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Abstract

Projective planes Π of order up to q3 with a collineation group G

acting 2-transitively on a subplane of order q are investigated.

1 Introduction

A classical problem in finite geometry is the investigation of a projective plane Π of
order n admitting a collineation group G which acts 2-transitively on the points of
a subplane Π0 of Π. In 1959 Ostrom and Wagner [20] show that Π is Desarguesian
and PSL(3, n) ≤ G when Π0 = Π. Several years later, in 1976, Lüneburg [17]
proves that either Π is a Desarguesian plane or a Generalized Hughes plane when
Π0 is a Baer subplane of Π. In 1985, Dempwolff [5] proves that any projective plane
Π of order n with a collineation group G ∼= PSL(3, 3

√
n) contains a Desarguesian

subplane Π0 of order 3
√

n on which G acts faithfully in its natural permutation
representation. Furthermore, in that paper, Dempwolff emphasizes the difficulty to
obtain a characterization of Π, even though he gives a complete description of the
G-orbits on the points and on the lines of Π. He also shows that examples occur in
the Desarguesian planes and in the Hering-Figueroa planes [7], [11].

The aim of this paper is to show that any projective plane Π of order n with a
collineation group G acting 2-transitively on the points of a subplane Π0 of Π order
q, with n ≤ q3, has actually order n = q, or q2 or q3. Moreover, the structure of G
is determined.
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2 Preliminaries

We shall use standard notation. For what concerns finite groups the reader is referred
to [8] and [13]. The necessary background about finite projective planes may be
found in [12].

Let Π = (P ,L) be a finite projective plane of order n. If H is a collineation group
of Π and P ∈ P (l ∈ L), we denote by H(P ) (by H(l)) the subgroup of H consisting
of perspectivities with the centre P (the axis l). Also, H(P, l) = H(P ) ∩ H(l).
Furthermore, we denote by H(P, P ) (by H(l, l)) the subgroup of H consisting of
elations with the centre P (the axis l).

Now, we give some numerical results which will be useful in the following.

Lemma 1. Let pm be a prime power such that p is odd and pm ≡ 1 mod 3, and let
n be an integer such that n ≤ p3m. Then the Diophantine equation

(n− pm)(n− p2m) =
2

3
p2m(p3m − 1)(pm + 1) (1)

has no positive solutions.

Proof. Set n = phα with (p, α) = 1 and h ≥ 0. Note that p2m ‖ (n− pm)(n− p2m),
since p is odd and pm ≡ 1 mod 3. Thus 1 ≤ h ≤ m and hence (n− pm)(n− p2m) =
p2h(α − pm−h)(α − p2m−h). Then h = m and n = pmα, again by the fact that
p2m ‖ (n− pm)(n− p2m). Then (1) becomes

(α− 1)(α− pm) =
2

3
(p2m + pm + 1)(p2m − 1). (2)

Note that (α − 1, α − pm) | pm − 1. Furthermore (pm − 1, p2m + pm + 1) = 3, since
pm ≡ 1 mod 3. Actually, p2m + pm + 1 ≡ 3 mod 9 by [10], Lemma 3.9, and hence

(pm−1, p2m+pm+1
3

) = 1. Thus, either p2m+pm+1
3

| α−1 or p2m+pm+1
3

| α−pm. Assume

that p2m+pm+1
3

| α − 1. Then α = k p2m+pm+1
3

+ 1 for some integer k ≥ 1. Note that
k < 3, since n ≤ p3m. Then (2) becomes

k(k
p2m + pm + 1

3
+ 1− pm) = 2(p2m − 1).

At this point it is easily checked that the previous equality has no positive integer
solutions for k ∈ {1, 2}. Hence, we may assume that p2m+pm+1

3
| α − pm. Then

α = sp2m+pm+1
3

+ pm for some integer s ≥ 1. Also s < 3, since n ≤ p3m. Then (2)
becomes

s(s
p2m + pm + 1

3
+ pm − 1) = 2(p2m − 1).

Now, elementary calculations show that the previous equality has no positive integer
solutions for s ∈ {1, 2}. This completes the proof. �

Lemma 2. Let p be a prime and λ ∈ {1, 2, 3}. If n = p3m − β with 0 ≤ β < p3m,
then the positive solutions of the Diophantine equation

(n− pm)(n− p2m) =
λ

3
p3m(pm − 1)2(pm + 1) (3)

are (n, β, λ) = (pm, 0, 3), (6, 2, 1) and (105, 20, 2).
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Proof. If λ = 3, then (n, β, λ) = (pm, 0, 3) is clearly the unique integer solution.
Hence, we may assume that λ ∈ {1, 2}. By substituting n = p3m−β in (3), we have

3β2 − 3pm(pm − 1)(2pm + 1)β + (3− λ)p3m(pm − 1)2(pm + 1) = 0. (4)

Since β must be a positive integer, then the discriminant

∆ = p2m(pm − 1)2 (9 + 12λpm(pm + 1))

must be a square. In particular 9 + 12λpm(pm + 1) must be a square. Thus either
p = 3 or p ≡ 2 mod 3, since 3 | 9+12λpm(pm +1). Therefore y2 = 1+4λ

3
pm(pm +1)

for some positive integer y, with p = 3 or p ≡ 2 mod 3. Hence(
y − 1

2

)
·
(

y + 1

2

)
=

λ

3
pm(pm + 1) (5)

with
(

y−1
2

, y+1
2

)
= 1 and p = 3 or p ≡ 2 mod 3. Assume that p ≡ 2 mod 3. If

(p, λ) = 1, then either pm | y−1
2

or pm | y+1
2

. Assume that pm | y−1
2

. Then y−1
2

= j
pm and y+1

2
= jpm + 1 for some integer j ≥ 1. Now, by substituting these values

in (5) and dividing by pm, we obtain j(jpm + 1) = λ
3
(pm + 1). This is impossible,

since j ≥ 1 > λ
3

as λ ∈ {1, 2}. Assume that pm | y+1
2

. Then y+1
2

= pmj and
y−1
2

= jpm − 1, and again by substituting these values in (5) and dividing by pm,
we obtain j(jpm − 1) = λ

3
(pm + 1) with unique solutions (j, λ, pm) = (1, 1, 2) and

(1, 2, 5). By substituting the values found for (j, λ, pm) in (4), we obtain β = 2 and
β = 20, respectively, since 0 ≤ β < p3m. Thus n = 6 and 105, respectively. Assume
that (p, λ) > 1. Then p = λ = 2. In particular m is odd, since 2m ≡ 2 mod 3.
Then either 2m+1 | y−1

2
or 2m+1 | y+1

2
. Assume that 2m+1 | y−1

2
. Then y−1

2
= s2m+1

and y+1
2

= s2m+1 + 1 for some positive integer s. Now, by substituting these values
in (5) and dividing by 2m+1, we have s(s2m+1 + 1) = 1

3
(2m + 1). A contradiction.

Hence, 2m+1 | y+1
2

. Then y+1
2

= t2m+1 and y+1
2

= t2m+1 − 1 for some positive
integer t. Now, by substituting these values in (5) and dividing by 2m+1, we have
t(t2m+1 − 1) = 1

3
(2m + 1). A contradiction.

Assume that p = 3. Then either 3m−1 | y−1
2

or 3m−1 | y+1
2

. Assume that 3m−1 |
y−1
2

. Then k(k3m−1 + 1) = λ(3m + 1) for some positive integer k. A contradiction,
since λ ∈ {1, 2}. So, 3m−1 | y+1

2
. Arguing as above, we obtain h(h3m−1 − 1) =

λ(3m + 1) for some positive integer h. A contradiction, since λ ∈ {1, 2}. Hence the
assertion. �

3 The background

In this section we introduce the background for the problem investigated and we
state the group-theoretical theorems on which relies the proof of the result exposed
in this paper.

Lemma 3. Let Π be a finite projective plane with a collineation group G which fixes
a projective subplane of Π and induces a doubly transitive group on the points of Π0.
Then Π0 is Desarguesian and the group induced by G on Π0 contains a subgroup
isomorphic to PSL(3, q).

Proof. Ostrom-Wagner [20]. �
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As it is well known o(Π) ≥ q2 when Π0 is a proper subplane of Π. Thus q2 ≤
o(Π) ≤ q3 under our assumption. The only known cases are when o(Π) = q2 or
o(Π) = q3. The following result characterizes the case when o(Π) = q2.

Lemma 4. Let Π be a finite projective plane of order q2 with a collineation group
G that fixes a projective Baer subplane Π0 and induces a doubly transitive group on
Π0. Then one of the following occurs:

1. Π is a Desarguesian or a generalized Hughes plane and G contains a subgroup
isomorphic to PSL(3, q);

2. Π is the generalized Hughes plane over the exceptional nearfield of order 72

and G contains a subgroup isomorphic to SL(3, 7).

Proof. Lüneburg [17]. �

The next result deals with the case o(Π) = q3. Let M be the set of points of
Π − Π0 which lie in a secant to Π0, and let A be the set of point of Π − Π0 which
do not lie in any secant to Π0.

Lemma 5. Let Π be a finite projective plane of order q3 with a collineation group
G ∼= PSL(3, q). Then Π has a projective subplane Π0 of order q which is invariant
under G and G acts faithfully on Π0. Moreover, the following occur:

1. G is transitive on the points and lines of Π0, M and A.

2. Let (M, m) be a flag in M. Then |GM | = |Gm| = q2(q − 1)/j, with j =
(3, q − 1). Moreover, GM (Gm) has a normal elementary abelian subgroup A
(B) of order q2 and GM (Gm) is the semidirect product of A (B) with GM,m.
The group GM,m is cyclic and GM (Gm) is a Frobenius group.

3. If P is a point (or a line) in A, then GP is cyclic of order (q2 + q +1)/j. Any
non-trivial element in GP fixes exactly a triangle in Π which lies in A.

4. G is flag-transitive on M, and G is flag-transitive on A×M and on M×A
if j = 1.

Proof. Dempwolff [5], Theorems A and B. �

Unlike the Lemma 4, this result does not seem to determine the plane Π, even
though examples occur in the Desarguesian or the Hering-Figueroa planes (e.g. see
[7] and [11]). Indeed, Dempwolff remarked in his paper that the group GM,m un-
der (3) of the previous Lemma is too far from being a group of homologies of a
Desarguesian or a Hering-Figueroa plane.

Now, we expose some results on the subgroups of PSL(3, q) which will be used
extensively in the following.
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Lemma 6. Let M be a maximal subgroup of PSL(3, 2h). Then M is isomorphic to
one of the following groups:

1. A : PSL(2, 2h), where A is elementary abelian of order q2;

2. B.S3 , where B is diagonal group of order (2h−1)2

j
and j = (3, 2h − 1);

3. Z 22h+2h+1
j

.Z3, where j = (3, 2h − 1);

4. PSL(3, 2m), where h = tm and t is prime;

5. A group containing PSL(3, 2m) as normal subgroup of index 3, where h = 3m
and m is even;

6. PSU(3, 2m), where h = 2m;

7. A group containing PSU(3, 2m) as normal subgroup of index 3, where h = 6m
and m is odd;

Proof. Hartley [9]. �

Lemma 7. Let M be a non-trivial subgroup of PSL(3, ph). If M has no non-trivial
normal elementary abelian subgroups, then M is isomorphic to one of the following
groups:

1. PSL(3, pm), where m | h;

2. PSU(3, pm), where 2m | m ;

3. A group containing PSL(3, pm) as normal subgroup of index 3, when pm ≡ 1
mod 3 and 3m | h;

4. A group containing PSU(3, pm) as normal subgroup of index 3, when pm ≡ 2
mod 3 and 6m | h;

5. PSL(2, pm) or PGL(2, pm), where m | h and pm 6= 3;

6. PSL(2, 5) when ph ≡ ±1 mod 10;

7. PSL(2, 7) when p3h ≡ 1 mod 7;

8. A6 or A7, or a group containing A6 with index 2, with p = 5 and h even;

9. A6, when ph ≡ 1 mod 30 or ph ≡ 19 mod 30.

Moreover, PSL(3, ph) has exactly one subgroup G of each type mentioned above
up to conjugacy in GL(3, ph)/Z(SL(3, ph)).

Proof. Bloom [3], Theorem 1.1. �
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Lemma 8. Let G be a subgroup of PSL(3, ph) not satisfying the hypothesis of
Lemma 7. Then the following occurs:

1. G has a cyclic normal subgroup H such that [G : H] ≤ 3 and (|H| , p) = 1;

2. G has diagonal normal subgroup R such that G/R ≤ S3;

3. The inverse image G∗ of G in SL(3, ph) has a normal elementary abelian p-
subgroup F such that G∗/F ≤ GL(2, ph). The case F = 〈1〉 is also included;

4. ph ≡ 1 mod 9 and G has a normal subgroup T , abelian of type (3, 3), with
G/T ≤ SL(2, 3). All subgroups of SL(2, 3) do occur in this context;

5. ph ≡ 1 mod 3, ph 6≡ 1 mod 9 and G has a normal subgroup Y , abelian of
type (3, 3), with G/Y ≤ Q8. All subgroups of Q8 do occur in this context.

Proof. Bloom [3], Theorem 7.1. and Theorem 3.4. �

4 The faithful action

Throughout this section we assume that G acts faithfully on Π0. Hence, we may
assume that G is minimal and G ∼= PSL(3, q). The proof relies on combinatorics
and a detailed knowledge of the structure of the group PSL(3, q). A preliminary
step is to prove that the involutions in G are perspectivities. We show this fact
for q even in Lemma 9, using the Cauchy-Frobenius Lemma, and for q is odd in
Lemma 10 and in Proposition 11, using the list of subgroup of PSL(2, q). Finally
in Theorem 12, we show that if o(Π) ≤ q3 then Π must have order q, q2 or q3. Here
the list of the subgroups of PSL(3, q) is extensively used.

Lemma 9. Let Π be a finite projective plane of order n and let G ∼= PSL(3, q) be
a collineation group of Π with a point-orbit Π0

∼= PG(2, q). If n ≤ q3 and q is even,
then each involution in G is a perspectivity of Π.

Proof. Assume that q is even. Let r be a secant of Π0 and let T be the elementary
abelian 2-group of order q2 inducing an elation group of axis r on Π0. Then either
T is a Baer collineation group or T = T (r, r) on Π, since all the elements in T lie
in a unique conjugate class under G. Assume that T is a Baer collineation group of
Π. Then each non trivial element in T fixes exactly

√
n + 1 lines of [P ], where P

is any point of r ∩ Π0. Then q2 | [n + 1 + (q2 − 1)(
√

n + 1)] and hence q2 | n−
√

n.
Either q2 |

√
n or q2 |

√
n − 1, since q is a prime power. So q2 ≤

√
n in any case.

A contradiction, since n ≤ q3 by our assumption. Hence T = T (r, r) on Π, and the
assertion follows by the fact that there exists a unique conjugate class of involutions
in PSL(3, q). �

Lemma 10. Let Π be a finite projective plane of order n and let G ∼= PSL(3, q) be
a collineation group of Π with a point-orbit Π0

∼= PG(2, q). If n ≤ q3, q is odd and
q /∈ {5, 7, 9, 11, 19}, then each involution in G is a perspectivity of Π.
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Proof. Assume that q is odd and q /∈ {5, 7, 9, 11, 19}. Assume also that each involu-
tion in G is a Baer collineation of Π. Denote by α the involution in G represented
by the matrix diag(−1,−1, 1). Then α induces a (C, l)-homology on Π0. Let H be
the group consisting of the matrices diag(A, 1) with A ∈ SL(2, q). Then H ≤ CG(α)
and H acts on Fix(α) inducing H̄ ∼= PSL(2, q). In particular H̄ fixes l and acts
on l ∩Π0 in its natural 2-transitive permutation representation of degree q + 1. Set
C = l ∩ Fix(α) − Π0. Then |C| > 0 by [19], Corollary 5.2.(ii), since H̄ contains
Baer collineations and q /∈ {5, 9} by our assumption. Then |C| > 0 and n > q2.
Furthermore H̄ acts on C.

(A) There exists X ∈ C such that
∣∣∣XH̄

∣∣∣ > 1.

Assume that H̄ fixes C pointwise. Assume also that q ≡ 3 mod 4. Note that
the stabilizer in H̄ of a point on l ∩ Π0 has odd order, since it is isomorphic to
Eq.Z q−1

2
. Thus the points on l ∩ Fix(α) fixed by any involution in H̄ are exactly

those fixed lying in C. Set k = |C|. Clearly 0 < k <
√

n + 1. Assume that k ≥ 3.
Thus each involution in H̄ is a Baer collineation of Fix(α) and hence k = 4

√
n + 1,

since k <
√

n + 1. Let Y ∈ l ∩ Π0. Then H̄Y
∼= Eq.Z q−1

2
fixes Y and the k points

of C. Recall that α induces a (C, l)-homology on Π0. Therefore H̄Y fixes C and the
lines joining the k + 1 points of C ∪ {Y } with C. In particular H̄Y cannot contain
planar elements, since it fixes 4

√
n + 2 points on l ∩ Fix(α). Hence H̄Y must be

semiregular on AC ∩ Fix(α) − {A, C} for any A ∈ C ∪ {Y }. So, q(q−1)
2

|
√

n − 1.
Then (q, n) = (3, 16), since q2 < n ≤ q3 and q ≡ 3 mod 4 by our assumption. Then
H̄ ∼= PSL(2, 3) and Fix(α) ∼= PG(2, 4). A contradiction, since H̄ fixes l ∩ Fix(α)
and a point on it. Hence 0 < k ≤ 2. Assume that k = 1. Then C = {R}, where
R is the unique point of l ∩ Fix(α) fixed by H̄. Then all involutions in H̄ must
be elations with same axis s = RC and the same centre R, since H̄ fixes R, C
and l. Thus H̄ = H̄(R, s), since the involutions in H̄ generate H̄. A contradiction,
since H̄B1,B2

∼= Z q−1
2

with B1, B2 ∈ l ∩ Π0 and B1 6= B2. Thus k = 2. Then

C = {P, Q}, where P and Q are the unique points of l ∩ Fix(α) fixed by H̄. Then
there are no triangular configurations for commuting homologies in H̄, otherwise
one of them would have the axis coinciding with l ∩ Fix(α), while H̄ ∼= PSL(2, q)
acts not trivially on l ∩ Fix(α). Thus all involutions in H̄ must have the same
center and the same axis, since H̄ fixes the triangle {C, P, Q} pointwise. Thus
either H̄ = H̄(P, QC) or H̄ = H̄(Q,PC). A contradiction by the same argument as
above. Hence q ≡ 1 mod 4. Then k > 0 as k = |C| and C 6= ∅. Then H̄Y1,Y2

∼= Z q−1
2

has even order, for any Y1, Y2 ∈ l ∩ Π0 such that Y1 6= Y2. Therefore the points on
l∩Fix(α) fixed by any involution γ̄ in H̄Y1,Y2 are exactly those fixed lying in C plus
the points Y1, Y2. Then Fix(γ̄) is a Baer subplane of Fix(α) and 4

√
n + 1 = k + 2,

since k > 0. If k ≤ 2, then
√

n ≤ 9. Then either q >
√

n, since q ≡ 1 mod 4 and
q /∈ {5, 9}. A contradiction by [19], Theorem 1.1. Hence k ≥ 3. Let Ē be any Klein
subgroup of H̄ containing γ̄. Then the points of l ∩ Fix(α) fixed by Ē are exactly
those fixed lying in C, since the stabilizer in H̄ of a point on l ∩Π0 is isomorphic to
the Frobenius group Eq.Z q−1

2
. Thus Fix(Ē) is a Baer subplane of Fix(γ̄) and hence

8
√

n + 1 = k, since k ≥ 3. Then 4
√

n = 8
√

n + 2, since 4
√

n + 1 = k + 2. This yields√
n = 16, q = 13 and k = 3. A contradiction by [14], since H̄ contains a Frobenius

group of order 39 with a planar 13-element.

(B) Either H̄X = H̄ or H̄X
∼= Eq.Z q−1

θ
, 1 < θ < q−1

2
, θ even or H̄X

∼=
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PGL(2,
√

q) for q square.

By (A) there exists X ∈ C such that
∣∣∣XH̄

∣∣∣ > 1. Then

√
n + 1 ≥

∣∣∣XH̄
∣∣∣ + |l ∩ Π0| , (6)

since XH̄ ∪ (l ∩ Π0) ⊂ l ∩ Fix(α). By managing (6), we have

∣∣∣H̄X

∣∣∣ ≥ (
√

q + 1)(q + 1)

2
, (7)

since |l ∩ Π0| = q + 1,
∣∣∣XH̄

∣∣∣ = q(q2−1)

2|H̄X| and n ≤ q3. Now, we filter the list of the

proper subgroups of H̄ given in [13], Haupsatz II.8.27, with respect to (7):

(i). H̄X ≤ Dq±1. Then 2(q + 1) ≥ 2
∣∣∣H̄X

∣∣∣ ≥ (
√

q + 1)(q + 1) in any case. A
contradiction.

(ii). H̄X
∼= PSL(2, pm) with q = pmt and t ≥ 2. Then pm(p2m − 1) ≥ (ptm/2 +

1)(ptm + 1) by substituting in (7). So pm(p2m − 1) ≥ (pm + 1)(p2m + 1), since
t ≥ 2. A contradiction.

(iii). H̄X
∼= PGL(2, pm) with q = p2mt and t ≥ 1. Then 2pm(p2m − 1) ≥ (ptm +

1)(p2tm +1) by substituting in (7). Thus t = 1 and q is a square. Assume there
are at least two H̄-orbits on C with point-stabilizer isomorphic to PGL(2,

√
q).

Then
√

n + 1 ≥ 2
∣∣∣XH̄

∣∣∣ + |l ∩ Π0|. This yields
∣∣∣H̄X

∣∣∣ ≥ (
√

q + 1)(q + 1) arguing

as above. A contradiction, since H̄X
∼= PGL(2,

√
q).

(iv). The cases A4 ≤ H̄X ≤ S4 or H̄X
∼= A5 cannot occur, since q /∈ {5, 7, 9, 11, 19}.

(v). H̄X ≤ Epm .Z pm−1
2

. Then H̄X
∼= Epf .K, with f > 1 and 〈1〉 < K ≤ Z pm−1

2
by

(7). Then |K| | pm − 1. Furthermore |K| | pf − 1, since HX is a Frobenius
group, as f > 1 and K 6= 〈1〉. Then |K| | pe−1, where pe−1 = (pm−1, pf−1)
and e = (m, f). Set m = ae and f = be, then a ≥ b ≥ 1, and H̄X

∼= Epbe .Z pe−1
θ

with θ ≥ 1. By (7), we have

pbe p
e − 1

θ
≥

(
√

q + 1)(q + 1)

2
≥ (pae/2 + 1)(pae + 1)

2
.

This yields a = b. That is m = f = e and hence H̄X
∼= Eq.Z q−1

θ
, with θ even.

(C) q is a square and H̄ has exactly one orbit on C with the stabilizer
of a point isomorphic to PGL(2,

√
q).

Assume that q ≡ 3 mod 4. As a consequence of the list given above, the stabi-
lizer in H̄ of a point on l∩Fix(α) is either the whole group H̄ or it is isomorphic to
Eq.Z q−1

θ
, θ even. Since Eq.Z q−1

θ
has odd order, then the points of l ∩ Fix(α) fixed

by any involution in H̄ coincide with those fixed by H̄. Let h be the number of
these points. A similar argument to that used to rule out the case where H̄ fixes
C pointwise and q ≡ 3 mod 4 (part (A)), with h in the role of k, still works and
we may rule out this case. Hence, we may assume that q ≡ 1 mod 4. Assume also
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that H̄ does not contain any stabilizer of a point isomorphic to PGL(2,
√

q). Then
either H̄X = H̄ or H̄X

∼= Eq.Z q−1
θ

, θ even, by the list of the admissible subgroups of

H̄ given above. Furthermore, two distinct commuting involutions have no common
fixed points on l ∩ Fix(α), other than the h ones fixed by the whole H̄, since the
point-stabilizer in H̄ elsewhere on l ∩ Fix(α) is isomorphic to Eq.Z q−1

θ
, with q odd

and θ even. Assume that h ≥ 3. Then each involution in H̄ is a Baer collineation of
Fix(α). Note that for any two distinct commuting involutions in H̄, each induces a
Baer collineation on the subplane fixed by the other one in Fix(α), as h ≥ 3. Thus
h = 8

√
n + 1.

Let Ū ≤ H̄ such that Ū ∼= Dq+1. Then Ū contains exactly q+1
2

distinct invo-
lutions, since q ≡ 1 mod 4. Let σ̄ and ρ̄ be two distinct involutions in Ū . If σ̄
and ρ̄ fixes a point O on l ∩ Fix(α), then

〈
σ̄, δ̄

〉
≤ H̄O ∩ Ū . Thus H̄O = H̄, since∣∣∣〈σ̄, δ̄

〉∣∣∣ > 2 and
∣∣∣Eq.Z q−1

θ
∩ Ū

∣∣∣ ≤ 2. Hence σ̄ and ρ̄ have no common fixed points

on l ∩ Fix(α), other than the h = 8
√

n + 1 fixed by the whole group H̄. Hence each
involution in Ū fixes exactly 4

√
n− 8

√
n points on l ∩ Fix(α) which are not fixed by

any other involution in Ū . Therefore

( 4
√

n− 8
√

n)
q + 1

2
≤
√

n− 8
√

n, (8)

since Ū contains exactly q+1
2

distinct involutions. By managing (8), we have that
q−1
2
≤ 4
√

n+ 8
√

n. Hence q−1
2
≤ q3/4+q3/8, since n ≤ q3. Thus q ∈ {13, 17, 25, 29, 37, 41},

since q is odd, q ≡ 1 mod 4 and q > 9. Actually, (q, n) = (13, 28), (52, 38), (41, 48),
since q−1

2
≤ 4

√
n + 8

√
n with 8

√
n integer, n > q2 and 8

√
n ≥ 2. Also the case

(q, n) = (13, 28) cannot occur by (A), since H̄ fixes C pointwise in this case. As-
sume that (q, n) = (52, 38). In this case l ∩ Fix(α) consists of either 3 H̄-orbits of
length 26 and h = 4 fixed points by H̄, or 1 H̄-orbit of length 26, 1 H̄-orbit of length
52 and h = 4 fixed points by H̄. At this point it is a plain to see that any element of
order 5 must fix a subplane of order 6 in any case, since

√
n+1 ≡ 2 mod 5 and since

it fixes exactly 7 points on l∩Fix(α). A contradiction by [12], Theorem 3.6. Hence
(q, n) = (41, 48). Let S̄ ∼= Z41. Since

√
n + 1 ≡ 11 mod 41 and n ≡ 18 mod 41,

then Fix(S̄) fixes a subplane Fix(α) of order at least 10. Actually, o(Fix(S̄)) = 10
by [12], Theorem 3.7. Let T̄ ≤ NH̄(S̄) such that T̄ ∼= Z2. Then T̄ acts trivially
on Fix(S̄) by [12], Theorem 13.18. Hence Fix(S̄) ( Fix(T̄ ), since S̄ ∼= Z41 and
T̄ ∼= Z2 fix exactly 1 and 2 points on l ∩ Π0, respectively. Thus o(Fix(T̄ ) ≥ 102

and o(Fix(α)) ≥ 104 by [12], Theorem 3.7, since T̄ acts not trivially on Fix(α).
A contradiction, since o(Fix(α)) = 44. Hence h ∈ {0, 1, 2}. Arguing as above it
is easily seen that ( 4

√
n + 1 − h) q+1

2
≤
√

n + 1 − h with h ∈ {0, 1, 2}, since each
involution in H̄ fixes exactly 2 points on Π0, other than the h fixed by the whole
H̄. Elementary calculations show that (n, q, h) = (68, 13, 2) or (n, q, h) = (88, 17, 2),
since n ≤ q3, q ≡ 1 mod 4 and q /∈ {5, 9}. In particular h = 2 in any admissible
case. Thus, let P1 and P2 be the unique points of l ∩ Fix(α) fixed by H̄. Then the
stabilizer in H̄ of any point on l ∩ Fix(α)− {P1, P2} is a subgroup of Eq.Z q−1

2
. As

a consequence, each H̄-orbit on l ∩ Fix(α)− {P1, P2} has length divisible by q + 1.
So q + 1 | (

√
n + 1)− h. A contradiction. At this point the assertion (C) follows by

the final remark in (iii).
(D) The final contradiction.
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Let B be any point of C such that H̄B
∼= PGL(2,

√
q). By (B) and (C) we

have that either H̄X = H̄ or H̄X
∼= Eq.Z q−1

θ
, θ even, for any X ∈ C − BH̄ , and

H̄X
∼= PGL(2,

√
q) for any X ∈ BH̄ . Note that H̄ contains a unique conjugate class

of involutions and each of them fixes exactly
√

q points on BH̄ by [19], Table III,
lines 9a and 9b. Furthermore, H̄ contains two conjugate classes of Klein subgroups.
In particular each subgroup in the first conjugate class fixes exactly 1 point on BH̄

and each subgroup in the second conjugate class fixes exactly 3 points on BH̄ (e.g.
see [19], Table III, lines 9a and 9b). Let τ̄ be any involution in H̄ and let be Ē1

and Ē2 the representative of the two conjugate classes of Klein subgroups of H̄
containing τ̄ . For any subgroup J̄ of H̄, we set FixX(J̄) the number of points fixed
by J̄ in the XH̄ . The following table gives a description of the points fixed by τ̄ , Ē1

and Ē2 in each admissible H̄-orbit on l ∩ Fix(α):

Table I

Type H̄X

[
H̄ : H̄X

]
FixX(τ̄) FixX(Ē1) FixX(Ē2)

1 H̄ 1 1 1 1

2 Eq.Z q−1
θ

, q−1
θ

even θ(q + 1)/2 θ 0 0

3 Eq.Z q−1
θ

, q−1
θ

odd θ(q + 1)/2 0 0 0

4 PGL(2,
√

q)
√

q(q+1)

2

√
q 1 3

By the Table I, we have that Fix(τ̄) is a Baer subplane of Fix(α). Recall that h is
the number of points fixed by H̄ on l ∩ Fix(α). Assume that h ≥ 2. Then Fix(Ē1)
and Fix(Ē2) are Baer subplanes of Fix(τ̄). Hence the order of Fix(Ē1) and Fix(Ē2)
is 8
√

n. By Table I, we have that 8
√

n + 1 = h + 1 for Ē1 and 8
√

n + 1 = h + 3 for Ē2

at the same time. A contradiction. Hence h ≤ 1. However, Fix(Ē2) is still a Baer
subplane of Fix(τ̄) as 8

√
n + 1 = h + 3. Thus (h, 8

√
n) = (1, 3) or (0, 2), since h ≤ 1.

Note that each non trivial H̄-orbit on l ∩ Fix(α) has length a multiple of (q+1)
2

by

Table I. Hence, (q+1)
2

|
√

n + 1− h. Now by substituting in the previous relation the
values (h, 8

√
n) = (1, 3) or (0, 2), we have that either q+1

2
| 81 or q+1

2
| 17, respectively.

A contradiction in any case, since q is a prime power with even exponent. �

Proposition 11. Let Π be a finite projective plane of order n and let G ∼= PSL(3, q)
be a collineation group of Π with a point-orbit Π0

∼= PG(2, q). If n ≤ q3, then each
involution in G is a perspectivity of Π.

Proof. Assume that G contains a Baer collineation of Π. Then each involution is a
Baer collineation of Π, since G contains a unique conjugate class of involutions by
[6]. Then q ∈ {5, 7, 9, 11, 19} by Lemma 9 and Lemma 10. Let α, H̄ ∼= PSL(2, q)
and C be defined as in Lemma 10.

Assume that q = 5. Then 6 ≤
√

n ≤ 11, since n ≤ 53. If H̄ ∼= PSL(2, 5) contains
involutions which are Baer collineations of Fix(α), then

√
n = 9. Nevertheless this

case cannot occur by [2],Theorem 1, since l ∩ Π0 is a 2-transitive H̄-orbit of length
6 on l ∩ Fix(α). Thus each involution in H̄ is a perspectivity of Fix(α). As a
consequence, H̄ does not fix any point of C, since any involution fixes two points on
l ∩ Π0. Hence C is union of non-trivial H̄-orbits. Thus

√
n ≥ 10, since the minimal

permutation representation of H̄ ∼= PSL(2, 5) is 5. Actually
√

n = 10 cannot occur
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by [12], Theorem 3.6. Hence
√

n = 11 and PSL(2, 5) acts in its natural 2-transitive
permutation representation of degree 6 on C. Then γ̄ must be a Baer collineation of
Fix(α), since γ̄ fixes exactly 4 on l ∩ Fix(α). A contradiction.

Assume that q = 7. We may also assume that H̄Z
∼= S4 for some point Z in C,

otherwise we obtain a contradiction be the same argument of parts (A) and (C) of

Lemma 10. Hence
√

n ≥ 14, since Π0∪ZH̄ ⊆ l∩Fix(α) and
∣∣∣ZH̄

∣∣∣ = 7. Furthermore,

it is easily seen that each involution in H̄ fixes exactly 3 points on Y H̄ . Therefore
each involution in H̄ is a Baer collineation of Fix(α) and hence 4

√
n ≥ 2. On the

other hand
√

n ≤ 18, as n ≤ 73. All these informations yield n = 28. So Π has
exactly 65793 points. Assume that Π consists of non trivial G-orbits of points. Since
each G-orbit is multiple of the index of some maximal subgroup of G ∼= PSL(3, 7)
and since the indices of the maximal subgroups of G are 57, 5586, 26068, 32928 by
[4], then there must be a partition of the number 65793 restricted to the numbers
57, 5586, 26068, 32928. A contradiction. Hence G fixes a point P ∈ Π − Π0.
Since 57 is the unique primitive permutation representation of G which is less than
n + 1 = 28 + 1, and since n + 1 ≡ 29 mod 57, we have that G fixes a subplane of
Π of order at least 28. So, n ≥ 282 by [12], Theorem 3.7. A contradiction, since
n ≤ 73.

Assume that q = 9. Then 10 <
√

n ≤ 27, since n ≤ 93. Assume that H̄Y
∼= S4 for

some point Y in C. Then
∣∣∣Y H̄

∣∣∣ = 15. Hence
√

n ≥ 24, since (l∩Π0)∪Y H̄ ⊆ l∩Fix(α).

Clearly each involution in H̄ fixes exactly 2 points on l ∩ Π0 and 3 points on Y H̄ .
So, each involution in H̄ induces a Baer collineation on Fix(α) and 4

√
n ≥ 4. Thus√

n = 25, since 24 <
√

n ≤ 27. Then l ∩ Fix(α) consists of the following H̄-
orbits: l ∩ Π0 of length 10, Y H̄ of length 15 and a point R fixed by H̄. Pick
ρ̄ ∈ H̄ such that o(ρ̄) = 4. Elementary calculations show that ρ̄ fixes 2 points
on l ∩ Π0, 1 points on Y H̄ and R. Hence ρ̄ fixes exactly 4 points on l ∩ Fix(α).
Furthermore, ρ̄2 fixes 2 points on l ∩ Π0, 3 points on Y H̄ and R. Thus ρ̄2 is a Baer
collineation of Fix(α). Moreover, ρ̄ induces a Baer collineation on Fix(ρ̄2), since
ρ̄ fixes exactly 4 points on l ∩ Fix(ρ̄2) and Fix(ρ̄) ( Fix(ρ̄2). A contradiction,
since o(Fix(ρ̄2)) = 5. Hence, we may assume that H̄Y

∼= A5 for some point Y in C.

Thus
∣∣∣Y H̄

∣∣∣ = 6. Hence
√

n ≥ 15, since (l ∩ Π0) ∪ Y H̄ ⊆ l ∩ Fix(α). Clearly, each

involution in H̄ fixes exactly 2 points on l ∩ Π0 and at least 2 points on Y H̄ . So,
each involution in H̄ induces a Baer collineation on Fix(α) and 4

√
n ≥ 3. Therefore,

either
√

n = 16 or
√

n = 25, since 10 <
√

n ≤ 27. Assume that n = 16. Set

{F} = C − Y H̄ . Let S̄ be a Sylow 2-subgroup of H̄. Then S =
〈
ϕ̄, β̄

〉
with

ϕ̄4 = 1, β̄2 = 1 and ϕ̄β̄ = ϕ̄−1. Note that |Fix(ϕ̄) ∩ l| = 3, |Fix(ϕ̄2) ∩ l| = 5

and
∣∣∣Fix(β̄) ∩ l

∣∣∣ = 5, since l = (l ∩ Π0) ∪ Y H̄ ∪ {F}, and since H̄ ∼= PSL(2, 9)
acts in its 2-transitive permutation representations of degree 10 and 6 on l ∩ Π0

and on Y H̄ , respectively. Furthermore,
∣∣∣Fix(ϕ̄2) ∩ Fix(β̄) ∩ l

∣∣∣ = 3. This yields

Fix(ϕ̄2) ∼= Fix(β) ∼= PG(2, 4) and Fix(ϕ̄) ∼= PG(2, 2) with Fix(ϕ̄) ⊂ Fix(ϕ̄2).
Moreover, Fix(ϕ̄2)∩Fix(β̄) ∼= PG(2, 2) and Fix(ϕ̄)∩Fix(β̄) consists of 3 collinear

points of Fix(ϕ̄2) including F . Thus
∣∣∣Fix(ϕ̄2)− (Fix(ϕ̄) ∪ Fix(β̄) ∪ l)

∣∣∣ = 10. Let

Ū ≤ H̄ such that Ū ∼= E9. Is is easily seen that Fix(Ū) fixes exactly 2 points on
l, since the γ̄ = (123)(456) lies in Ū and γ̄ is f.p.f. on Y H̄ . Thus Fix(Ū) cannot
be a subplane of Π. Then there exists a line r of Π such that Fix(Ū) − l ⊂ r. In
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particular Fix(H̄) ⊂ Fix(Ū) and
∣∣∣Fix(Ū) ∩ Fix(ϕ̄)− l

∣∣∣ ≤ 3. Hence, there are at

least 2 points of Π− l lying in Fix(α)− l, say X1 and X2, such that H̄X1
∼= Z2 and

H̄X2
∼= Z4, since Fix(H̄) ⊂ Fix(Ū), since Fix(Ū) − l ⊂ r, since Fix(ϕ̄) ∩ Fix(β̄)

consists of 3 collinear points of Fix(ϕ̄2) including F , and since the are no proper
subgroups of H̄ of order divisible by 20. Then |Π− l| ≥ 270, since XH̄

1 ∪XH̄
2 ⊂ Π− l

with
∣∣∣XG

1

∣∣∣ = 180 and
∣∣∣XH̄

2

∣∣∣ = 90. A contradiction, since
√

n = 16. Hence
√

n = 25.

It is easily seen that any involution ζ̄ in H̄ fixes 2 points on l ∩ Π0 and 2 points on
Y H̄ . Thus ζ̄ is a Baer collineation of Π and o(Fix(ζ̄)) = 5. So ζ̄ must fix exactly

2 points on C − Y H̄ and
∣∣∣C − Y H̄

∣∣∣ = 10. This forces H̄ ∼= PSL(2, 9) to act in its

2-transitive permutation representation of degree 10 on C − Y H̄ . Let ρ̄ and ρ̄2 be
defined as above. Clearly ρ̄ and ρ̄2 fixes the same point on l ∩ Fix(α) − Y H̄ , since
this set consists of two 2-transitive H̄-orbits both of length 10. Nevertheless, ρ̄ is
f.p.f. on Y H̄ while ρ̄2 fixes 2 points on Y H̄ . So, we may apply the above argument to
rule out this case. As in Lemma 10, part (C), h denotes the number of points fixed
by H̄ in C and hence on l ∩ Fix(α). Now, we assume that H̄ fixes at least a point
on l ∩ Fix(α). Thus h > 0. At this point may use the similar argument to that of
parts (A) and (C) of Lemma 10 and we may rule out this case, since there are not
H̄-orbits on C with that point-stabilizer isomorphic either to S4 or to A5. Hence
h = 0. Then H̄M

∼= E9.Z4 for any M ∈ C. Then each H̄-orbit on C has length 10
and hence

√
n + 1 = 10t, since |l ∩ Π0| = 10. Then

√
n = 19, since n ≤ 93. Hence

H̄ acts in its 2-transitive permutation representation of degree 10 on C. Then any
involution is a Baer collineation of Fix(α), since it fixes exactly 2 points on l ∩ Π0

and 2 points on C. A contradiction, since
√

n = 19.

Assume that q = 11. We may also assume that H̄P
∼= A5 for some point P in

C, otherwise we obtain a contradiction be the same argument of parts (A) and (C)

of Lemma 10. Thus
∣∣∣P H̄

∣∣∣ = 11. Hence
√

n ≥ 22, since (l ∩ Π0) ∪ P H̄ ⊆ l ∩ Fix(α).

Furthermore, it is easily seen that each involution in H̄ fixes exactly 3 points on P H̄ .
Therefore each involution in H̄ is a Baer collineation of Fix(α) and hence 4

√
n ≥ 2.

On the other hand, we have that
√

n ≤ 36 as n ≤ 113. All these informations yield
either n = 54 or n = 64. Assume that the former occurs. Hence H̄ fixes C − P H̄

pointwise, since
∣∣∣C − P H̄

∣∣∣ = 3. Let C̄ ≤ H̄ such that C̄ ∼= Z11. Then C̄ fixes

exactly 4 points on l ∩ Fix(α), since C̄ fixes C − P H̄ pointwise, |l ∩ Π0| = 12 and∣∣∣P H̄
∣∣∣ = 11. In particular C̄ fixes a subplane of Π of order 3. Now, let D̄ ≤ NH̄(C̄)

such that D̄ ∼= Z5. Clearly D̄ fixes l ∩ Fix(C̄) pointwise. Nevertheless D̄ cannot
be a homology group, since o(Fix(C̄)) = 3. Thus D̄ acts trivially on Fix(C̄).
Actually Fix(C̄) ( Fix(D̄), since C̄ and D̄ fix exactly 1 and 2 points on l ∩ Π0,
respectively. So Fix(C̄) ( Fix(D̄) ( Fix(α). A contradiction by [12], Theorem
3.7, since o(Fix(C̄)) = 3 and o(Fix(α)) = 52. Hence n = 64. Then any involution
of H̄ fixes a subplane of order 6. A contradiction by [12], Theorem 3.6.

Assume that q = 19. We may also assume that H̄Q
∼= A5 for some point Q in

C, otherwise we obtain a contradiction be the same argument of parts (A) and (C)

of Lemma 10. Thus
∣∣∣QH̄

∣∣∣ = 11. Hence
√

n ≥ 30, since (l ∩ Π0) ∪QH̄ ⊆ l ∩ Fix(α).

Furthermore, it is easily seen that each involution in H̄ fixes exactly 3 points on
QH̄ . Therefore each involution in H̄ is a Baer collineation of Fix(α) and hence
4
√

n ≥ 2. Actually, 4
√

n ≥ 3 since
√

n ≥ 30. On the other hand by
√

n ≤ 82 as
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n ≤ 193. All these informations yield n = 38. Let K̄ ≤ H̄ such that K̄ ∼= Z19.
Then K̄ fixes at least 6 points on l ∩ Fix(α), since

√
n + 1 ≡ 6 mod 19. Then

K̄ fixes a subplane of Fix(α) of order at least 5, since n ≡ 6 mod 19. Actually,
o(Fix(K̄)) = 5 by [12], Theorem 3.7. Now, let L̄ ≤ NH̄(K̄) such that L̄ ∼= Z9.
Clearly L̄ fixes l ∩ Fix(K̄). In particular there exists a subgroup L̄0 of L̄, with[
L̄ : L̄0

]
≤ 3, which fixes l ∩ Fix(K̄) pointwise, since L̄ � PΓL(2, 5). Nevertheless

L̄0 cannot be a homology group, since o(Fix(K̄)) = 5. Thus L̄0 acts trivially on
Fix(K̄). Actually Fix(K̄) ( Fix(L̄0), since K̄ and L̄ fix exactly 1 and 2 points
on l ∩ Π0, respectively. So Fix(K̄) ( Fix(L̄0) ( Fix(α). A contradiction by [12],
Theorem 3.7, since o(Fix(K̄)) = 5 and o(Fix(α)) = 34. �

Theorem 12. Let Π be a finite projective plane of order n and let G ∼= PSL(3, q)
be a collineation group of Π with a point-orbit Π0

∼= PG(2, q). If n ≤ q3, then one
of the following occurs:

1. n = q and Π = Π0;

2. n = q2, Π is a Desarguesian plane or a Generalized Hughes plane and Π0 is a
Baer subplane of Π;

3. n = q3.

Proof. If n ≤ v, v = q2 + q + 1, the assertions (1) and (2) follow by [1], Theorem
3.9. Hence, assume that v < n. Let A be the set of points of Π−Π0, which do not
lie on any secant to Π0. Then |A| = (n − pm)(n − p2m). Furthermore, G leaves A
invariant. Clearly each involution in G is a perspectivity of Π by Proposition 11,
and its center lies in Π0 and its axis is a secant of Π0. Hence |GX | must be odd for

each X ∈ A. If |GX | ≤ p2m−1
j

, where j = (3, pm − 1), then
∣∣∣XG

∣∣∣ ≥ p3m(p3m − 1)

and hence p3m(p3m − 1) ≤ p3m(pm − 1)2(pm + 1), since XG ⊆ A and n ≤ p3m. A

contradiction. Hence |GX | > (p2m−1)
j

.

Assume that p = 2. Then GX can be recovered by Lemma 6. If |GX | is a proper

divisor of 3(2m−1)2

j
, j defined as above, then

∣∣∣XG
∣∣∣ ≥ 23m(22m+2m+1)(2m+1), and we

have again a contradiction. Then |GX | ≥ 3(2m−1)2

j
. If |GX | = 3(2m−1)2

j
, then GX has

a normal subgroup R of index 3 such that Fix(R)∩Π0 is a triangle ∆ (see Lemma
6). Hence R is planar, since R fixes the quadrangle ∆ ∪ {X} as X ∈ A. Again by
Lemma 6 there exists an involution β in G normalizing GX and R. Clearly β fixes a
vertex of ∆ and its opposite side. Thus Cβ ∈ Π0−∆. Nevertheless Cβ ∈ Fix(R)−Π0

since β normalizes R, Fix(R) is a subplane and Fix(R)∩Π0 = ∆. A contradiction.

As a consequence |GX | > 3(2m−1)2

j
. Then |GX | = 322m+2m+1

jθ
by Lemma 6, where θ

is a divisor of 22m+2m+1
j

, since GX has odd order. Therefore

|A| = λ1
θ23m(2m − 1)2(2m + 1)

3
,

with λ1 ∈ {1, 2, 3} and θ ∈ {1, 3}, since n ≤ 23m. If θ = 1, then GX = NG(Z 22m+2m+1
j

).

If λ1 = 3 then n = q3, but this case cannot occur by Lemma 5. Thus λ1 ≤ 2 and
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n = 6 by Lemma 2. This case cannot occur by [12], Theorem 3.6. Hence θ = 3.
Then λ1 = 1 and n = 23m, since n ≤ 23m. Then GX = Z 22m+2m+1

j

by Lemma 5.

Thus the assertion (3).

Assume that p is odd. Note that GX is none of the groups listed in Lemma
7, since GX has odd order. Then the possibilities for GX are listed in Lemma 8.
Assume that p | |GX |. Then there exists a normal elementary abelian p-subgroup
U2 of GX such that GX/U2 is isomorphic to a subgroup of PGL(2, pm) again by
Lemma 8. Actually, GX/U2 is isomorphic to a subgroup of PSL(2, pm), since GX

has odd order. If U2 6= 〈1〉, then U2 is a group of elations with the same axis r in
Π0, for some secant r of Π0 by [18]. Actually, U2 = U2(r, r) in Π by [12], Theorem
4.25, since all involutions in G are homologies of Π by Proposition 11 and since
G contains involutory homologies of Π with axis r. But U2 fixes X with X ∈ A.
A contradiction. Therefore U2 = 〈1〉. Then GX is isomorphic to a subgroup of
PSL(2, pm). Then GX is isomorphic to a Frobenius subgroup of Epm .Z pm−1

2
by [13],

Haupsatz II.8.27, since p | |GX | and |GX | is odd. Then GX
∼= Eph .L with 1 ≤ h ≤ m

and |L| > 1, since |GX | > (p2m−1)
j

. Hence |L| | pm − 1. Moreover, |L| | ph − 1, since

GX is isomorphic to a Frobenius group. Hence |L| | pe − 1 where e = (m, h). Then

L ∼= Z pe−1
t

with pe−1
t

odd. Therefore GX
∼= Eph .Z pe−1

t
. Then ph pe−1

t
≥ (p2m−1)

j
.

This yields h = m and GX
∼= Epm .Z pm−1

t
. At this points, since XG ⊆ A and

|A| ≤ p3m(pm − 1)2(pm + 1), we obtain q ≡ 3 mod 4 and t = 2, and q ≡ 1 mod 3

and j = 3. That is q ≡ 7 mod 12 and
∣∣∣XG

∣∣∣ = 2
3
p2m(p3m − 1)(pm + 1).

Assume that p - |GX |. By Lemma 8, and relations (5.8) in the proof of Lemma
5.6 of [3], we have that either GX

∼= E9 with q ≡ 1 mod 3 and q 6≡ 1 mod 9,
or GX

∼= E9.Z3 with q ≡ 1 mod 9, or GX ≤ NG(Z p2m+pm+1
j

), since |GX | is odd.

Actually, GX ≤ NG(Z p2m+pm+1
j

), since XG ⊆ A and |A| ≤ p3m(pm − 1)2(pm + 1).

Then
∣∣∣XG

∣∣∣ = 1
k
p3m(pm − 1)2(pm + 1) with k = 1 for GX

∼= Z p2m+pm+1
j

, and k = 3 for

GX = NG(Z p2m+pm+1
j

).

Set µ1 and µ2 the number G-orbits in A of length A = 2
3
p2m(p3m − 1)(pm + 1)

and B = 1
k
p3m(pm−1)2(pm +1), respectively. Then µ1A+µ2B = (n−pm)(n−p2m),

since |A| = (n − pm)(n − p2m). Then µ2 6= 0 by Lemma 1, since n ≤ q3. Thus
µ1 = 0, since |A| ≤ p3m(pm − 1)2(pm + 1). Then k = 1, GX

∼= Z p2m+pm+1
j

for any

point X in A by Lemma 2, since n ≤ q3 and n 6= 105. Then n = q3 according with
Lemma 5, since n ≤ q3. Thus the assertion (3). �

5 The unfaithful action

Let N be the kernel of G on Π0 and set Ḡ = G/N . Throughout this section we
assume that N 6= 〈1〉. We may also assume that G is the minimal preimage of
Ḡ ∼= PSL(3, q).

Firstly, we prove that N is the Frattini subgroup G in Lemma 13. Hence N is
nilpotent. This yields N = Z(G) in Theorem 14 using group-theoretical results.
Again, an extensive use of the list of the subgroups of PSL(3, q) leads us to assert
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that Π is the Generalized Hughes plane over the exceptional nearfield of order 72,
Π0 is a Baer subplane of Π and G contains SL(3, 7).

Lemma 13. N = Φ(G), where Φ(G) is the Frattini subgroup of G.

Proof. Let S be any Sylow t-subgroup of N . Then G = NG(S)N by the Frattini’s
argument. Thus S C G by the minimality of G. Therefore N is nilpotent. Suppose
that N 6≤ Φ(G). Then there exists a maximal subgroup M of G such that G = NM
by [13], Satz 3.2 (b). Clearly M < G and M

M∩N
∼= Ḡ. A contradiction by the

minimality of G. Hence, we may assume that N ≤ Φ(G). Note that GP is maximal
in G for each point P ∈ Π0, since N C GP and Ḡ is primitive on Π0. Hence
Φ(G) C GP for each point P ∈ Π0. Therefore N = Φ(G). �

Theorem 14. Let Π be a finite projective plane of order n and let G be a collineation
group of Π with a point-orbit Π0

∼= PG(2, q) on which G induces Ḡ ∼= PSL(3, q).
If n ≤ q3 and Fix(N) = Π0, then Π is the Generalized Hughes plane over the
exceptional nearfield of order 72, Π0 is a Baer subplane of Π and G contains SL(3, 7).

Proof. The assertion follows by [1] for n ≤ v, v = q2 + q + 1. Hence, assume that
n > v. Let l be a secant to Π0. Then N acts on l − Π0. If NX 6= 〈1〉 for some
X ∈ l − Π0, then Fix(N) ( Fix(NX) ( Π. A contradiction by [12], Theorem 3.7,
since o(Fix(N)) = q and n ≤ q3. Thus N is semiregular on l − (l ∩ Π0) and hence
|N | | n − q. Furthermore, N must have odd order, since Fix(N) ∼= PG(2, q) and
q2 < n.

(I) G ∼= SL(3, q), q ≡ 1 mod 3. Furthermore, each involution in G is
perspectivity of Π having the center in Π0 and the axis a secant of Π0.

Assume that N � Z(G). Then there exists a Sylow t-subgroup S of N such
that S 6≤ Z(G), since N is nilpotent. Set V = S/Φ(S), where Φ(S) is the Frattini
subgroup of S. Clearly G acts on V . Let R be the kernel of the action of G on V . If
U is the Sylow u-subgroup of N , where u is a prime, u 6= t, then [S, U ] = 〈1〉, since N
is nilpotent. This yields N E R E G, since S ′ ≤ Φ(S), being S a t-group. If R = G,
then each Sylow r-subgroup of G, with r 6= t, centralizes S by [8], Theorem 5.1.4.
That is CG(S) � N . Furthermore, CG(S) C G as S C G. Then N C CG(S)N E G.
Hence G = CG(S)N , since Ḡ is non abelian simple and since CG(S) � N . Actually,
G = CG(S) since N = Φ(G) by Lemma 13. A contradiction, since S 6≤ Z(G). Hence
R < G. Then R = N as Ḡ is non abelian simple. Then Ḡ ≤ ΓL(V ), since V is a
vector space over GF (t). Actually Ḡ ≤ SL(V ), since Ḡ is non abelian simple. Then
Ḡ ≤ PSL(V ), where V = S/Φ(S) is a vector spaces over GF (t). If t 6= p, then
|V | ≥ tq

2−1 by [16], Theorem 5.3.9, for q /∈ {2, 4}. In particular, for t 6= p we have
that |V | ≥ 2q2−1 for any q. If t = p, then |V | ≥ q3 by [16], Proposition 5.4.13. Hence
|V | ≥ q3 in any case. Thus |N | ≥ q3. A contradiction, since |N | | n− q and n ≤ q3.
Hence, we may assume that N ≤ Z(G). Then G ∼= SL(3, q) by [15], Theorem 7.7.1,
since N has odd order. Furthermore, N ∼= Z3 and q ≡ 1 mod 3, since N 6= 〈1〉.
Then each involution in G is perspectivity of Π having the center in Π0 and the axis
a secant of Π0, since the proof of Proposition 11 still works being N ∼= Z3.

(II) The final contradiction.
Denote by A the set of points of Π − Π0 not lying on any secant of Π0. Then

|A| = (n − pm)(n − p2m). Furthermore, G leaves A invariant. Note that each N -
orbit on A is a triangle, since N ∼= Z3, N is semiregular on A, and Fix(N) = Π0.
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Denote by AN be the set of N -orbits on A. Then |AN | = |A|
3

. Pick ∆ ∈ AN . Then
G∆ = G(∆)×N , where G(∆) is the pointwise-stabilizer of ∆. Furthermore, G∆ has
odd order by (I). Set Ḡ∆ = G∆/N . Then Ḡ∆ ≤ Ḡ ∼= PSL(3, q) and G(∆) ∼= Ḡ∆.
Hence, the proof of Theorem 12 still works with Ḡ∆ in role of GX (where X ∈ A)

and AN in role of A, since |AN | = |A|
3

. Thus n = q3 and Ḡ∆ ≤ Z p2m+pm+1
3

.Z3. If

Ḡ∆
∼= Z p2m+pm+1

3

.Z3, then G∆ = Z p2m+pm+1
3

.Z3 × N . Note that the group Z3 in the

normalizer of Z p2m+pm+1
3

consists of generalized homologies of Π0 having the centres

in Π0 and the axes which are secants of Π0 by [5], Proposition 3.4 (i). Actually,
the group Z3 in the normalizer of Z p2m+pm+1

3

consists of generalized homologies of Π

having the centres in Π0 and the axes which are secants of Π0 by using the proof of
Proposition 3.4 (i) of [5], since the involutions in G are perspectivities of Π by (I).

Hence Ḡ∆ � Z p2m+pm+1
3

.Z3. Thus
∣∣∣∆Ḡ

∣∣∣ = y p3m(pm−1)2(pm+1)
3

, with y odd, y > 1. So,

y
p3m(pm − 1)2(pm + 1)

3
≤ p3m(pm − 1)2(pm + 1)

3
,

since ∆Ḡ ⊆ AN and |AN | ≤ p3m(pm−1)2(pm+1)
3

. A contradiction, since y is odd and
y > 1. �

We conclude this paper with the following remark:

Remark. The problem of classifying the projective planes Π of order q3 with
a collineation group isomorphic to PSL(3, q) is still open today. So, it might be
interesting and useful to know what would happen if the projective plane Π has
order q3 and the collineation group of Π turns out to be PGL(3, q). In the previous
case, is it possible to determine the plane Π?
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