Multiple bifurcation in the solution set of the von Kármán equations with S^1 -symmetries

Joanna Janczewska*

Abstract

In this work we study bifurcation of forms of equilibrium of a thin circular elastic plate lying on an elastic base under the action of a compressive force (see Picture 1). The forms of equilibrium may be found as solutions of the von Kármán equations with two real positive parameters defined on the unit disk in \mathbb{R}^2 centered at the origin. These equations are equivalent to an operator equation F(x,p) = 0 in the real Hölder spaces with a nonlinear S^1 -equivariant Fredholm map of index 0. For the existence of bifurcation at a point (0,p) it is necessary that dim Ker $F'_x(0,p) > 0$. The space Ker $F'_x(0,p)$ can be at most four-dimensional. We apply the Crandall-Rabinowitz theorem to prove that if dim Ker $F'_x(0,p) = 3$ then there is bifurcation of radial solutions at (0,p). What is more, using the Lyapunov-Schmidt finite-dimensional reduction we investigate the number of branches of radial bifurcation at (0,p).

1 Introduction

Let $C_{0,0}^{4,\mu}\left(\overline{\Omega}\right)$ denote the subspace of such functions $f:\overline{\Omega}\to\mathbb{R}$ from the real Hölder space $C^{4,\mu}\left(\overline{\Omega}\right)$ that satisfy the following boundary conditions:

$$f|_{\partial\Omega} = \Delta f|_{\partial\Omega} = 0,$$

where Δ is the Laplace operator, $\Omega = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 < 1\}$ and $\mu \in (0, 1)$. The operators $\Delta^2 : C^4(\overline{\Omega}) \to C(\overline{\Omega})$ and $[\cdot, \cdot] : C^2(\overline{\Omega}) \times C^2(\overline{\Omega}) \to C(\overline{\Omega})$ are defined

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 109-126

^{*}Supported by Grant KBN no. 1 P03A 042 29

Received by the editors February 2007.

Communicated by J. Mawhin.

¹⁹⁹¹ Mathematics Subject Classification : 34K18, 35Q72, 46T99.

 $Key\ words\ and\ phrases$: bifurcation, Fredholm operator, von Kármán equations, $S^1\text{-symmetries}.$

$$\Delta^2 f = \frac{\partial^4 f}{\partial u^4} + 2\frac{\partial^4 f}{\partial u^2 \partial v^2} + \frac{\partial^4 f}{\partial v^4}, \quad [f,g] = \frac{\partial^2 f}{\partial u^2} \frac{\partial^2 g}{\partial v^2} - 2\frac{\partial^2 f}{\partial u \partial v} \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial^2 f}{\partial v^2} \frac{\partial^2 g}{\partial u^2}.$$

Our purpose is to investigate bifurcation of forms of equilibrium of a thin circular elastic plate lying on an elastic base under the action of a compressive force. This physical phenomenon is strictly connected with the von Kármán equations (see [3]) given as follows:

$$\begin{cases} \Delta^2 w - [w, \sigma] + 2\alpha \Delta w + \beta w - \gamma w^3 = 0\\ \Delta^2 \sigma + \frac{1}{2} [w, w] = 0 & \text{in } \Omega,\\ \Delta w = w = 0\\ \Delta \sigma = \sigma = 0 & \text{on } \partial \Omega, \end{cases}$$
(1)

where $w, \sigma \in C_{0,0}^{4,\mu}(\overline{\Omega}), w(u,v)$ is a deflection function, $\sigma(u,v)$ is a stress function, $\alpha > 0$ is a value of the compressive force, $\beta > 0$ and $\gamma > 0$ are parameters of the elastic foundation. More precisely, the solutions (w,σ) of the system (1) lying in a small neighbourhood of the point (0,0) are forms of equilibrium of the plate. In the remainder of this paper we assume γ to be constant.

In the last twenty years many authors have studied von Kármán equations of different types. The classical works on this subject are [1, 2, 4, 5, 6, 11, 17, 21, 23], and modern ones are [3, 7, 9, 10, 16, 19].

The studies, including the elasticity of foundation, by the use of bifurcation theory have been started by Yu. Morozov in [18]. Morozov investigated the forms of equilibrium of a homogenous finite beam clamped at the edges to the foundation. He proved that if we consider additional nonlinear terms corresponding to an elastic foundation then subcritical branches of solutions at a bifurcation point will occur. In [12] we came to the same conclusion for simple bifurcation points in the solution set of (1).

This paper is a continuation of our earlier results in [12, 13, 15]. To study bifurcation we apply methods of nonlinear analysis and representation theory.

Picture 1.

by:

Let $X = C_{0,0}^{4,\mu}\left(\overline{\Omega}\right) \times C_{0,0}^{4,\mu}\left(\overline{\Omega}\right)$ and $Y = C^{0,\mu}\left(\overline{\Omega}\right) \times C^{0,\mu}\left(\overline{\Omega}\right)$. The system (1) is equivalent to an operator equation

$$F(x,p) = 0 \tag{2}$$

with the nonlinear map $F: X \times \mathbb{R}^2_+ \to Y$ given by

$$F(x,p) = \left(\Delta^2 w - [w,\sigma] + 2\alpha\Delta w + \beta w - \gamma w^3, -\Delta^2 \sigma - \frac{1}{2}[w,w]\right), \qquad (3)$$

where $x = (w, \sigma)$ and $p = (\alpha, \beta)$.

In [12] we showed that F is C^{∞} and $F'_x(0,p) : X \to Y$ is a Fredholm map of index 0 for each $p \in \mathbb{R}^2_+$. We also proved that F is a variational gradient for the energy functional $E : X \times \mathbb{R}^2_+ \to \mathbb{R}$ defined by

$$E(x,p) = \frac{1}{2\pi} \iint_{\Omega} \left((\Delta w)^2 - (\Delta \sigma)^2 - [w,w]\sigma \right) du dv$$

$$-\frac{1}{2\pi} \iint_{\Omega} 2\alpha \left(\left(\frac{\partial w}{\partial u} \right)^2 + \left(\frac{\partial w}{\partial v} \right)^2 \right) du dv$$

$$+\frac{1}{2\pi} \iint_{\Omega} \left(\beta w^2 - \frac{1}{2} \gamma w^4 \right) du dv, \qquad (4)$$

with respect to the standard inner product in $L^2(\Omega) \times L^2(\Omega)$. Let $\Gamma = \{(0,p) : p \in \mathbb{R}^2_+\}$ be a subset of $X \times \mathbb{R}^2_+$. Every point in Γ is said to be a trivial solution of the equation (2). A point $(x,p) \in X \times \mathbb{R}^2_+$ such that F(x,p) = 0 and $x \neq 0$ is called a nontrivial solution of (2). We say that $(0,p) \in \Gamma$ is a bifurcation point of (2) (or there is bifurcation at (0,p)) if in every neighbourhood of this point there exists a nontrivial solution of (2). For $(0,p) \in \Gamma$, set

$$N(p) = \operatorname{Ker} F'_x(0, p).$$

A bifurcation point $(0, p) \in \Gamma$ is called either *simple* if dim N(p) = 1 or *multiple* if dim $N(p) \geq 2$. Applying the implicit function theorem we conclude that for bifurcation at a point $(0, p) \in \Gamma$ it is necessary that dim N(p) > 0. In [12] we proved that dim N(p) is no greater than 4. We showed that if dim N(p) = 1 then there exists bifurcation of the Crandall-Rabinowitz type at (0, p). The proof was based on the Crandall-Rabinowitz theorem (see [8, 20]). In [13] we proved that a sufficient condition for bifurcation at (0, p) is dim N(p) > 0. In [15] we described the solution set of (1) in a small neighbourhood of a simple bifurcation point.

In this paper we discuss the case dim N(p) = 3. Our investigations are based on S^1 -symmetries. We notice that the subspace of S^1 -equivariant functions in N(p)is one-dimensional. It implies that $(0, p) \in \Gamma$ is a simple degeneracy point of the restriction of F to the subspace of S^1 -equivariant functions in X. By the use of the Crandall-Rabinowitz theorem we prove that there is bifurcation of radial solutions at (0, p). Next, applying the Lyapunov-Schmidt finite-dimensional reduction we study the number of branches of radial bifurcation at (0, p).

In case dim N(p) is 2 or 4 this method breaks down, because the subspace of S^1 -equivariant functions in N(p) is not one-dimensional.

2 S^1 -invariant subspaces in the space N(p)

At the beginning we introduce some notations. We will denote by S^1 the set $\{e^{i\Theta} : 0 \leq \Theta < 2\pi\}$. Obviously, S^1 with the multiplication of complex numbers is an abelian group. Define $G = \{T_{\Theta} : 0 \leq \Theta < 2\pi\}$, where $T_{\Theta} : \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation through Θ . The group G is a linear representation of S^1 in $GL(\mathbb{R}^2)$.

Definition 2.1. A set $U \subset \mathbb{R}^2$ is called S^1 -invariant if $T_{\Theta}(u, v) \in U$ for all $(u, v) \in U$ and $\Theta \in [0, 2\pi)$.

Definition 2.2. Let $U \subset \mathbb{R}^2$ be S^1 -invariant. A map $f: U \to \mathbb{R}^n$ is said to be S^1 -equivariant if $f(T_{\Theta}(u, v)) = f(u, v)$ for all $\Theta \in [0, 2\pi)$ and $(u, v) \in U$.

Property 2.1. Let $U \subset \mathbb{R}^2$ be an S^1 -invariant set. The following conditions are equivalent.

- (i) $f: U \to \mathbb{R}^n$ is an S¹-equivariant map.
- (ii) There exists a map $g : \mathbb{R} \to \mathbb{R}^n$ such that $f(u, v) = g(\sqrt{u^2 + v^2})$ for each $(u, v) \in U$.

Let $Z \subset \{f : U \to \mathbb{R}^n\}$ be a linear space, where $U \subset \mathbb{R}^2$ is S^1 -invariant. We will denote by Z^{S^1} the subspace of all S^1 -equivariant functions in Z, i.e.

$$Z^{S^1} = \{ f \in Z : f \circ T_{\Theta} = f \text{ for each } \Theta \in [0, 2\pi) \}.$$

Clearly, the unit ball Ω , its boundary $\partial \Omega$ and closure $\overline{\Omega}$ are S¹-invariant sets. Define

$$C_0^{m,\mu}\left(\overline{\Omega}\right) = \{f \in C^{m,\mu}\left(\overline{\Omega}\right) : f|_{\partial\Omega} = 0\}.$$

Let (r, φ) denote the polar coordinates of a point $(u, v) \in \overline{\Omega}$. It is well known that λ is an eigenvalue of $\Delta : C_0^{m,\mu}(\overline{\Omega}) \to C^{m-2,\mu}(\overline{\Omega}), m \ge 2$, iff $\lambda < 0$ and $\sqrt{-\lambda}$ is zero of one of the Bessel functions

$$J_k(s) = \frac{1}{\pi} \int_0^{\pi} \cos(s \sin t - kt) \, dt, \quad k \in \mathbb{N} \cup \{0\}.$$

If $J_0(\sqrt{-\lambda}) = 0$ then dim Ker $(\Delta - \lambda I) = 1$ and Ker $(\Delta - \lambda I) = \text{span}\{J_0(\sqrt{-\lambda}r)\}$. If $J_k(\sqrt{-\lambda}) = 0$ and $k \neq 0$ then dim Ker $(\Delta - \lambda I) = 2$ and Ker $(\Delta - \lambda I) =$ span $\{J_k(\sqrt{-\lambda}r)\cos(k\varphi), J_k(\sqrt{-\lambda}r)\sin(k\varphi)\}$. Here and subsequently, I stands for the natural embedding of $C^{m,\mu}(\overline{\Omega})$ into $C^{m-2,\mu}(\overline{\Omega})$ for $m \geq 2$, i.e. I(x) = x.

We now turn our attention to the space N(p). It was computed in [12] that

$$F'_{x}(x,p)(z,\eta) = \left(\Delta^{2}z - [z,\sigma] - [w,\eta] + 2\alpha\Delta z + \beta z - 3\gamma w^{2}z, -\Delta^{2}\eta - [w,z]\right), \quad (5)$$

and so

$$F'_x(0,p)(z,\eta) = \left(\Delta^2 z + 2\alpha\Delta z + \beta z, -\Delta^2 \eta\right) \tag{6}$$

for $z, \eta \in C_{0,0}^{4,\mu}(\overline{\Omega})$. One knows that $\Delta \colon C_0^{m,\mu}(\overline{\Omega}) \to C^{m-2,\mu}(\overline{\Omega}), m \geq 2$, is an isomorphism. Hence $\Delta^2 \colon C_{0,0}^{4,\mu}(\overline{\Omega}) \to C^{0,\mu}(\overline{\Omega})$ is an isomorphism and, in consequence,

$$N(p) = \operatorname{Ker}(\Delta^2 + 2\alpha\Delta + \beta I) \times \{0\},$$
(7)

where $\Delta^2 + 2\alpha\Delta + \beta I : C_{0,0}^{4,\mu}(\overline{\Omega}) \to C^{0,\mu}(\overline{\Omega})$. Fix $p = (\alpha, \beta) \in \mathbb{R}^2_+$. Set $\delta = \alpha^2 - \beta$. If $\delta \ge 0$ then a and b are defined as follows: $a = -\alpha - \sqrt{\delta}, b = -\alpha + \sqrt{\delta}$.

		Assu	mptions	Results		
	δ	a and b		$\dim N\left(p\right)$	base of $N(p)$	$\dim N(p)^{S^1}$
1.	_	not defined		0	Ø	0
2.	+	$\forall_{k\geq 0}$	$J_k\left(\sqrt{-a}\right) \neq 0$	0	Ø	0
	or 0		$J_k\left(\sqrt{-b}\right) \neq 0$			
3.	0		$J_0\left(\sqrt{-a}\right) = 0$	1	$e_{1}\left(u,v\right) = \left(J_{0}\left(\sqrt{-ar}\right),0\right)$	1
4.	+	$\forall_{k\geq 0}$	$J_k\left(\sqrt{-b}\right) \neq 0$	1	$e_1\left(u,v\right) = \left(J_0\left(\sqrt{-ar}\right),0\right)$	1
			$J_0\left(\sqrt{-a}\right) = 0$			
5.	+	$\forall_{k\geq 0}$	$J_k\left(\sqrt{-a}\right) \neq 0$	1	$e_{1}\left(u,v\right) = \left(J_{0}\left(\sqrt{-b}r\right),0\right)$	1
			$J_0\left(\sqrt{-b}\right) = 0$			
6.	0	$\exists_{k>0}$	$J_k\left(\sqrt{-a}\right) = 0$	2	$e_{1}(u,v) = \left(J_{k}\left(\sqrt{-a}r\right)\cos\left(k\varphi\right),0\right)$	0
					$e_{2}(u,v) = \left(J_{k}\left(\sqrt{-ar}\right)\sin\left(k\varphi\right),0\right)$	
7.	+		$J_0\left(\sqrt{-a}\right) = 0$	2	$e_1\left(u,v\right) = \left(J_0\left(\sqrt{-a}r\right),0\right)$	2
			$J_0\left(\sqrt{-b}\right) = 0$		$e_{2}\left(u,v\right) = \left(J_{0}\left(\sqrt{-b}r\right),0\right)$	
8.	+	$\forall_{l\geq 0}$	$J_l\left(\sqrt{-b}\right) \neq 0$	2	$e_{1}(u,v) = \left(J_{k}\left(\sqrt{-a}r\right)\cos\left(k\varphi\right),0\right)$	0
		$\exists_{k>0}$	$J_k\left(\sqrt{-a}\right) = 0$		$e_{2}(u,v) = \left(J_{k}\left(\sqrt{-a}r\right)\sin\left(k\varphi\right),0\right)$	
9.	+	$\forall_{k\geq 0}$	$J_k\left(\sqrt{-a}\right) \neq 0$	2	$e_{1}\left(u,v\right) = \left(J_{l}\left(\sqrt{-b}r\right)\cos\left(l\varphi\right),0\right)$	0
		$\exists_{l>0}$	$J_l\left(\sqrt{-b}\right) = 0$		$e_{2}(u,v) = \left(J_{l}\left(\sqrt{-b}r\right)\sin\left(l\varphi\right),0\right)$	
10.	+	$\exists_{k>0}$	$J_k\left(\sqrt{-a}\right) = 0$	3	$e_{1}(u,v) = \left(J_{k}\left(\sqrt{-ar}\right)\cos\left(k\varphi\right),0\right)$	1
			$J_0\left(\sqrt{-b}\right) = 0$		$e_{2}(u,v) = \left(J_{k}\left(\sqrt{-ar}\right)\sin\left(k\varphi\right),0\right)$	
					$e_3(u,v) = \left(J_0\left(\sqrt{-b}r\right), 0\right)$	
11.	+	$\exists_{k>0}$	$J_k\left(\sqrt{-b}\right) = 0$ $J_0\left(\sqrt{-a}\right) = 0$	3	$e_1(u,v) = \left(J_0\left(\sqrt{-ar}\right), 0\right)$	1
			$J_0\left(\sqrt{-a}\right) = 0$		$e_{2}(u,v) = \left(J_{k}\left(\sqrt{-br}\right)\cos\left(k\varphi\right),0\right)$	
					$e_{3}(u,v) = \left(J_{k}\left(\sqrt{-b}r\right)\sin\left(k\varphi\right),0\right)$	
12.	+	$\exists_{k,l>0}$	$J_k\left(\sqrt{-a}\right) = 0$ $J_l\left(\sqrt{-b}\right) = 0$	4	$e_{1}(u,v) = \left(J_{k}\left(\sqrt{-ar}\right)\cos\left(k\varphi\right),0\right)$	0
			$J_l\left(\sqrt{-b}\right) = 0$		$e_2(u,v) = \left(J_k\left(\sqrt{-ar}\right)\sin\left(k\varphi\right), 0\right)$	
					$e_{3}(u,v) = \left(J_{l}\left(\sqrt{-br}\right)\cos\left(l\varphi\right),0\right)$	
					$e_4(u,v) = \left(J_l\left(\sqrt{-b}r\right)\sin\left(l\varphi\right), 0\right)$	

Table 1.

Lemma 2.2 (see [12]). Let $\Delta - aI, \Delta - bI : C_0^{2,\mu}(\overline{\Omega}) \to C^{0,\mu}(\overline{\Omega})$. The following implications hold.

(i) If $\delta < 0$ then $\operatorname{Ker}(\Delta^2 + 2\alpha\Delta + \beta I) = \{0\}.$

(*ii*) If
$$\delta = 0$$
 then $\operatorname{Ker}(\Delta^2 + 2\alpha\Delta + \beta I) = \operatorname{Ker}(\Delta - aI)$.

(*iii*) If $\delta > 0$ then $\operatorname{Ker}(\Delta^2 + 2\alpha\Delta + \beta I) = \operatorname{Ker}(\Delta - aI) \oplus \operatorname{Ker}(\Delta - bI)$.

Applying Lemma 2.2 and the description of eigenspaces of Δ on $\overline{\Omega}$ we receive the dimension and the base of N(p). The results are announced in Table 1.

In Table 1 the character '+' means positive and the character '-' means negative. Combining the results of Table 1 with Property 2.1 we can determine the base of $N(p)^{S^1}$.

3 The properties of *F* and $F|_{X^{S^1} \times \mathbb{R}^2}$

Let $U \subset \mathbb{R}^2$ be S^1 -invariant. Assume that $\Lambda \subset \mathbb{R}^k$ and $E_1, E_2 \subset \{f : U \to \mathbb{R}^n\}$ are real linear subspaces such that if $f \in E_i$ and $\Theta \in [0, 2\pi)$ then $f \circ T_{\Theta} \in E_i$ for i = 1, 2. We will say that

- (i) $P: E_1 \to E_2$ is S^1 -equivariant if $P(f \circ T_{\Theta}) = P(f) \circ T_{\Theta}$ for $\Theta \in [0, 2\pi)$ and $f \in E_1$;
- (ii) $T: E_1 \times \Lambda \to E_2$ is S^1 -equivariant if $T(\cdot, \lambda): E_1 \to E_2$ is S^1 -equivariant for each $\lambda \in \Lambda$.

Let F^{S^1} denote the restriction of F given by (3) to the space $X^{S^1} \times \mathbb{R}^2_+$. In this section we will look more closely at the operators F and F^{S^1} . Let us remark that if f belongs to a Hölder space then for each $\Theta \in [0, 2\pi)$ a function $f \circ T_{\Theta}$ lies in this space, too. It follows from the fact that $\overline{\Omega}$ and $\partial\Omega$ are S^1 -invariant sets.

Theorem 3.1. The operator $F: X \times \mathbb{R}^2_+ \to Y$ defined by (3) is S¹-equivariant, i.e.

$$F(x \circ T_{\Theta}, p) = F(x, p) \circ T_{\Theta}$$

for all $x \in X$, $p \in \mathbb{R}^2_+$ and $\Theta \in [0, 2\pi)$.

Proof. It is known that the Laplace operator on $\overline{\Omega}$ is S^1 -equivariant. Therefore it suffices to show that $[w \circ T_{\Theta}, \sigma \circ T_{\Theta}] = [w, \sigma] \circ T_{\Theta}$ for all $w, \sigma \in C^{4,\mu}_{0,0}(\overline{\Omega})$ and $\Theta \in [0, 2\pi)$.

Fix $w, \sigma \in C_{0,0}^{4,\mu}(\overline{\Omega})$ and $\Theta \in [0, 2\pi)$. Applying twice the theorem on the derivative of superposition we get

$$\frac{\partial^2 \left(w \circ T_{\Theta}\right)}{\partial u^2} \left(u, v\right) = \frac{\partial^2 w}{\partial u^2} \left(T_{\Theta}\left(u, v\right)\right) \cos^2 \Theta + 2 \frac{\partial^2 w}{\partial u \partial v} \left(T_{\Theta}\left(u, v\right)\right) \sin \Theta \cos \Theta \qquad (8)$$
$$+ \frac{\partial^2 w}{\partial v^2} \left(T_{\Theta}\left(u, v\right)\right) \sin^2 \Theta,$$

Multiple bifurcation in the solution set of von Kármán equations

$$\frac{\partial^2 \left(w \circ T_{\Theta}\right)}{\partial v^2} \left(u, v\right) = \frac{\partial^2 w}{\partial u^2} \left(T_{\Theta}\left(u, v\right)\right) \sin^2 \Theta - 2 \frac{\partial^2 w}{\partial u \partial v} \left(T_{\Theta}\left(u, v\right)\right) \sin \Theta \cos \Theta \qquad (9)$$
$$+ \frac{\partial^2 w}{\partial v^2} \left(T_{\Theta}\left(u, v\right)\right) \cos^2 \Theta$$

and

$$\frac{\partial^2 \left(w \circ T_{\Theta}\right)}{\partial u \partial v} \left(u, v\right) = -\frac{\partial^2 w}{\partial u^2} \left(T_{\Theta}\left(u, v\right)\right) \sin \Theta \cos \Theta + 2\frac{\partial^2 w}{\partial u \partial v} \left(T_{\Theta}\left(u, v\right)\right) \cos^2 \Theta \quad (10)$$
$$- 2\frac{\partial^2 w}{\partial u \partial v} \left(T_{\Theta}\left(u, v\right)\right) \sin^2 \Theta + \frac{\partial^2 w}{\partial v^2} \left(T_{\Theta}\left(u, v\right)\right) \sin \Theta \cos \Theta$$

for $(u, v) \in \overline{\Omega}$. Combining (8), (9) and (10) we have $[w \circ T_{\Theta}, \sigma \circ T_{\Theta}](u, v) = [w, \sigma] \circ T_{\Theta}(u, v)$.

It is clear that subspaces of S^1 -equivariant functions in the Hölder spaces are closed linear ones. Furthermore, they are mapped into spaces of S^1 -equivariant functions by any S^1 -equivariant operator. Since F is S^1 -equivariant, we have $F^{S^1} \colon X^{S^1} \times \mathbb{R}^2_+ \to Y^{S^1}$.

The remainder of this section is devoted to the study of the Fréchet derivative of F with respect to x at a point $(0, p) \in X \times \mathbb{R}^2_+$.

Theorem 3.2. The map $F^{S^1}: X^{S^1} \times \mathbb{R}^2_+ \to Y^{S^1}$ given by (3) is C^{∞} with respect to all variables. Moreover, for each $p \in \mathbb{R}^2_+$, $(F^{S^1})'_x(0,p): X^{S^1} \to Y^{S^1}$ is a linear Fredholm map of index 0.

The proof of Theorem 3.2 is similar in spirit to the proof of Theorem 2.2 of [12].

Proof. Since F is C^{∞} , its restriction F^{S^1} is also C^{∞} . The task is now to check the second part of the claim. Fix $p \in \mathbb{R}^2_+$. We can write $F'_x(0, p)$ in the form

$$F'_{x}(0,p)(z,\eta) = A(z,\eta) + B(z,\eta),$$
(11)

where the operators $A, B: X \to Y$ are given as follows:

$$A(z,\eta) = \left(\Delta^2 z, -\Delta^2 \eta\right), \quad B(z,\eta) = \left(2\alpha\Delta z + \beta z, 0\right)$$

Define $A^{S^1} = A|_{X^{S^1}}$ and $B^{S^1} = B|_{X^{S^1}}$. In the proof of Theorem 2.2 of [12] we showed that A is a linear Fredholm map of index 0 and B is completely continuous. Since $\Delta^2 : C_{0,0}^{4,\mu}\left(\overline{\Omega}\right) \to C^{0,\mu}\left(\overline{\Omega}\right)$ is an S^1 -equivariant isomorphism, we receive that $\Delta^2 : C_{0,0}^{4,\mu}\left(\overline{\Omega}\right)^{S^1} \to C^{0,\mu}\left(\overline{\Omega}\right)^{S^1}$ is one-to-one. We show that the restriction of Δ^2 to $C_{0,0}^{4,\mu}\left(\overline{\Omega}\right)^{S^1}$ is onto $C^{0,\mu}\left(\overline{\Omega}\right)^{S^1}$. Take $f \in C^{0,\mu}\left(\overline{\Omega}\right)^{S^1}$. There exists $g \in C_{0,0}^{4,\mu}\left(\overline{\Omega}\right)$ such that $\Delta^2 g = f$. We have

$$\Delta^2 g = \left(\Delta^2 g\right) \circ T_{\Theta} = \Delta^2 \left(g \circ T_{\Theta}\right)$$

for each $\Theta \in [0, 2\pi)$ and, in consequence, $g = g \circ T_{\Theta}$. From this $g \in C_{0,0}^{4,\mu} \left(\overline{\Omega}\right)^{S^1}$.

Summarizing, we have just proved that $A: X^{S^1} \to Y^{S^1}$ is an isomorphism. Thus $A: X^{S^1} \to Y^{S^1}$ is a Fredholm map of index 0. Additionally, $B: X^{S^1} \to Y^{S^1}$ is

115

completely continuous, which follows immediately from two facts: (1) $B: X \to Y$ is completely continuous; (2) Y^{S^1} is a closed linear subspace of Y. From the above we deduce that

$$(F^{S^1})'_x(0,p) = A^{S^1} + B^{S^1}.$$
(12)

Therefore $(F^{S^1})'_x(0,p)$ is a linear Fredholm map of index 0.

4 Theorems on existence of radial bifurcation

We say that there is radial bifurcation at $(0, p) \in \Gamma$ if in every neighbourhood of this point there is a nontrivial radial solution of (2). A curve of nontrivial solutions starting with a bifurcation point is said to be a branch of bifurcation.

In Section 4 we formulate a sufficient condition for radial bifurcation at a point $(0, p) \in \Gamma$ such that dim N(p) = 3. We also investigate the number of branches of nontrivial radial solutions bifurcating from such a point. Our proof is based on the Crandall-Rabinowitz theorem on simple bifurcation points (see [8, 20]) and the Lyapunov-Schmidt finite-dimensional reduction (see [20]).

Here and subsequently, $M_{\epsilon}(x)$ denotes an open ball of radius ϵ centered at x in a metric space M. For simplicity of notation, in general theorems we use the same letters F, E and X, Y for maps and spaces, respectively, as in von Kármán's problem.

Theorem 4.1 (Crandall, Rabinowitz). Let X, Y be real Banach spaces and F be a C^q map from a neighbourhood of $(x_0, \lambda_0) \in X \times \mathbb{R}$ into Y, where $q \geq 2$. Assume that

- (i) $F(x_0, \lambda_0) = 0$,
- (*ii*) $F'_{\lambda}(x_0, \lambda_0) = 0$,
- (*iii*) dim Ker $F'_x(x_0, \lambda_0) = 1, F'_x(x_0, \lambda_0)e = 0, e \neq 0,$
- (iv) codim Im $F'_x(x_0, \lambda_0) = 1$,
- (v) $F_{\lambda\lambda}''(x_0,\lambda_0) \in \operatorname{Im} F_x'(x_0,\lambda_0),$
- (vi) $F''_{x\lambda}(x_0, \lambda_0)e \notin \operatorname{Im} F'_x(x_0, \lambda_0).$

Then the solution set of the equation $F(x, \lambda) = 0$ in a certain neighbourhood of (x_0, λ_0) is the union of two C^{q-2} curves Γ_1 and Γ_2 that intersect at (x_0, λ_0) only. Moreover, if $q \geq 3$ then

$$\Gamma_1 = \{ (x_1(\lambda), \lambda) : \lambda \in \mathbb{R}_{\epsilon}(\lambda_0) \}, \ x_1(\lambda_0) = x_0, \ x'_1(\lambda_0) = 0,$$

and

$$\Gamma_2 = \{ (x_2(t), \lambda(t)) : t \in \mathbb{R}_{\epsilon}(0) \}, \ x_2(0) = x_0, \ x'_2(0) = e, \ \lambda(0) = \lambda_0.$$

Theorem 4.2. Let X, Y be real Banach spaces continuously embedded in a real Hilbert space H with scalar product $(\cdot, \cdot)_H : H \times H \to \mathbb{R}$ and let $E : X_{\varrho}(x_0) \times \mathbb{R}_{\varrho}(\lambda_0) \to \mathbb{R}$ be a C^{q+1} functional, where $q \geq 2$. Consider the equation

$$F(x,\lambda) = 0 \tag{13}$$

with a real parameter λ , where $F : X_{\varrho}(x_0) \times \mathbb{R}_{\varrho}(\lambda_0) \to Y$ belongs to the class C^q . Assume that

- (C₁) $F(x_0, \lambda) = 0$ for every $\lambda \in \mathbb{R}_{\rho}(\lambda_0)$,
- (C₂) dim Ker $F'_x(x_0, \lambda_0) = 1$, $F'_x(x_0, \lambda_0)e = 0$, $(e, e)_H = 1$,
- (C_3) codim Im $F'_x(x_0, \lambda_0) = 1$,
- (C_4) $E'_x(x,\lambda)h = (F(x,\lambda), h)_H$ for all $(x,\lambda) \in X_{\varrho}(x_0) \times \mathbb{R}_{\varrho}(\lambda_0)$ and for each $h \in X$,
- $(C_5) E_{xx\lambda}^{\prime\prime\prime}(x_0,\lambda_0) ee \neq 0.$

Then the solution set of (13) in a small neighbourhood of (x_0, λ_0) is the union of

$$\Gamma_1 = \{ (x_0, \lambda) : \lambda \in \mathbb{R}_{\varrho}(\lambda_0) \}$$

and the C^{q-2} curve Γ_2 . Γ_1 and Γ_2 intersect at (x_0, λ_0) only. Moreover, if $q \geq 3$ then Γ_2 is parametrized as follows:

$$\Gamma_2 = \{ (x(t), \lambda(t)) : t \in \mathbb{R}_{\epsilon}(0) \},\$$

where $x(0) = x_0$, $\lambda(0) = \lambda_0$ and x'(0) = e.

Proof. It is sufficient to show that conditions $(C_1) - (C_5)$ imply conditions (i)-(vi). First we prove that

$$\operatorname{Ker} F'_x(x,\lambda) \bot \operatorname{Im} F'_x(x,\lambda) \tag{14}$$

for all $(x, \lambda) \in X_{\varrho}(x_0) \times \mathbb{R}_{\varrho}(\lambda_0)$. From (C_4) it follows that

$$E_{xx}''(x,\lambda)hg = (F_x'(x,\lambda)h,g)_H = (F_x'(x,\lambda)g,h)_H$$

for all $h, g \in X$. Hence for $h \in X$ and $g \in \text{Ker } F'_x(x, \lambda)$ we get $(F'_x(x, \lambda)h, g)_H = (F'_x(x, \lambda)g, h)_H = (0, h)_H = 0$. Differentiating $E''_{xx}(x, \lambda)$ with respect to λ we receive

$$E_{xx\lambda}^{\prime\prime\prime}(x,\lambda)hg = (F_{x\lambda}^{\prime\prime}(x,\lambda)h,g)_{H}$$

for all $h, g \in X$. Thus $E''_{xx\lambda}(x_0, \lambda_0)ee = (F''_{x\lambda}(x_0, \lambda_0)e, e)_H$. By (C_5) we have $(F''_{x\lambda}(x_0, \lambda_0)e, e)_H \neq 0$. From this and (14) we get $F''_{x\lambda}(x_0, \lambda_0)e \notin \operatorname{Im} F'_x(x_0, \lambda_0)$. Finally, (C_1) implies (i), (ii) and (v).

Let $H = L^{2}(\Omega) \times L^{2}(\Omega)$. The function $(\cdot, \cdot)_{H} : H \times H \to \mathbb{R}$ given by the formula

$$((z,\eta),(z_1,\eta_1))_H = \frac{1}{\pi} \iint_{\Omega} (zz_1 + \eta\eta_1) \, du \, dv \tag{15}$$

is an inner product in H. Furthermore, the pair $(H, (\cdot, \cdot)_H)$ is a Hilbert space. The Banach spaces $X = C_{0,0}^{4,\mu}\left(\overline{\Omega}\right) \times C_{0,0}^{4,\mu}\left(\overline{\Omega}\right)$ and $Y = C^{0,\mu}\left(\overline{\Omega}\right) \times C^{0,\mu}\left(\overline{\Omega}\right)$ are easily checked to be continuously embedded in H. Hence their closed linear subspaces X^{S^1} and Y^{S^1} are also Banach spaces continuously embedded in H. In [12] we showed that for each $p \in \mathbb{R}^2_+$ the map $F(\cdot, p) : X \to Y$ defined by (3) is a variational gradient of the functional $E(\cdot, p) : X \to \mathbb{R}$ defined by (4) with respect to the scalar product in H, i.e.

$$E'_{x}(x,p)h = (F(x,p),h)_{H}$$
(16)

for $x, h \in X$ (see Theorem 2.4 of [12]). From now on, we will denote by E^{S^1} the restriction of E to the space $X^{S^1} \times \mathbb{R}^2_+$. Let us note the important consequence of the above fact.

Conclusion 4.3. For each $p \in \mathbb{R}^2_+$ the map $F^{S^1}(\cdot, p) : X^{S^1} \to Y^{S^1}$ is a variational gradient of the functional $E^{S^1}(\cdot, p) : X^{S^1} \to \mathbb{R}$ with respect to the inner product in H, i.e.

$$(E^{S^1})'_x(x,p)h = \left(F^{S^1}(x,p),h\right)_H \tag{17}$$

for $x, h \in X^{S^1}$.

Theorem 4.4. Let $p_0 = (\alpha_0, \beta_0) \in \mathbb{R}^2_+$ satisfy the following condition

dim
$$N(p_0) = 3$$
, $(F^{S^1})'_x(0, p_0)e = 0$, $(e, e)_H = 1$, $e = (e_1, 0)$. (18)

Then $(0, \alpha_0) \in X^{S^1} \times \mathbb{R}_+$ is a bifurcation point of the equation

$$F^{S^{1}}(x,\alpha,\beta_{0}) = 0.$$
(19)

The solution set of (19) in a small neighbourhood of $(0, \alpha_0)$ is the union of the curve of trivial solutions

$$\Gamma_{1,\alpha} = \{(0,\alpha) : \alpha \in \mathbb{R}_+\}$$

and the C^{∞} curve $\Gamma_{2,\alpha}$. $\Gamma_{1,\alpha}$ and $\Gamma_{2,\alpha}$ intersect at $(0,\alpha_0)$ only. Moreover, $\Gamma_{2,\alpha}$ is parametrized as follows:

$$\Gamma_{2,\alpha} = \{ (x(t), \alpha(t)) : t \in \mathbb{R}_{\epsilon}(0) \},\$$

where x(0) = 0, $\alpha(0) = \alpha_0$ and x'(0) = e.

From (7) it follows that if $e \in N(p_0)$ then $e = (e_1, 0)$ and $e_1 \in \text{Ker}(\Delta + 2\alpha_0 \Delta + \beta_0 I)$.

Proof. As α_0 is positive, there exists $\rho > 0$ such that $\mathbb{R}_{\rho}(\alpha_0) \subset \mathbb{R}_+$. We verify that the operator $F^{S^1}(\cdot, \cdot, \beta_0) : X_{\rho}^{S^1}(0) \times \mathbb{R}_{\rho}(\alpha_0) \to Y^{S^1}$ satisfies the assumptions of Theorem 4.2. Substituting $p = (\alpha, \beta_0)$ and x = 0 into (3) we get

$$F^{S^1}(0,\alpha,\beta_0) = 0$$

for each $\alpha \in \mathbb{R}_{\varrho}(\alpha_0)$. By Theorem 3.2, the map $F^{S^1}(\cdot, \alpha_0, \beta_0) : X^{S^1} \to Y^{S^1}$ is C^{∞} and $(F^{S^1})'_x(0, \alpha_0, \beta_0) : X^{S^1} \to Y^{S^1}$ is a Fredholm map of index 0. Therefore

$$\dim N(p_0)^{S^1} = \operatorname{codim} \operatorname{Im}(F^{S^1})'_x(0, \alpha_0, \beta_0).$$
(20)

From Table 1 it follows that

$$\dim N(p_0)^{S^1} = 1. (21)$$

Combining (21) with (20) we have

$$\operatorname{codim} \operatorname{Im}(F^{S^1})'_x(0, \alpha_0, \beta_0) = 1.$$

Conclusion 4.3 says that for each $\alpha \in \mathbb{R}_+$ and for all $x, h \in X^{S^1}$

$$(E^{S^{1}})'_{x}(x,\alpha,\beta_{0})h = \left(F^{S^{1}}(x,\alpha,\beta_{0}), h\right)_{H}.$$
(22)

Notice that we have just proved that assumptions $(C_1) - (C_4)$ of Theorem 4.2 are fulfilled. To finish the proof we have to show that assumption (C_5) of Theorem 4.2 holds. Since the spaces X^{S^1} , Y^{S^1} are continuously embedded in H, differentiating both sides of the equality (22) with respect to x we obtain

$$(E^{S^{1}})''_{xx}(x,\alpha,\beta_{0})hg = \left((F^{S^{1}})'_{x}(x,\alpha,\beta_{0})h, g\right)_{H}$$
(23)

for $x, h, g \in X^{S^1}$ and $\alpha \in \mathbb{R}_+$. Applying (5), (15) and (23) we have

$$(E^{S^1})''_{xx}(x,\alpha,\beta_0)hg = \frac{1}{\pi} \iint_{\Omega} \left(\Delta^2 z - [z,\sigma] - [w,\eta] + 2\alpha\Delta z + \beta_0 z - 3\gamma w^2 z \right) z_1 du dv + \frac{1}{\pi} \iint_{\Omega} \left(-\Delta^2 \eta - [w,z] \right) \eta_1 du dv,$$

where $x = (w, \sigma), h = (z, \eta), g = (z_1, \eta_1)$. Hence

$$(E^{S^1})_{xx\alpha}^{\prime\prime\prime}(x,\alpha,\beta_0)hg = \frac{1}{\pi}\iint_{\Omega} 2(\Delta z) z_1 du dv.$$

Taking x = 0, $\alpha = \alpha_0$ and h = g = e, we get

$$(E^{S^1})_{xx\alpha}^{\prime\prime\prime}(0,\alpha_0,\beta_0)ee = \frac{1}{\pi}\iint_{\Omega} 2\left(\Delta e_1\right)e_1 du dv.$$

By the assumption $\delta_0 = \alpha_0^2 - \beta_0 > 0$ (see Table 1). From Lemma 2.2

$$\operatorname{Ker}\left(\Delta^{2}+2\alpha_{0}\Delta+\beta_{0}I\right)=\operatorname{Ker}\left(\Delta-a_{0}I\right)\oplus\operatorname{Ker}\left(\Delta-b_{0}I\right),$$

where $\Delta^2 + 2\alpha_0\Delta + \beta_0I : C_{0,0}^{4,\mu}(\overline{\Omega}) \to C^{0,\mu}(\overline{\Omega}), \Delta - a_0I, \Delta - b_0I : C_0^{2,\mu}(\overline{\Omega}) \to C^{0,\mu}(\overline{\Omega}), a_0 = -\alpha_0 - \sqrt{\delta_0} \text{ and } b_0 = -\alpha_0 + \sqrt{\delta_0}.$ We can choose e so that $\Delta e_1 - a_0e_1 = 0$ or $\Delta e_1 - b_0e_1 = 0$ (see Table 1). If $\Delta e_1 - a_0e_1 = 0$ then

$$(E^{S^1})_{xx\alpha}^{\prime\prime\prime}(0,\alpha_0,\beta_0)ee = \frac{2a_0}{\pi} \iint_{\Omega} e_1^2 du dv = 2a_0 (e,e)_H = 2a_0 < 0.$$
(24)

If $\Delta e_1 - b_0 e_1 = 0$ then

$$(E^{S^1})''_{xx\alpha}(0,\alpha_0,\beta_0)ee = 2b_0 < 0,$$
(25)

which completes the proof.

Let $(0, p_0) \in \Gamma$ satisfy (18). From Theorem 4.4 it follows that $(0, p_0)$ is a bifurcation point of the equation (2). What is more, at least two C^{∞} branches of nontrivial radial solutions bifurcate from this point. The union of this branches is the curve $\Gamma_{2,\alpha}$.

Theorem 4.4 refers to bifurcation with respect to α . Our purpose now is to prove an analogical theorem on bifurcation with respect to β .

Theorem 4.5. Let $p_0 = (\alpha_0, \beta_0) \in \mathbb{R}^2_+$ satisfy the condition (18). Then $(0, \beta_0) \in X^{S^1} \times \mathbb{R}_+$ is a bifurcation point of the equation

$$F^{S^1}(x, \alpha_0, \beta) = 0.$$
 (26)

The solution set of (26) in a small neighbourhood of $(0, \beta_0)$ is the union of the curve of trivial solutions

$$\widehat{\Gamma}_{1,\beta} = \{(0,\beta) : \beta \in \mathbb{R}_+\}$$

and the C^{∞} curve $\widehat{\Gamma}_{2,\beta}$. $\widehat{\Gamma}_{1,\beta}$ and $\widehat{\Gamma}_{2,\beta}$ intersect at $(0,\beta_0)$ only. Moreover, $\widehat{\Gamma}_{2,\beta}$ is parametrized as follows:

$$\widehat{\Gamma}_{2,\beta} = \{ (\widehat{x}(t), \beta(t)) : t \in \mathbb{R}_{\epsilon}(0) \}_{2,\beta}$$

where $\hat{x}(0) = 0$, $\beta(0) = \beta_0$ and $\hat{x}'(0) = e$.

Proof. The proof is also based on Theorem 4.2. Take $\rho > 0$ such that $\mathbb{R}_{\rho}(\beta_0) \subset \mathbb{R}_+$. Considerations similar to those in the proof of Theorem 4.4 show that the map $F^{S^1}(\cdot, \alpha_0, \cdot) : X_{\rho}^{S^1}(0) \times \mathbb{R}_{\rho}(\beta_0) \to Y^{S^1}$ satisfies assumptions $(C_1) - (C_4)$ of Theorem 4.2. The details are left to the reader. The task is now to check assumption (C_5) . From Conclusion 4.3 we get that for each $\beta \in \mathbb{R}_+$ and for all $x, h \in X^{S^1}$

$$(E^{S^1})'_x(x,\alpha_0,\beta)h = (F^{S^1}(x,\alpha_0,\beta), h)_H$$

Hence

$$(E^{S^1})''_{xx}(x,\alpha_0,\beta)hg = \left((F^{S^1})'_x(x,\alpha_0,\beta)h, \ g\right)_H.$$
(27)

Using (5), (15) and (27) we obtain

$$(E^{S^1})''_{xx}(x,\alpha_0,\beta)hg = \frac{1}{\pi} \iint_{\Omega} \left(\Delta^2 z - [z,\sigma] - [w,\eta] + 2\alpha_0 \Delta z + \beta z - 3\gamma w^2 z \right) z_1 du dv + \frac{1}{\pi} \iint_{\Omega} \left(-\Delta^2 \eta - [w,z] \right) \eta_1 du dv,$$
(28)

where $x = (w, \sigma)$, $h = (z, \eta)$, $g = (z_1, \eta_1)$. Differentiating (28) with respect to β we have

$$(E^{S^1})_{xx\beta}^{\prime\prime\prime}(x,\alpha_0,\beta)hg = \frac{1}{\pi}\iint_{\Omega} zz_1 du dv.$$

In particular,

$$(E^{S^1})''_{xx\beta}(0,\alpha_0,\beta_0)ee = \frac{1}{\pi} \iint_{\Omega} e_1^2 du dv = (e,e)_H = 1 > 0,$$
(29)

which completes the proof.

Fix $(0, p_0) \in \Gamma$ such that dim $N(p_0) = 3$, $p_0 = (\alpha_0, \beta_0)$. Let us remark that if $\Gamma_{2,\alpha} \cap \widehat{\Gamma}_{2,\beta} = \{(0, p_0)\}$ then at least four C^{∞} branches of nontrivial radial solutions bifurcate from $(0, p_0)$. Therefore the next question is whether the curves $\Gamma_{2,\alpha}$ and $\widehat{\Gamma}_{2,\beta}$ intersect at $(0, p_0)$ only.

In order to answer this question we apply a finite-dimensional reduction of the Lyapunov-Schmidt type with the key function due to Sapronov (see [14, 22]).

Let $G: X^{S^1} \times \mathbb{R} \times \mathbb{R}_+ \to Y^{S^1}$ be given by

$$G(x,\xi,\alpha) = F^{S^{1}}(x,\alpha,\beta_{0}) + (\xi - (x,e)_{H})e.$$

It is easy to check that $G'_x(0,0,\alpha_0): X^{S^1} \to Y^{S^1}$ is an isomorphism. By the implicit function theorem there exist $\epsilon > 0$ and a map $\tilde{x}: \mathbb{R}_{\varepsilon}(0) \times \mathbb{R}_{\varepsilon}(\alpha_0) \to X^{S^1}_{\varepsilon}(0)$ such that $\tilde{x}(0,\alpha_0) = 0$ and for every $(x,\xi,\alpha) \in X^{S^1}_{\varepsilon}(0) \times \mathbb{R}_{\varepsilon}(0) \times \mathbb{R}_{\varepsilon}(\alpha_0)$ we have $G(x,\xi,\alpha) = 0$ iff $x = \tilde{x}(\xi,\alpha)$. Hence

$$G(\tilde{x}(\xi,\alpha),\xi,\alpha) = 0.$$
(30)

Furthermore, $\tilde{x}'_{\xi}(0, \alpha_0) = e$ and $\tilde{x}(0, \alpha) = 0$ for all $|\alpha - \alpha_0| < \varepsilon$. Thus

$$\tilde{x}(\xi, \alpha) = \xi e + o(\sqrt{\xi^2 + (\alpha - \alpha_0)^2}).$$
 (31)

Let us define $\varphi, \Phi : \mathbb{R}_{\varepsilon}(0) \times \mathbb{R}_{\varepsilon}(\alpha_0) \to \mathbb{R}$ as follows:

$$\varphi(\xi, \alpha) = \xi - (\tilde{x}(\xi, \alpha), e)_H$$

and

$$\Phi(\xi,\alpha) = -E^{S^1}(\tilde{x}(\xi,\alpha),\alpha,\beta_0) + \frac{1}{2}\varphi^2(\xi,\alpha)$$

 $\Phi(\xi, \alpha)$ is called *a key function*. Both Φ and φ are C^{∞} -smooth. We also have

$$G(\tilde{x}(\xi,\alpha),\xi,\alpha) = F^{S^1}(\tilde{x}(\xi,\alpha),\alpha,\beta_0) + \varphi(\xi,\alpha)e.$$
(32)

Differentiating φ and Φ with respect to ξ we receive

$$\varphi'_{\xi}(\xi,\alpha) = 1 - \left(\tilde{x}'_{\xi}(\xi,\alpha), e\right)_{H}$$

and

$$\begin{aligned} \Phi'_{\xi}(\xi,\alpha) &= -(E^{S^{1}})'_{x}(\tilde{x}(\xi,\alpha),\alpha,\beta_{0})\tilde{x}'_{\xi}(\xi,\alpha) + \varphi(\xi,\alpha)\varphi'_{\xi}(\xi,\alpha) \\ &= -\left(F^{S^{1}}(\tilde{x}(\xi,\alpha),\alpha,\beta_{0}),\tilde{x}'_{\xi}(\xi,\alpha)\right)_{H} + \varphi(\xi,\alpha) - \left(\varphi(\xi,\alpha)e,\tilde{x}'_{\xi}(\xi,\alpha)\right)_{H} \\ &= -\left(G(\tilde{x}(\xi,\alpha),\xi,\alpha),\tilde{x}'_{\xi}(\xi,\alpha)\right)_{H} + \varphi(\xi,\alpha) \\ &= \varphi(\xi,\alpha), \end{aligned}$$

by (17) and (30). From (30) and (32) we conclude that all solutions of the equation (19) in a small neighbourhood of $(0, \alpha_0)$ in $X^{S^1} \times \mathbb{R}_+$ are of the form $(\tilde{x}(\xi, \alpha), \alpha)$ and

$$F^{S^1}(\tilde{x}(\xi,\alpha),\alpha,\beta_0) = 0 \iff \Phi'_{\xi}(\xi,\alpha) = 0 \iff \varphi(\xi,\alpha) = 0.$$
(33)

We describe now the solution set of the equation

$$\varphi(\xi, \alpha) = 0$$

in a small neighbourhood of $(0, \alpha_0)$ in $\mathbb{R} \times \mathbb{R}_+$. For this purpose we use the Taylor formula of φ at $(0, \alpha_0)$. From (32) it follows that

$$\left(F^{S^1}(\tilde{x}(\xi,\alpha),\alpha,\beta_0) + \varphi(\xi,\alpha)e,e\right)_H = 0,$$

hence

$$\varphi(\xi,\alpha) = -\left(F^{S^1}(\tilde{x}(\xi,\alpha),\alpha,\beta_0),e\right)_H,$$

and by (17)

$$\varphi(\xi,\alpha) = -(E^{S^1})'_x(\tilde{x}(\xi,\alpha),\alpha,\beta_0)e.$$
(34)

Applying (4) and (34) we get

$$C_{1} := \varphi_{\xi}'(0, \alpha_{0}) = -(E^{S^{1}})_{xx}''(0, p_{0})ee = 0,$$

$$C_{11} := \varphi_{\xi\xi}''(0, \alpha_{0}) = -(E^{S^{1}})_{xxx}''(0, p_{0})eee = 0,$$

$$C_{12} := \varphi_{\xi\alpha}''(0, \alpha_{0}) = -(E^{S^{1}})_{xx\alpha}''(0, p_{0})ee,$$

$$C_{111} := \varphi_{\xi\xi\xi}'''(0, \alpha_{0}) = -(E^{S^{1}})_{xxxx}^{(4)}(0, p_{0})eeee - 3(E^{S^{1}})_{xxxx}''(0, p_{0})yee,$$

where $y = (y_1, y_2) = \tilde{x}_{\xi\xi}''(0, \alpha_0)$ is a solution of the equation

$$(F^{S^1})''_{xx}(0,p_0)ee + (F^{S^1})'_x(0,p_0)y = 0.$$

By (24) and (25) we have $C_{12} > 0$. An easy calculation shows that

$$C_{111} = \frac{6}{\pi} \iint_{\Omega} \gamma e_1^4 du dv - \frac{3}{\pi} \iint_{\Omega} (\Delta y_2)^2 du dv.$$

 Set

$$C_{112} := \varphi_{\xi\xi\alpha}^{\prime\prime\prime}(0,\alpha_0),$$

$$C_{122} := \varphi_{\xi\alpha\alpha}^{\prime\prime\prime}(0,\alpha_0).$$

Since $\varphi(0, \alpha) = 0$ for all $|\alpha - \alpha_0| < \epsilon$, we have

$$\varphi_{\alpha\dots\alpha}^{(k)}(0,\alpha_0) = 0$$

for every $k \in \mathbb{N}$. In consequence,

$$\varphi(\xi,\alpha) = C_{12}\xi(\alpha - \alpha_0) + \frac{1}{6}C_{111}\xi^3 + \frac{1}{2}C_{112}\xi^2(\alpha - \alpha_0) + \frac{1}{2}C_{122}\xi(\alpha - \alpha_0)^2 + o\left(\sqrt{\xi^2 + (\alpha - \alpha_0)^2}^3\right) = C_{12}\xi(\alpha - \alpha_0) + \frac{1}{6}C_{111}\xi^3 + \frac{1}{2}C_{112}\xi^2(\alpha - \alpha_0) + \frac{1}{2}C_{122}\xi(\alpha - \alpha_0)^2 + \xi f(\xi,\alpha)$$

where $f : \mathbb{R}_{\epsilon}(0) \times \mathbb{R}_{\varepsilon}(\alpha_0) \to \mathbb{R}$ is a C^{∞} function such that $f(0, \alpha_0) = 0$, $f'_{\alpha}(0, \alpha_0) = 0$ and $f'_{\xi}(0, \alpha_0) = f''_{\xi\xi}(0, \alpha_0) = 0$. Let $g : \mathbb{R}_{\epsilon}(0) \times \mathbb{R}_{\varepsilon}(\alpha_0) \to \mathbb{R}$ be given by

$$g(\xi,\alpha) = C_{12}(\alpha - \alpha_0) + \frac{1}{6}C_{111}\xi^2 + \frac{1}{2}C_{112}\xi(\alpha - \alpha_0) + \frac{1}{2}C_{122}(\alpha - \alpha_0)^2 + f(\xi,\alpha).$$

Then

$$\varphi(\xi,\alpha) = 0 \quad \Longleftrightarrow \quad \xi = 0 \quad \lor \quad g(\xi,\alpha) = 0$$

We check at once that $g(0, \alpha_0) = 0$, $g'_{\xi}(0, \alpha_0) = 0$ and $g'_{\alpha}(0, \alpha_0) = C_{12} > 0$. By the implicit function theorem there exists a C^{∞} function $\tilde{\alpha} : \mathbb{R}_{\rho}(0) \to \mathbb{R}_{\rho}(\alpha_0), 0 < \rho < \epsilon$ such that $\tilde{\alpha}(0) = \alpha_0$ and for all $(\xi, \alpha) \in \mathbb{R}_{\rho}(0) \times \mathbb{R}_{\rho}(\alpha_0)$ we have

$$g(\xi, \alpha) = 0 \quad \Longleftrightarrow \quad \alpha = \tilde{\alpha}(\xi).$$

Figure 1: The scheme of postcritical bifurcation

Differentiating the equality $g(\xi, \tilde{\alpha}(\xi)) = 0$ with respect to ξ we get

$$\tilde{\alpha}'(0) = -\frac{g_{\xi}'(0,\alpha_0)}{g_{\alpha}'(0,\alpha_0)} = 0$$

and

$$\tilde{\alpha}''(0) = -\frac{g_{\xi\xi}'(0,\alpha_0)}{g_{\alpha}'(0,\alpha_0)} = -\frac{C_{111}}{3C_{12}}$$

Remark that

$$\tilde{\alpha}''(0) \neq 0 \quad \iff \quad C_{111} \neq 0 \quad \iff \quad \gamma \neq \frac{\iint_{\Omega} (\Delta y_2)^2 du dv}{2 \iint_{\Omega} e_1^4 du dv}.$$

If $C_{111} < 0$ then $\tilde{\alpha}''(0) > 0$ and $\tilde{\alpha}$ achieves the minimum at 0. Moreover, there exists $0 < \rho_1 < \rho$ such that $\tilde{\alpha}$ is strictly decreasing for $\xi \in (-\rho_1, 0]$ and it is strictly increasing for $\xi \in [0, \rho_1)$. Hence there is $0 < \rho_2 < \rho$ and there are C^{∞} functions $\xi_1 : [\alpha_0, \alpha_0 + \rho_2) \rightarrow (-\rho_1, 0]$ and $\xi_2 : [\alpha_0, \alpha_0 + \rho_2) \rightarrow [0, \rho_1)$ such that $\xi_i = \tilde{\alpha}^{-1}$ for i = 1, 2. From this, (31) and (33) we conclude that if $C_{111} < 0$ then there is postcritical bifurcation in the solution set of (19) at the point $(0, \alpha_0)$ (see Figure 1). All nontrivial solutions of (19) in a small neighbourhood of $(0, \alpha_0)$ lie on the curve

$$x = \tilde{x}(\xi_i(\alpha), \alpha), \quad \alpha \in [\alpha_0, \alpha_0 + \rho_2).$$

If $C_{111} > 0$ then $\tilde{\alpha}''(0) < 0$ and $\tilde{\alpha}$ achieves the maximum at 0. Moreover, there exists $0 < \rho_1 < \rho$ such that $\tilde{\alpha}$ is strictly increasing for $\xi \in (-\rho_1, 0]$ and it is strictly decreasing for $\xi \in [0, \rho_1)$. Hence there is $0 < \rho_2 < \rho$ and there are C^{∞} functions $\xi_1 : (\alpha_0 - \rho_2, \alpha_0] \rightarrow (-\rho_1, 0]$ and $\xi_2 : (\alpha_0 - \rho_2, \alpha_0] \rightarrow [0, \rho_1)$ such that $\xi_i = \tilde{\alpha}^{-1}$ for i = 1, 2. Consequently, if $C_{111} > 0$ then there is subcritical bifurcation in the solution set of (19) at the point $(0, \alpha_0)$ (see Figure 2). All nontrivial solutions of (19) in a small neighbourhood of $(0, \alpha_0)$ lie on the curve

$$x = \tilde{x}(\xi_i(\alpha), \alpha), \ \alpha \in (\alpha_0 - \rho_2, \alpha_0].$$

Similarly, we can prove that if $C_{111} > 0$ (resp. $C_{111} < 0$) then there is postcritical bifurcation (resp. subcritical bifurcation) in the solution set of (26) at the point

Figure 2: The scheme of subcritical bifurcation

 $(0, \beta_0)$. It is sufficient to make a finite-dimensional reduction with $G: X^{S^1} \times \mathbb{R} \times \mathbb{R}_+ \to Y^{S^1}$ defined by

$$G(x,\xi,\beta) = F^{S^1}(x,\alpha_0,\beta) + (\xi - (x,e)_H)e$$

and check that $C_{12} := -(E^{S^1})''_{xx\beta}(0, p_0)ee < 0$ (see (29)).

Summarizing, we have just proved the following result.

Theorem 4.6. If $C_{111} \neq 0$ then $\Gamma_{2,\alpha} \cap \widehat{\Gamma}_{2,\beta} = \{(0, p_0)\}$. Another words, at $(0, p_0)$ at least four C^{∞} branches of nontrivial radial solutions of (2) meet, causing the plate to choose between different forms of equilibrium.

References

- S.S. Antman, Nonlinear problems of elasticity, Ser. Applied Mathematical Sciences, vol. 107, Springer-Verlag, 1995.
- M.S. Berger, On von Kármán equations and the buckling of a thin elastic plate, I. The clamped plate, *Communications on Pure and Applied Mathematics*, vol. 20 (1967), p. 687–719.
- [3] F. Bloom, D. Coffin, Handbook of Thin Plate Buckling and Postbuckling, Chapman & Hall/CRC, 2001.
- [4] I. Bock, On nonstationary von Kármán equations, Zeitschrift für Angewandte Mathematik und Mechanik, vol. 76 (1996), p. 559–571.
- [5] C.S. Chien & M.S. Chen, Multiple bifurcation in the von Kármán equations, SIAM J. Sci. Comput., vol. 18, no. 6 (1997), pp. 1737–1766.
- [6] P.G. Ciarlet & P. Rabier, Les Equations de von Kármán, Lecture Notes in Math., vol. 826, Springer-Verlag, 1980.

- [7] P.G. Ciarlet & L. Gratie, Generalized von Kármán equations, Journal des Mathématiques Pures et Appliquées, vol. 80, no. 3 (2001), pp. 263–279.
- [8] M.G. Crandall & P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., vol. 8 (1971), pp. 321–340.
- [9] P.A. Djondjorov, V.M. Vassilev, Acceleration Waves in the von Kármán Plate Theory, *Integral Methods in Science and Engineering*, Chapman & Hall/CRC Research Notes in Mathematics 418, Boca Raton, FL, 2000, pp. 131–136.
- [10] Ji-Huan He, A Lagrangian for von Kármán equations of large deflection problem of thin circular plate, *Applied mathematics and computation*, vol. 143, no. 2-3 (2003), pp. 543–549.
- [11] E.J. Hölder & D. Schaffer, Boundary conditions and mode jumping in the von Kármán equations, SIAM J. Math. Anal., vol. 15, no. 3 (1984), pp. 446–457.
- [12] J. Janczewska, Bifurcation in the solution set of the von Kármán equations of an elastic disk lying on the elastic foundation, Annales Polonici Mathematici, vol. 77 (2001), pp. 53–68.
- [13] J. Janczewska, The necessary and sufficient condition for bifurcation in the von Kármán equations, NoDEA, vol. 10 (2003), pp. 73–94.
- [14] J. Janczewska, Local properties of the solution set of the operator equation in Banach spaces in a neighbourhood of a bifurcation point, *Central European Journal of Mathematics*, vol. 2, no. 4 (2004), pp. 561–572.
- [15] J. Janczewska, Description of the solution set of the von Kármán equations for a circular plate in a small neighbourhood of a simple bifurcation point, NoDEA, vol. 13 (2006), pp. 337–348.
- [16] A.Kh. Khanmamedov, Global attractors for von Kármán equations with nonlinear interior dissipation, *Journal of Mathematical Analysis and Applications*, vol. 318, no. 1 (2006), pp. 92–101.
- [17] E.M. Kramer, The von Kármán equations, the stress function, and elastic ridges in high dimensions, J. Math. Phys., vol. 38, no. 2 (1997), pp. 831–846.
- [18] Yu. Morozov, The study of the nonlinear model which describes the equilibrium forms, fundamental frequencies and modes of oscillations of a finite beam on an elastic foundation, Ph. D. thesis (in Russian), Applied Mathematics Department, Voronezh State University, 1998.
- [19] A.D. Muradova, Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity, ANZIAM J., vol. 46 (2005), pp. 426–438.
- [20] L. Nirenberg, Topics in nonlinear functional analysis, Courant Inst. of Math. Sciences, New York, 1974.

- [21] B. Rao, Marguerre-von Kármán equations and membrane model, Nonl. Anal., Theory, Methods and Applications, vol. 24, no. 8 (1995), pp. 1131–1140.
- [22] Yu.I. Sapronov, Finite-dimensional reductions in smooth extremal problems, Uspehi Mat. Nauk, vol. 1 (1996), pp. 101–132.
- [23] I.I. Voronovich, Mathematical problems in the nonlinear theory of shells (in Russian), Nauka, Moscow, 1989.

Department of Technical Physics and Applied Mathematics Gdańsk University of Technology ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland janczewska@mifgate.pg.gda.pl