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Abstract

In this paper we consider the existence of positive solutions for the follow-
ing class of singular elliptic nonlocal problems of Kirchhoff-type

−M(‖u‖2)∆u = h(x)
uγ + k(x)uα in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ IRN , N ≥ 2, is a bounded smooth domain, M : R → R is a
continuous function and ‖u‖2 =

∫
Ω |∇u|2 is the usual norm in H1

0 (Ω). The
main tools used are the Galerkin method and a Hardy-Sobolev inequality.

1 Introduction.

In recent years much attention has been devoted to nonlocal problems due two basic
aspects of mathematical research:

(i) Such problems arise in significant physical situations as, for example, nonlinear
elasticity theory, Biology, heat transfer, among others. In particular, in Bi-
ology, such kind of problems appears mainly in phenomena in which there is
migration represented by a term which is nonlocal.

(ii) The presence of a nonlocal term poses some interesting and nontrivial difficul-
ties.
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The interested reader may consult Chipot[2], Chipot-Lovat[3], Corrêa[4], Alves-
Corrêa-Ma[1], Ma[10] and the references therein, where there is some detailed infor-
mation on nonlocal problems and their applications.

In particular, in this paper, we are interested in the following elliptic problem
−M(‖u‖2)∆u = h(x)

uγ + k(x)uα in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded smooth domain, h, k ∈ C(Ω), h, k ≥ 0 in Ω, h, k 6≡ 0
, α, γ ∈ (0, 1),M : R → R is a given function, whose properties will be introduced
later, ‖u‖2 =

∫
Ω |∇u|2 is the usual norm in H1

0 (Ω) and M(‖u‖2)∆u is the Kirchhoff
operator. This problem is the stationary counterpart of the Kirchhoff hyperbolic
equation

∂2u

∂t2
−M

(∫
Ω
|∇u(x, t)|2dx

)
∆u = f(x, u), (1.2)

which is motivated in the mathematical description of vibrations of an elastic stretched
string. For more information the reader may consult Chipot[2] and Lions[8], [9].

With respect to the problem{
−M(‖u‖2)∆u = f(u) in Ω,

u = 0 on ∂Ω,
(1.3)

we have to mention that this kind of singular equation has not yet been considered.
Since we allow the function M to attain negative values, the best way to treat

this problem is to use the Galerkin Method, like it was done [5]. This application of
the Galerkin Method relies on a variant of the Brouwer Fixed Point Theorem which
is established below. The proof can be found in Lions[8], p. 53.

Proposition 1.1. Suppose that F : Rm → Rm is a continuous function such that
< F (ξ), ξ >≥ 0 on |ξ| = r, where < ·, · > is the usual inner product in Rm and | · |
its corresponding norm. Then there exists ξ0 ∈ Br(0) such that F (ξ0) = 0.

Recall that a solution of (1.1) means a weak solution, that is, a function u ∈
H1

0 (Ω) such that

M(‖u‖2)
∫
Ω
∇u · ∇ϕ =

∫
Ω

(
h(x)

uγ
+ k(x)uα

)
ϕ, for all ϕ ∈ H1

0 (Ω).

Another result which will play a fundamental role in our approach is a Hardy-
Sobolev-type inequality . Let us denote by ϕ1 a positive eigenfunction of (−∆, H1

0 (Ω))
corresponding to the first eigenvalue λ1.

Proposition 1.2. (Hardy-Sobolev Inequality) If u ∈ H1
0 (Ω), then u

ϕγ
1
∈ Lq(Ω),

where 1
q

= 1
2
− (1−γ)

N
, 1 ≤ γ ≤ 1, and there is a constant C > 0 such that

‖ u
ϕγ1
‖Lq ≤ C‖∇‖L2 , for all u ∈ H1

0 (Ω). (1.4)
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In this inequality the extreme case γ = 0 is the Sobolev imbedding theorem
H1

0 (Ω) ↪→ L2∗(Ω), where 2∗ = 2N
N−2

. The other extreme case γ = 1 is a fact already
observed in Hardy-Littlewood-Polya[7], that the behavior of a function u ∈ H1

0 (Ω)
near the boundary ∂Ω is such that u

ϕ1
belongs to L2(Ω), see de Figueiredo[6].

Let M : R→ R be a continuous function satisfying

(M1) There exist m0 > 0 and θ1 > 0 such that M(t) ≥ m0 if t ≥ θ1.

(M2) θ2 = sup {t > 0;M(t) ≤ 0} > 0.

In view of (M1) we have that θ2 is finite. Under these assumptions we state the
main result of this paper.

Theorem 1.1. Let h, k : Ω→ R be positive and continuous functions, α and γ real
numbers belonging to the interval (0, 1) and M : R+ → R,R+ = [0,∞), a continuous
function satisfying (M1)− (M2). Then problem (1.1) possesses a positive solution.

2 Proof of Theorem 1.1.

In order to improve the exposition we split the proof of Theorem 1.1 in some lemmas.
First, for each fixed number ε > 0, let us consider the auxiliary problem

−M(‖u‖2)∆u = h(x)
(ε+u)γ + k(x)uα in Ω

u > 0 in Ω
u = 0 on ∂Ω.

(2.1)

Lemma 2.1. For each fixed ε > 0, problem (2.1) possesses a solution uε.

Proof. We begin by focusing our attention on the problem
−M+(‖u‖2)∆u = h(x)

(ε+|u|)γ + k(x)|u|α in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(2.2)

where M+ : R+ → R is given by

M+(t) =

{
0 if 0 ≤ t ≤ θ2

M(t) if t > θ2.

Since we are going to use the Galerkin method let us consider B = {ψ1, ψ2, . . .}
a Hilbertian basis of H1

0 (Ω) and for each fixed m ∈ N, let us denote by Vm =
span {ψ1, . . . , ψm}. It is well known that Vm is isomorphic and isometric to Rm

in the following way: Vm ←→ Rm, u =
∑m
j=1 ξjψj ←→ ξ = (ξ1, . . . , ξm), ‖u‖2 =∑m

j=1 ξ
2
j = |ξ|2, where ‖u‖2 =

∫
Ω |∇u|2 is the usual norm in H1

0 (Ω) and | · | is the
Euclidean norm in Rm.

From now on we make the identifications u ←→ ξ and Vm ←→ Rm, as above,
with no additional comments. In order to use Proposition 1.1 we construct the
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map F : Rm → Rm, by considering the aforementioned identifications, F (ξ) =
(F1(ξ), . . . , Fm(ξ)), as follows:

Fi(ξ) = M+(‖u‖2)
∫
Ω
∇u · ∇ψi −

∫
Ω

h(x)ψi
(ε+ |u|)γ

−
∫
Ω
k(x)|u|αψi, i = 1, . . . ,m.

Thus, denoting by < ·, · > the usual inner product in H1
0 (Ω), one has

< F (ξ), ξ >= M+(‖u‖2)‖u‖2 −
∫
Ω

h(x)u

(ε+ |u|)γ
−
∫
Ω
k(x)|u|αu.

We note that: ∫
Ω

h(x)u

(ε+ |u|)γ
≤ ‖h‖∞

∫
Ω

|u|
εγ
≤ Cε‖u‖

and ∫
Ω
k(x)|u|αu ≤ ‖k‖∞

∫
Ω
|u|α+1 ≤ C‖u‖α+1,

where C and Cε are constants which do not depend on u and m. This implies

< F (ξ), ξ >≥M+(‖u‖2)‖u‖2 − Cε‖u‖ − C‖u‖α+1.

We now take ‖u‖2 ≥ θ1 so that M+(‖u‖2) = M(‖u‖2) ≥ m0 and therefore

< F (ξ), ξ >≥ m0‖u‖2 − Cε‖u‖ − C‖u‖α+1,

‖u‖2 ≥ θ1. Thus, if ‖u‖ = |ξ| = r, with r large enough, we have

< F (ξ), ξ >> 0,

where r does not depend on m. From Proposition 1.1 we find um ∈ V, ξ(m) ↔
um, ξ

(m) ∈ Rm, |ξ(m)| = ‖um‖ ≤ r, satisfying F (um) = 0. Hence

M+(‖um‖2)
∫
Ω
∇um · ∇ψi =

∫
Ω

h(x)ψi
(ε+ |um|)γ

+
∫
Ω
k(x)|um|αψi, i = 1, . . . ,m

which yields

M+(‖um‖2)
∫
Ω
∇um · ∇ψ =

∫
Ω

h(x)ψ

(ε+ |um|)γ
+
∫
Ω
k(x)|um|αψ, ∀ψ ∈ Vm. (2.3)

We now fix l ≤ m,Vl ⊂ Vm, and ψ ∈ Vl. In view of boundedness of (‖um‖), one
has ‖um‖2 → t0, um ⇀ u, in H1

0 (Ω), um → u, in L2(Ω), um(x) → u(x) a.e. in Ω,
perhaps for subsequences. Thus

M+(‖um‖2)→M+(t0),

because M+ is continuous, and∫
Ω
∇um · ∇ψ →

∫
Ω
∇u · ∇ψ as m→∞,

for all ψ ∈ Vl.
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Furthermore ∣∣∣∣∣ h(x)ψ

(ε+ |um|)γ

∣∣∣∣∣ ≤ C

εγ
|ψ| ∈ L1(Ω), for all m ∈ N,

h(x)ψ

(ε+ |um|)γ
→ h(x)ψ

(ε+ |u|)γ
a.e. in Ω

and by invoking the Lebesgue Dominated Convergence Theorem, we get∫
Ω

h(x)ψ

(ε+ |um|)γ
→
∫
Ω

h(x)ψ

(ε+ |u|)γ
for all ψ ∈ Vl.

To prove that ∫
Ω
k(x)|um|αψ →

∫
Ω
k(x)|u|αψ for all ψ ∈ Vl,

we proceed in the following way: um ⇀ u in H1
0 (Ω), which implies um → u in L1(Ω),

|um| → |u| in L1(Ω), |um|α → |u|α in L
1
α (Ω), because the mapping L1(Ω) →

L
1
α (Ω), |u| 7→ |u|α, is well defined, hence continuous. Also, because 1

α
> 1 one

has L1/α(Ω) ↪→ L1(Ω) and such a immersion is continuous. Consequently, |um|α →
|u|α in L1(Ω).

Hence ∣∣∣∣∫
Ω
k(x)|um|αψ −

∫
Ω
k(x)|u|αψ

∣∣∣∣ = ∣∣∣∣∫
Ω
k(x)[|um|α − |u|α]

∣∣∣∣ ≤∫
Ω
|k(x)|||um|α − |u|α||ψ|.

We recall that ψ is a linear combination of ψ1, . . . , ψm and each ψi, i = 1, . . . ,m.
Therefore ψ is continuous because we may take ψi as eigenfunctions of (−∆, H1

0 (Ω)).
Thus ∣∣∣∣∫

Ω
k(x)|um|αψ −

∫
Ω
k(x)|u|αψ

∣∣∣∣ ≤ C
∫
Ω
||um|α − |u|α| → 0,

where C is a positive constant. Taking limits on both sides of the equality (2.3) one
gets

M+(t0)
∫
Ω
∇u · ∇ψ =

∫
Ω

h(x)ψ

(ε+ |u|)γ
+
∫
Ω
k(x)|u|αψ, (2.4)

for all ψ ∈ Vl. Since l ∈ N is arbitrary, equality (2.4) remains valid for all ψ ∈ H1
0 (Ω)

and so

M+(t0)
∫
Ω
∇u · ∇ψ =

∫
Ω

h(x)ψ

(ε+ |u|)γ
+
∫
Ω
k(x)|u|αψ, (2.5)

for all ψ ∈ H1
0 (Ω). In view of this one has that M+(t0) > 0 and so M+(t0) = M(t0)

which implies

M(t0)‖u‖2 =
∫
Ω

h(x)u

(ε+ |u|)γ
+
∫
Ω
k(x)|u|αu, (2.6)

We now take um = ψ in equation (2.3) to obtain

M+(‖um‖2)‖um‖2 =
∫
Ω

h(x)um
(ε+ |u|)γ

+
∫
Ω
k(x)|um|αum, (2.7)
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and taking limits on both sides of this last equation, one gets

M(t0)t0 =
∫
Ω

h(x)u

(ε+ |u|)γ
+
∫
Ω
k(x)|u|αu. (2.8)

By comparing equations in (2.6) and (2.8) we conclude that

M(t0)t0 = M(t0)‖u‖2

and because M(t0) > 0 we have that M(t0) = M(‖u‖2) which implies that u is a
solution of the auxiliary problem (2.1). This concludes the proof of Lemma 2.1. �

For each n ∈ N set ε = 1
n

and u 1
n

= un where u 1
n

is obtained in the preceding
lemma.

Lemma 2.2. There is δ > 0 such that M(‖un‖2) ≥ δ > 0, for all n ∈ N.

Proof. We reason by contradiction. Suppose that lim infM(‖un‖2) = 0. If this is
the case we infer that (‖un‖2) is bounded, due to assumption (M1), and so

‖un‖2 → θ0, un ⇀ u in H1
0 (Ω),

perhaps for subsequences. In view of the continuity of M

0 = lim infM(‖un‖2) = limM(‖un‖2) = M(θ0).

We now note that

h(x)

(1 + t)γ
+ k(x)tα ≥ C

[
1

(1 + t)γ
+ tα

]
≥ m0 > 0,

for all x ∈ Ω and t ≥ 0, where C is a constant. Since

−M(‖un‖2)∆un ≥ m0 > 0 in Ω,

and M(‖un‖2) > 0, we may take ϕ > 0, ϕ ∈ C1
0(Ω), so that

M(‖un‖2)
∫
∇un · ∇ϕ ≥ m0

∫
Ω
ϕ > 0

which implies 0 ≥ m0

∫
Ω ϕ > 0, a contradiction. This completes the proof of Lemma

2.2. �

Lemma 2.3. (‖un‖) is bounded.

Proof. Indeed, we have

M(‖un‖2)‖un‖2 =
∫
Ω

h(x)un(
1
n

+ un
)γ +

∫
Ω
k(x)uα+1

n .

Also ∫
Ω

h(x)un(
1
n

+ un
)γ ≤ ‖h‖∞ ∫

Ω
u1−γ
n ≤ ‖h‖∞|Ω|γ

(∫
Ω
un

)1−γ
≤ C1‖un‖1−γ
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and ∫
Ω
k(x)uα+1

n ≤ ‖k‖∞
∫
Ω
uα+1
n ≤ ‖un‖α+1,

where C1 and C2 are constants do not depend on n. Hence

δ‖un‖2 ≤M(‖un‖2)‖un‖2 ≤ C1‖un‖1−γ + C2‖un‖α+1

and because 1−γ < 1 and 1+α < 2, one has that (‖un‖2) is bounded. Consequently

0 < δ ≤M(‖un‖2) ≤M∞, for all n = 1, 2, . . .

and the proof of Lemma 2.3 is over. �

Lemma 2.4. The sequence (un), obtained in Lemma 2.1, converges to a solution of
problem (1.1).

Proof. As we have seen, the sequence (un) is bounded and so un ⇀ u in H1
0 (Ω), un →

u in Lq(Ω), 1 ≤ q < 2N
N−2

, N ≥ 3, un(x)→ u(x) a.e. in Ω, up to subsequences.
We now take ψ1 > 0 an eigenfunction of (−∆, H1

0 (Ω)) associated to the first
eigenvalue λ1, in such a way that

m0 > λ1M∞ψ1(x), for all x ∈ Ω,

where m0 and M∞ were introduced, respectively, in Lemmas 2.2 and 2.3.

−M(‖u‖2)∆un = h(x)

( 1
n

+un)
γ + k(x)uαn in Ω,

≥ h(x)
(1+un)γ + k(x)uαn in Ω,

≥ C
[

1
(1+un)γ + uαn

]
in Ω,

≥ m0 > λ1M∞ψ1 in Ω,
un = ψ1 = 0 on ∂Ω.

Thus {
−∆(M(‖un‖2un)) > −∆(M∞ψ1) in Ω,

M(‖un‖2)un = M∞ψ1 = 0 on ∂Ω,

and by invoking the maximum principle, we get

M(‖un‖2)un > M∞ψ1 in Ω

and so

un(x) >
M∞

M(‖un‖2)
ψ1(x) in Ω.

Let us show that un → u in H1
0 (Ω). Since

−M(‖un‖2)∆un =
h(x)(

1
n

+ un
)γ + k(x)uγn in Ω,

we take un as a test function in order to obtain

M(‖un‖2)
∫
|∇un|2 =

∫
Ω

h(x)un(
1
n

+ un
)γ +

∫
Ω
k(x)uα+1

n .
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Let us estimate the two integrals in the right-hand side of the last equality:∫
Ω

h(x)un(
1
n

+ un
)γ ≤ ‖h‖∞ ∫

Ω

|un|
uγn
≤ ‖h‖∞

C

∫
Ω

|un|
ψγ1
≤ C ′‖un‖,

where in the last expression we used the Hardy-Sobolev inequality, and∫
Ω
k(x)uαnun ≤ ‖k‖∞

∫
Ω
uαnun ≤ C‖un‖α+1,

which implies
δ‖un‖2 ≤ C‖un‖+ C ′‖un‖1+α

and, since 0 < α < 1, we conclude that the real sequence (‖un‖) is bounded. We
obtain the following convergence, perhaps for subsequences,

‖un‖2 → t0 ⇒M(‖un‖2)→M(t0),

un ⇀ u in H1
0 (Ω),

∫
Ω∇un∇ψ →

∫
Ω∇u∇ψ,

h(x)ψ

( 1
n

+un)
γ → h(x)ψ

uγ a.e. in Ω.

Because ∣∣∣∣∣∣ h(x)ψ(
1
n

+ un
)γ
∣∣∣∣∣∣ ≤ h(x)

∣∣∣∣∣ ψuγn
∣∣∣∣∣ ≤

∣∣∣∣∣ ψψγ1
∣∣∣∣∣ ∈ L1(Ω),

by Lebesgue Dominated Convergence Theorem, one has∫
Ω

h(x)ψ(
1
n

+ un
)γ → ∫

Ω

h(x)ψ

uγ
.

We also have ∫
Ω
k(x)uαnψ →

∫
Ω
k(x)uαψ.

Consequently,

M(t0)
∫
Ω
∇u∇ψ =

∫
Ω

h(x)ψ

uγ
+
∫
Ω
k(x)uαψ, for all ψ ∈ H1

0 (Ω).

We also note that

M(‖un‖2)‖un‖2 =
h(x)un(
1
n

+ un
)γ +

∫
Ω
k(x)uα+1

n .

As we have done before, we have

h(x)un(
1
n

+ un
)γ → h(x)u1−γ

∫
Ω
k(x)uα+1

n →
∫
Ω
k(x)uα+1

and by using again the Lebesgue Dominated Convergence Theorem we get

M(t0)t0 =
∫
Ω
h(x)u1−γ +

∫
Ω
k(x)uα+1 (2.9)



On an Elliptic Equation with a Kirchhoff Term and a Singular Perturbation 23

But,

M(t0)‖u‖2 =
∫
Ω
h(x)u1−γ +

∫
Ω
k(x)uα+1. (2.10)

Comparing equalities (2.9) and (2.10) we obtain

M(t0)t0 = M(t0)‖u‖2 ⇒ ‖u‖2 = t0

because, in view of equality (2.9), M(t0) 6= 0. Then

M(‖u‖2)
∫
Ω
∇u∇ψ =

∫
Ω

h(x)

uγ
ψ +

∫
Ω
k(x)uαuαψ,

for all ψ ∈ H1
0 (Ω) and so u is a weak solution of problem (1.1). �
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