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Abstract

We present a simple procedure which transfers classical coefficient tests
on summation of orthonormal series in L2(µ) into theorems on summation
for unconditionally convergent series in vector-valued Banach function spaces
E(X) (where E is a Banach function space over a measure space (Ω, µ) and
X a Banach space).

1 Introduction

The fundamental theorem of Menchoff [12] and Rademacher [16] is the most im-
portant coefficient test for almost everywhere summation of general orthonormal
series. It states that whenever a sequence (αk) of coefficients satisfies the “test”
∑

k |αk log(k + 2)|2 < ∞, then every orthonormal series
∑

k αkxk in L2(µ) converges
almost everywhere – moreover, by a result of Kantorovitch [8] its maximal function
is square-integrable ,

∥

∥

∥

∥

sup
j

∣

∣

∣

∣

j
∑

k=0

αkxk

∣

∣

∣

∣

∥

∥

∥

∥

2
≤ C‖(log(k + 2)αk)‖2 . (1.1)

There is a long list of analogs of this result for various summation methods as
Cesaro, Riesz, or Abel summation.

Recall that a summation method formally is a matrix S = (sjk) with positive
entries such that for each convergent series s =

∑

k xk of scalars we have

s = lim
j

∑

k

sjk

k
∑

ℓ=0

xℓ (1.2)
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(see e.g. [1] and [19]).
For example, the coefficient test

∑

k |αk log log(k + 2)|2 < ∞ assures that all
orthonormal series

∑

k αkxk are almost everywhere Cesaro-summable, and moreover

for the Cesaro means of its partial sums we have supj

∣

∣

∣

∣

1
j+1

∑j
k=0

∑k
ℓ=0 αℓxℓ

∣

∣

∣

∣

∈ L2(µ) ,

a result of Kaczmarz [7] and Menchoff [13].
Given a summation method S = (skj) and a scalar sequences (ωk), we speak

of a coefficient test whenever for each orthonormal series
∑

k αkxk in L2(µ) with
coefficients (αk) satisfying the test

∑

k |αkωk|
2 < ∞ we have

∑

k

αkxk = lim
j

∑

k

sjk

k
∑

ℓ=0

αℓ xℓ µ-a.e. ;

such test sequences (ωk) are then usually called Weyl sequences with respect to S.
Obviously, (log(k+2))k is a Weyl sequence for ordinary summation, and (log log(k+
2))k for Cesaro-summation.

It is well-known that some fundamental coefficient tests transfer to almost every-
where summation theorems for unconditionally convergent series

∑

k xk in arbitrary
Lp(µ)-spaces (see e.g. [2], [3], [5], [6], [11], [15], and [17]). Following the approach
from [5], the aim of this article is to extend several of these classical tests even to the
vector-valued situation. We show a couple of results reflecting the following general
philosophy:

Given a coefficient test with respect to a summation method S and a Weyl se-
quence ω, then for every unconditionally convergent series

∑

k xk in a Banach-
space-valued Banach function space E(X) we have

∑

k

xk

ωk
= lim

j

∑

k

sjk

k
∑

ℓ=0

xℓ

ωℓ
µ-a-e. ,

and moreover for its maximal function

sup
j

∥

∥

∥

∥

∑

k

sjk

k
∑

ℓ=0

xℓ

ωℓ

∥

∥

∥

∥

X
∈ E .

Since any orthonormal series
∑

k αkxk in L2 is unconditionally convergent, such
results then still contain the original test as a special case (E = L2 and X = K).

Applied to ordinary summation we obtain a Menchoff-Rademacher type theorem
for unconditionally convergent series

∑

k xk in spaces E(X) (which needs no further
assumption on the underlying Banach function space E and Banach space X), and
similar results for Cesaro, Abel, or Riesz summation. Part of this article will be
implicitly contained in [5].



Menchoff-Rademacher type theorems in vector-valued Banach function spaces 475

2 Preliminaries

We shall use standard notation and notions from Banach space theory as presented
e.g in [4], [6], [10], or [17]. We will need Grothendieck’s notion of integral and
Hilbertian operators in Banach spaces, and denote the integral norm of a (bounded
and linear) operator u in Banach spaces by ι(u) and its Hilbertian norm by γ2(u).
Grothendieck’s “fundamental theorem of the metric theory of tensor products” states
that for every operator u from ℓ1 into ℓ∞ we have

γ2(u) ≤ ι(u) ≤ KG γ2(u) . (2.1)

The projective norm ‖ · ‖π for an element z in the tensor product X ⊗ Y of
two Banach spaces is given by ‖z‖π = inf

∑

k ‖xk‖ ‖yk‖ , where the infimum is
taken over all finite representation z =

∑

k xk ⊗ yk. Dually, the injective norm
‖ · ‖ε for z =

∑

k xk ⊗ yk (a fixed finite representation) is defined by ‖z‖ε =

sup‖x′‖
X′ , ‖y′‖

Y ′≤1

∣

∣

∣

∑

k x′(xk) y′(yk)
∣

∣

∣ . We will need the fact that for each integral op-

erator u ∈ L(X, Y )

ι(u) = sup ‖ id⊗u : Z ⊗ε X −→ Z ⊗π Y ‖ , (2.2)

where the supremum is taken over all Banach spaces Z (see e.g., [4]).
Recall that the vector space of all unconditionally summable sequences x = (xk)

in a Banach space X (i.e., the series
∑

k xk are unconditionally convergent) together

with the norm w1(x) := sup‖α‖∞≤1

∥

∥

∥

∑∞
k=0 αkxk

∥

∥

∥ forms the Banach space ℓunc
1 (X).

There is a canonical way to identify ℓunc
1 (X) with the completion of ℓ1 ⊗ε X.

For the definition of Banach function spaces (= Köthe function spaces) E over
measure spaces (Ω, µ) see [10]. Recall that a function f : Ω → X is µ-measurable
whenever it is an almost everywhere limit of a sequence of vector-valued step func-
tions. The vector-valued Banach function space E(X) consists of all (µ-equivalence
classes of) µ-measurable functions f : Ω → X such that ‖f‖X ∈ E, a vector space
which together with the norm ‖f‖E(X) = ‖‖f‖X‖E forms a Banach space. For
E = Lp(µ) this construction leads to the well-known space Lp(µ, X) of Bochner-
integrable functions. For Ω = {0, 1, . . . , n} with the discrete measure we as usual
write ℓn

p instead of Lp(µ) (here dim ℓn
p = n + 1 ).

3 Summation processes and maximizing matrices

By a result of Toeplitz, summation methods S (see the introduction for a definition)
can be characterized through the following two conditions

lim
j

∑

k

sjk = 1 and lim
j

sjk = 0 for all k , (3.1)

and it can be shown easily that these conditions even assure that (1.2) holds for all
convergent series

∑

k xk in a Banach space X. A sequence (xk) in a Banach space
X for which the sequence (

∑

k sjkxk)j converges, is said to be S-summable. The
identity matrix is the first important example of a summation process. Let us recall
three other fundamental methods – Cesaro, Riesz and Abel summation.
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The Cesaro matrix C with

cjk :=











1

j + 1
k ≤ j

0 k > j
(3.2)

defines Cesaro-summation, and more generally for α > 0 the Cesaro matrix Cα

defined by

cα
jk :=















Aα−1
j−k

Aα
j

k ≤ j

0 k > j

(3.3)

gives Cesaro-summation of order α; here Aα
j :=

(

j+α
j

)

for α ∈ R. Next, if λ is
a positive, strictly increasing and unbounded sequence of scalars, then the Riesz
matrices Rλ are given by

rλ
jk :=











λk+1 − λk

λj+1
k ≤ j

0 k > j
(3.4)

Note that for λj = j Rieszλ-summation means Cesaro-summation, and for λj = 2j a
sequence is Rieszλ-summable iff it is summable. Finally, we define the Abel matrices
Aρ by

aρ
jk := ρk

j (1 − ρj) , (3.5)

where ρ is a positive sequence which increases to 1. Recall that a scalar sequence
(xk) is said to be Abel-summable whenever the limit limr→1

∑∞
k=0 xkr

k exists. For
0 < r < 1 we have

∑∞
k=0 xkr

k =
∑∞

k=0(1− r)rk ∑k
ℓ=0 xℓ which justifies our name for

Aρ. For more information on these summation methods see e.g. [1] and [19].

Now we define maximizing matrices, a definition crucial for our purpose. Let
A = (ajk)j,k∈N0 be a matrix satisfying ‖A‖∞ := supjk |ajk| < ∞, or equivalently A
defines an operator from ℓ1 into ℓ∞ with norm ‖A‖∞. We say that A is maximizing
whenever for each orthonormal series

∑

k αkxk in L2(µ) we have

sup
j

∣

∣

∣

∣

∞
∑

k=0

ajk αk xk

∣

∣

∣

∣

∈ L2(µ) .

Clearly, by a closed graph argument A is maximizing if and only if the following
maximal inequality holds: There is a constant C > 0 such that for all orthonormal
series

∑

k αkxk in L2(µ) we have
∥

∥

∥

∥

sup
j

∣

∣

∣

∞
∑

j=0

ajk αk xk

∣

∣

∣

∥

∥

∥

∥

2
≤ C‖α‖2 ,

and the best of these constants is denoted by

m(A) := inf C .

In [5, section 1.7] it is proved that A is maximizing if and only if A as an operator
from ℓ1 into ℓ∞ factorizes through a Hilbert space (is a Hilbertian operator), and in
this case

γ2(A) = m(A) . (3.6)
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Let us finally list some examples of maximizing matrices. Note first that all
matrix products of the form

S Σ D(1/ log(k+2)) =
(

1

log(k + 2)

∞
∑

ℓ=k

sjℓ

)

j,k
(3.7)

are maximizing where S is some summation method, Σ the sum matrix defined by

σjk :=











1 k ≤ j

0 k > j ,

and D(1/ log(k+2)) the diagonal matrix with diagonal (1/ log(k + 2))k. Indeed, S by
(3.1) defines a (bounded and linear) operator on ℓ∞ which implies that

sup
j

∣

∣

∣

∞
∑

k=0

sjk

k
∑

ℓ=0

αℓ

log(ℓ + 2)
xℓ

∣

∣

∣ ≤ ‖S : ℓ∞ → ℓ∞‖ sup
k

∣

∣

∣

k
∑

ℓ=0

αℓ

log(ℓ + 2)
xℓ

∣

∣

∣ ,

and hence the conclusion is an immediate consequence of the Menchof-Rademacher-
Kantorovitch inequality (1.1).

In the particular case of Cesaro, Riesz and Abel summation the above diagonal
sequence (1/ log(k + 2))k (or Weyl sequence (log(k + 2))k ) can be improved. This
follows from a careful analysis of the proofs for the famous coefficient tests for almost
everywhere convergence of orthonormal series due to Kaczmarz [7], Kantorovitch [8],
Menchoff [12], [13], Rademacher [16], and Zygmund [18]. For a detailed presentation
of the following three facts see [5, section 2].

Example 3.1. The following matrices generated (as in (3.7)) by the Cesaro matrices
Cα, Riesz matrices Rλ and Abel matrices Aρ are maximizing:

Rλ Σ D( 1
log log λ

k
) =















(1 −
λk

λj+1

)
1

log log λk

k ≤ j

0 k > j





jk

(3.8)

Cα Σ D( 1
log log(k+2)

) =



















Aα
j−k

Aα
j

1

log log(k + 2)
k ≤ j

0 k > j





jk

(3.9)

Aρ ΣD( 1
log log(k+2)

) =
( ρk

j

log log(k + 2)

)

jk
. (3.10)

4 The main result

It is remarkable that most of the classical almost everywhere summation theorems
for orthonormal series in L2(µ) can be extended without any further assumptions to
spaces Lp(µ, X) of Bochner-integrable functions with values in a Banach space X,
or even more generally, to vector-valued Banach function spaces E(X) (where E is
a Banach function space over a measure space (Ω, µ) and X a Banach space).
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Theorem 4.1. Let E(X) be a vector-valued Banach function space. Let S be a
summation method and ω a Weyl sequence with the additional property that for each
orthonormal series

∑

k αkxk in L2(µ) we have

sup
J

∣

∣

∣

∣

∞
∑

k=0

sjk

k
∑

ℓ=0

αk

ωℓ
xℓ

∣

∣

∣

∣

∈ L2(µ) .

Then for each unconditionally convergent series
∑

k xk in E(X) the following two
statements hold:

(1) supj

∥

∥

∥

∥

∑∞
k=0 sjk

∑k
ℓ=0

xℓ

ωℓ

∥

∥

∥

∥

X
∈ E

(2)
∑∞

k=0

xk

ωk
= limj

∑∞
k=0 sjk

∑k
ℓ=0

xℓ

ωℓ
µ-a.e.

Proof. By E(X)[ℓ∞(I)] (I some countable partially ordered index set) we denote all
families (xi)i∈I in E(X) such that supi ‖xi‖X ∈ E. This vector space together with

the norm ‖(xi)‖ :=
∥

∥

∥ supi ‖xi‖X

∥

∥

∥

E
forms a Banach space. Note that (xi) belongs to

E(X)[ℓ∞(I)] if and only if there is a factorization xi = zi f where (zi) is a uniformly
bounded sequence in L∞(X) and f ∈ E. We will also need the closed subspace
E(X)[c0(I)] ⊂ E(X)[ℓ∞(I)] of all families (xi) allowing a factorization xi = zi f for
which the zi even form a zero sequence in L∞(X).

We start with the proof of (1): Define the matrix

A = S Σ D1/ω =
(

1

ωk

∞
∑

ℓ=k

sjℓ

)

j,k
,

and note that
∞
∑

k=0

ajk xk =
∞
∑

k=0

sjk

k
∑

ℓ=0

xℓ

ωℓ

.

We know from (3.6) that the maximizing matrix A as an operator from ℓ1 into
ℓ∞ factorizes through a Hilbert space. By the identification of ℓunc

1 (E(X)) with
the completed ε-tensor product of E(X) and ℓ1 and a density argument (all finite
sequences in E(X) form a dense subspace of ℓunc

1 (E(X))), all we have to show is
that for each n

‖ idE(X) ⊗A : E(X) ⊗ε ℓn
1 −→ E(X)[ℓn

∞]‖ ≤ KG γ2(A) < ∞ ; (4.1)

indeed, for x = (xk)n
k=0 ∈ E(X)n+1

w1(x) =
∥

∥

∥

∥

n
∑

k=0

xk ⊗ ek

∥

∥

∥

∥

E(X)⊗εℓn

1

and
(

idE(X) ⊗A
)

(

∑

k

xk ⊗ ek

)

=
∑

k

xk ⊗ Aek

=
∑

k

xk ⊗
∑

j

ajkej =
∑

j

(

∑

k

ajkxk

)

⊗ ej ,
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therefore
∥

∥

∥

∥

sup
j

∥

∥

∥

∑

k

ajkxk

∥

∥

∥

X

∥

∥

∥

∥

E
=

∥

∥

∥

∥

idE(X) ⊗A
(

∑

k

xk ⊗ ek

)∥

∥

∥

∥

E(X)[ℓn
∞

]
≤ KG γ2(A) w1(x) .

Let us now prove (4.1). From (2.1) we know that

ι(A) ≤ KG γ2(A)

hence we conclude from (2.2)

‖ idE(X) ⊗A : E(X) ⊗ε ℓn
1 −→ E(X) ⊗π ℓn

∞‖ ≤ KG γ2(A) .

But since
‖ id : E(X) ⊗π ℓn

∞ −→ E(X)[ℓn
∞]‖ ≤ 1 ,

we obtain as desired (4.1). This completes the proof of (1).
It remains to prove (2): Note first that (1) and an easy closed graph argument

yield that the linear mapping

Φ : ℓunc
1 (E(X)) −→ E(X)[ℓ∞(N0 × N0)]

(xk)∞k=0  

(

∑

k

aikxk −
∑

k

ajkxk

)

(i,j)

is well-defined and bounded.
Our aim is to show that Φ has its values in the closed subspace E(X)[c0(N0×N0)].

By continuity it suffices to prove that, given a finite sequence x = (x0, . . . , xk, 0, . . .)
of functions in E(X) , the sequence Φx ∈ E(X)[c0(N0 × N0)] . Clearly, (xk)0≤k≤k0 ∈
E(X)[ℓ∞], and hence there are zk ∈ L∞(X) with ‖zk‖∞ ≤ 1 and f ∈ E satisfying
xk = zk f for all k. But then for all i, j

k0
∑

k=0

aikxk −
k0
∑

k=0

ajkxk =
k0
∑

k=0

(aik − ajk)xk =
( k0

∑

k=0

(aik − ajk)zk

)

f ,

and moreover

∥

∥

∥

∥

k0
∑

k=0

(aik − ajk)zk

∥

∥

∥

∥

∞
≤

k0
∑

k=0

|aik − ajk|‖zk‖∞ ≤
k0
∑

k=0

|aik − ajk| .

On the other hand, we have that each column of A viewed as a sequence converges
(

by (3.1) we know for each k that limj ajk = limj
1

ωk

∑∞
ℓ=k sjℓ = limj

(

1
ωk

∑∞
ℓ=0 sjℓ −

1
ωk

∑k−1
ℓ=0 sjℓ

)

= 1
ωk

)

. Hence,
(

∑

k aikxk −
∑

k ajkxk

)

(i,j)
is contained in E(X)[c0(N0 ×

N0)] .
As a consequence, for every unconditionally convergent series

∑

k xk in E(X) the

sequence (y(i,j)) =
(

∑

k aikxk −
∑

k ajkxk

)

(i,j)
in fact belongs to E(X)[c0(N0 ×N0)] ,

i.e., there is a factorization y(i,j) = z(i,j) f where (z(i,j)) is a zero sequence in L∞(X)

and f ∈ E. Clearly, this implies that the sequence
(

∑

k ajkxk

)

j
in E(X) is an

almost everywhere Cauchy sequence. This completes the proof.



We illustrate the preceding theorem by the following collection of results on sum-
mation of unconditionally convergent series

∑

k xk in vector-valued Banach function
spaces E(X).

Corollary 4.2. Let
∑

k xk be an unconditionally convergent series in a vector-valued
Banach function space E(X). Then

(1) supj

∥

∥

∥

∥

∑j
k=0

xk

log(k + 2)

∥

∥

∥

∥

X
∈ E

(2) supj

∥

∥

∥

∥

∑j
k=0

λk+1 − λk

λj+1

∑k
ℓ=0

xℓ

log log λℓ

∥

∥

∥

∥

X
∈ E for every strictly increasing, un-

bounded and positive sequence (λk) of scalars

(3) supj

∥

∥

∥

∥

∑j
k=0

Ar−1
j−k

Ar
j

∑k
ℓ=0

xℓ

log log ℓ

∥

∥

∥

∥

X
∈ E for every r > 0

(4) supj

∥

∥

∥

∥

∑∞
k=0 ρk

j

xk

log log k

∥

∥

∥

∥

X
∈ E for every positive strictly increasing sequence

(ρj) converging to 1.

Moreover, in each of these cases

∞
∑

k=0

xk

ωk
= lim

j

∞
∑

k=0

sjk

k
∑

ℓ=0

xℓ

ωℓ
µ − a.e. ,

where the summation method S is either given by the identity, Rieszλ, Cesaror, or
Abelρ matrix, and ω is the related Weyl sequence from (1) up to (4).

Let us give some references for this result whenever E = Lp(µ) and X = K:
In this case the origin of 4.2 (1) is in the article of Kwapien and Pelczynski [9]
where a slightly weaker result is shown, and its final form is due to Bennett [2]
and independently Maurey-Nahoum [11]. The result was then reproved by Orno
in [15] with a method related to ours. But we do not see how the method in
Orno should be modified in order to yield (1) in the above more general (vector-
valued) formulation. Statement (2) for E = Lp(µ) and X = K is again a result
due to Bennett from [2], and it is important to remark that he gives a in a sense
elementary and direct argument. The statements (3) and (4) are new, even for
E(X) = Lp(µ). Recall that the underlying models for all four results are well-
known almost everywhere coefficient tests for orthogonal series due to Kaczmarz [7],
Menchoff [12], [13], Rademacher [16], and Zygmund [18]; as already mentioned, the
required maximal inequality for orthonormal series needed for the proof of (1) is a
result of Kantorovitch [8], whereas for (2) up to (4) this inequality follows from a
careful inspection of the classical results (for details see again [5, Chapter 1]).
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[7] S. Kaczmarz, Über die Summierbarkeit der Orthogonalreihen, Math. Zeitschrift
26 (1927), 99-105.

[8] L. Kantorovitch, Some theorems on the almost everywhere convergence, Dokl.
Akad. Nauk USSR, 14 (1937), 537-540.
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