dudv.

By the assumption δ0 = α2
0 − β0 > 0 (see Table 1). From Lemma 2.2

Ker
(
∆2 + 2α0∆ + β0I

)
= Ker (∆ − a0I) ⊕ Ker (∆ − b0I) ,

where ∆2 +2α0∆+β0I : C4,µ
0,0 (Ω) → C0,µ(Ω), ∆−a0I, ∆− b0I : C2,µ

0 (Ω) → C0,µ(Ω),
a0 = −α0 −

√
δ0 and b0 = −α0 +

√
δ0. We can choose e so that ∆e1 − a0e1 = 0 or

∆e1 − b0e1 = 0 (see Table 1). If ∆e1 − a0e1 = 0 then

(ES1

)′′′xxα(0, α0, β0)ee =
2a0

π

∫∫

Ω
e2
1dudv = 2a0 (e, e)H = 2a0 < 0. (24)

If ∆e1 − b0e1 = 0 then

(ES1

)′′′xxα(0, α0, β0)ee = 2b0 < 0, (25)

which completes the proof. �

Let (0, p0) ∈ Γ satisfy (18). From Theorem 4.4 it follows that (0, p0) is a bifurca-
tion point of the equation (2). What is more, at least two C∞ branches of nontrivial
radial solutions bifurcate from this point. The union of this branches is the curve
Γ2,α.

Theorem 4.4 refers to bifurcation with respect to α. Our purpose now is to prove
an analogical theorem on bifurcation with respect to β.
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Theorem 4.5. Let p0 = (α0, β0) ∈ R
2
+ satisfy the condition (18). Then (0, β0) ∈

XS1 × R+ is a bifurcation point of the equation

F S1

(x, α0, β) = 0. (26)

The solution set of (26) in a small neighbourhood of (0, β0) is the union of the curve

of trivial solutions

Γ̂1,β = {(0, β) : β ∈ R+}
and the C∞ curve Γ̂2,β. Γ̂1,β and Γ̂2,β intersect at (0, β0) only. Moreover, Γ̂2,β is

parametrized as follows:

Γ̂2,β = {(x̂(t), β(t)) : t ∈ Rǫ(0)},

where x̂(0) = 0, β(0) = β0 and x̂′(0) = e.

Proof. The proof is also based on Theorem 4.2. Take ̺ > 0 such that R̺(β0) ⊂ R+.
Considerations similar to those in the proof of Theorem 4.4 show that the map
F S1

(·, α0, ·) : XS1

̺ (0) × R̺(β0) → Y S1

satisfies assumptions (C1) − (C4) of Theorem
4.2. The details are left to the reader. The task is now to check assumption (C5).
From Conclusion 4.3 we get that for each β ∈ R+ and for all x, h ∈ XS1

(ES1

)′x(x, α0, β)h =
(
F S1

(x, α0, β), h
)

H
.

Hence
(ES1

)′′xx(x, α0, β)hg =
(
(F S1

)′x(x, α0, β)h, g
)

H
. (27)

Using (5), (15) and (27) we obtain

(ES1

)′′xx(x, α0, β)hg =
1

π

∫∫

Ω

(
∆2z − [z, σ] − [w, η] + 2α0∆z + βz − 3γw2z

)
z1dudv

+
1

π

∫∫

Ω

(
−∆2η − [w, z]

)
η1dudv, (28)

where x = (w, σ), h = (z, η), g = (z1, η1). Differentiating (28) with respect to β we
have

(ES1

)′′′xxβ(x, α0, β)hg =
1

π

∫∫

Ω
zz1dudv.

In particular,

(ES1

)′′′xxβ(0, α0, β0)ee =
1

π

∫∫

Ω
e2
1dudv = (e, e)H = 1 > 0, (29)

which completes the proof. �

Fix (0, p0) ∈ Γ such that dim N(p0) = 3, p0 = (α0, β0). Let us remark that if
Γ2,α ∩ Γ̂2,β = {(0, p0)} then at least four C∞ branches of nontrivial radial solutions
bifurcate from (0, p0). Therefore the next question is whether the curves Γ2,α and
Γ̂2,β intersect at (0, p0) only.

In order to answer this question we apply a finite-dimensional reduction of the
Lyapunov-Schmidt type with the key function due to Sapronov (see [14, 22]).
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Let G : XS1 × R × R+ → Y S1

be given by

G(x, ξ, α) = F S1

(x, α, β0) + (ξ − (x, e)H) e.

It is easy to check that G′
x(0, 0, α0) : XS1 → Y S1

is an isomorphism. By the implicit
function theorem there exist ǫ > 0 and a map x̃ : Rε(0)×Rε(α0) → XS1

ε (0) such that
x̃(0, α0) = 0 and for every (x, ξ, α) ∈ XS1

ε (0)×Rε(0)×Rε(α0) we have G(x, ξ, α) = 0
iff x = x̃(ξ, α). Hence

G(x̃(ξ, α), ξ, α) = 0. (30)

Furthermore, x̃′
ξ(0, α0) = e and x̃(0, α) = 0 for all |α − α0| < ε. Thus

x̃(ξ, α) = ξe + o(
√

ξ2 + (α − α0)2). (31)

Let us define ϕ, Φ : Rε(0) × Rε(α0) → R as follows:

ϕ(ξ, α) = ξ − (x̃(ξ, α), e)H

and

Φ(ξ, α) = −ES1

(x̃(ξ, α), α, β0) +
1

2
ϕ2(ξ, α).

Φ(ξ, α) is called a key function. Both Φ and ϕ are C∞-smooth. We also have

G(x̃(ξ, α), ξ, α) = F S1

(x̃(ξ, α), α, β0) + ϕ(ξ, α)e. (32)

Differentiating ϕ and Φ with respect to ξ we receive

ϕ′
ξ(ξ, α) = 1 −

(
x̃′

ξ(ξ, α), e
)

H

and

Φ′
ξ(ξ, α) = −(ES1

)′x(x̃(ξ, α), α, β0)x̃
′
ξ(ξ, α) + ϕ(ξ, α)ϕ′

ξ(ξ, α)

= −
(
F S1

(x̃(ξ, α), α, β0), x̃
′
ξ(ξ, α)

)

H
+ ϕ(ξ, α) −

(
ϕ(ξ, α)e, x̃′

ξ(ξ, α)
)

H

= −
(
G(x̃(ξ, α), ξ, α), x̃′

ξ(ξ, α)
)

H
+ ϕ(ξ, α)

= ϕ(ξ, α),

by (17) and (30). From (30) and (32) we conclude that all solutions of the equation
(19) in a small neighbourhood of (0, α0) in XS1 × R+ are of the form (x̃(ξ, α), α)
and

F S1

(x̃(ξ, α), α, β0) = 0 ⇐⇒ Φ′
ξ(ξ, α) = 0 ⇐⇒ ϕ(ξ, α) = 0. (33)

We describe now the solution set of the equation

ϕ(ξ, α) = 0

in a small neighbourhood of (0, α0) in R × R+. For this purpose we use the Taylor
formula of ϕ at (0, α0). From (32) it follows that

(
F S1

(x̃(ξ, α), α, β0) + ϕ(ξ, α)e, e
)

H
= 0,
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hence
ϕ(ξ, α) = −

(
F S1

(x̃(ξ, α), α, β0), e
)

H
,

and by (17)

ϕ(ξ, α) = −(ES1

)′x(x̃(ξ, α), α, β0)e. (34)

Applying (4) and (34) we get

C1 := ϕ′
ξ(0, α0) = −(ES1

)′′xx(0, p0)ee = 0,

C11 := ϕ′′
ξξ(0, α0) = −(ES1

)′′′xxx(0, p0)eee = 0,

C12 := ϕ′′
ξα(0, α0) = −(ES1

)′′′xxα(0, p0)ee,

C111 := ϕ′′′
ξξξ(0, α0) = −(ES1

)(4)
xxxx(0, p0)eeee − 3(ES1

)′′′xxx(0, p0)yee,

where y = (y1, y2) = x̃′′
ξξ(0, α0) is a solution of the equation

(F S1

)′′xx(0, p0)ee + (F S1

)′x(0, p0)y = 0.

By (24) and (25) we have C12 > 0. An easy calculation shows that

C111 =
6

π

∫∫

Ω
γe4

1dudv − 3

π

∫∫

Ω
(∆y2)

2dudv.

Set
C112 := ϕ′′′

ξξα(0, α0),

C122 := ϕ′′′
ξαα(0, α0).

Since ϕ(0, α) = 0 for all |α − α0| < ǫ, we have

ϕ(k)
α...α(0, α0) = 0

for every k ∈ N. In consequence,

ϕ(ξ, α) = C12ξ(α − α0) +
1

6
C111ξ

3 +
1

2
C112ξ

2(α − α0) +
1

2
C122ξ(α − α0)

2

+o
(√

ξ2 + (α − α0)2
3
)

= C12ξ(α − α0) +
1

6
C111ξ

3 +
1

2
C112ξ

2(α − α0) +
1

2
C122ξ(α − α0)

2

+ξf(ξ, α)

where f : Rǫ(0)×Rε(α0) → R is a C∞ function such that f(0, α0) = 0, f ′
α(0, α0) = 0

and f ′
ξ(0, α0) = f ′′

ξξ(0, α0) = 0. Let g : Rǫ(0) × Rε(α0) → R be given by

g(ξ, α) = C12(α − α0) +
1

6
C111ξ

2 +
1

2
C112ξ(α − α0) +

1

2
C122(α − α0)

2 + f(ξ, α).

Then
ϕ(ξ, α) = 0 ⇐⇒ ξ = 0 ∨ g(ξ, α) = 0.

We check at once that g(0, α0) = 0, g′
ξ(0, α0) = 0 and g′

α(0, α0) = C12 > 0. By the
implicit function theorem there exists a C∞ function α̃ : Rρ(0) → Rρ(α0), 0 < ρ < ǫ
such that α̃(0) = α0 and for all (ξ, α) ∈ Rρ(0) × Rρ(α0) we have

g(ξ, α) = 0 ⇐⇒ α = α̃(ξ).
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-

6
XS1

Rα0

Figure 1: The scheme of postcritical bifurcation

Differentiating the equality g(ξ, α̃(ξ)) = 0 with respect to ξ we get

α̃′(0) = − g′
ξ(0, α0)

g′
α(0, α0)

= 0

and

α̃′′(0) = −g′′
ξξ(0, α0)

g′
α(0, α0)

= −C111

3C12
.

Remark that

α̃′′(0) 6= 0 ⇐⇒ C111 6= 0 ⇐⇒ γ 6=
∫∫

Ω(∆y2)
2dudv

2
∫∫

Ω e4
1dudv

.

If C111 < 0 then α̃′′(0) > 0 and α̃ achieves the minimum at 0. Moreover, there
exists 0 < ρ1 < ρ such that α̃ is strictly decreasing for ξ ∈ (−ρ1, 0] and it is strictly
increasing for ξ ∈ [0, ρ1). Hence there is 0 < ρ2 < ρ and there are C∞ functions
ξ1 : [α0, α0 + ρ2) → (−ρ1, 0] and ξ2 : [α0, α0 + ρ2) → [0, ρ1) such that ξi = α̃−1

for i = 1, 2. From this, (31) and (33) we conclude that if C111 < 0 then there is
postcritical bifurcation in the solution set of (19) at the point (0, α0) (see Figure 1).
All nontrivial solutions of (19) in a small neighbourhood of (0, α0) lie on the curve

x = x̃(ξi(α), α), α ∈ [α0, α0 + ρ2).

If C111 > 0 then α̃′′(0) < 0 and α̃ achieves the maximum at 0. Moreover, there
exists 0 < ρ1 < ρ such that α̃ is strictly increasing for ξ ∈ (−ρ1, 0] and it is strictly
decreasing for ξ ∈ [0, ρ1). Hence there is 0 < ρ2 < ρ and there are C∞ functions
ξ1 : (α0 − ρ2, α0] → (−ρ1, 0] and ξ2 : (α0 − ρ2, α0] → [0, ρ1) such that ξi = α̃−1

for i = 1, 2. Consequently, if C111 > 0 then there is subcritical bifurcation in the
solution set of (19) at the point (0, α0) (see Figure 2). All nontrivial solutions of
(19) in a small neighbourhood of (0, α0) lie on the curve

x = x̃(ξi(α), α), α ∈ (α0 − ρ2, α0].

Similarly, we can prove that if C111 > 0 (resp. C111 < 0) then there is postcritical
bifurcation (resp. subcritical bifurcation) in the solution set of (26) at the point
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-

6
XS1

Rα0

Figure 2: The scheme of subcritical bifurcation

(0, β0). It is sufficient to make a finite-dimensional reduction with G : XS1 × R ×
R+ → Y S1

defined by

G(x, ξ, β) = F S1

(x, α0, β) + (ξ − (x, e)H) e

and check that C12 := −(ES1

)′′′xxβ(0, p0)ee < 0 (see (29)).

Summarizing, we have just proved the following result.

Theorem 4.6. If C111 6= 0 then Γ2,α ∩ Γ̂2,β = {(0, p0)}. Another words, at (0, p0) at

least four C∞ branches of nontrivial radial solutions of (2) meet, causing the plate

to choose between different forms of equilibrium.
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Kármán equations, NoDEA, vol. 10 (2003), pp. 73–94.

[14] J. Janczewska, Local properties of the solution set of the operator equation
in Banach spaces in a neighbourhood of a bifurcation point, Central European

Journal of Mathematics, vol. 2, no. 4 (2004), pp. 561–572.

[15] J. Janczewska, Description of the solution set of the von Kármán equations for
a circular plate in a small neighbourhood of a simple bifurcation point, NoDEA,
vol. 13 (2006), pp. 337–348.

[16] A.Kh. Khanmamedov, Global attractors for von Kármán equations with non-
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