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Abstract

In this paper we consider the existence of positive solutions for the follow-
ing class of singular elliptic nonlocal problems of Kirchhoff-type

~M(ulP)Au = MO 4 g in Q
u > 0 in €,
u = 0 on 01,

where Q@ ¢ RN, N > 2, is a bounded smooth domain, M : R — R is a
continuous function and [Jul|* = [ |Vul? is the usual norm in H} (). The
main tools used are the Galerkin method and a Hardy-Sobolev inequality.

1 Introduction.

In recent years much attention has been devoted to nonlocal problems due two basic
aspects of mathematical research:

(1) Such problems arise in significant physical situations as, for example, nonlinear
elasticity theory, Biology, heat transfer, among others. In particular, in Bi-
ology, such kind of problems appears mainly in phenomena in which there is
migration represented by a term which is nonlocal.

(ii) The presence of a nonlocal term poses some interesting and nontrivial difficul-
ties.
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The interested reader may consult Chipot[2], Chipot-Lovat[3], Corréa[4], Alves-
Corréa-Ma[l], Ma[10] and the references therein, where there is some detailed infor-
mation on nonlocal problems and their applications.

In particular, in this paper, we are interested in the following elliptic problem

“M(P)Au = M g ke i O,
u > 0 in  Q, (1.1)
u = 0 on 0f),

where 2 C RY is a bounded smooth domain, h,k € C(Q),h,k > 0in Q, h,k £ 0
,a,v € (0,1),M : R — R is a given function, whose properties will be introduced
later, ||ul|* = [ |Vu|? is the usual norm in H}(Q) and M (||u||*)Awu is the Kirchhoff
operator. This problem is the stationary counterpart of the Kirchhoff hyperbolic
equation

0*u

S =M ([ 1Vute.0fde) Su = fo0), (1.2)

which is motivated in the mathematical description of vibrations of an elastic stretched
string. For more information the reader may consult Chipot[2] and Lions|8], [9].
With respect to the problem

{_M(HUHQMu = flw) in 0O (1.3)

u = 0 on 0f),

we have to mention that this kind of singular equation has not yet been considered.

Since we allow the function M to attain negative values, the best way to treat
this problem is to use the Galerkin Method, like it was done [5]. This application of
the Galerkin Method relies on a variant of the Brouwer Fixed Point Theorem which
is established below. The proof can be found in Lions|8], p. 53.

Proposition 1.1. Suppose that F : R™ — R™ is a continuous function such that
< F(§),£ >>0 on |&] =7, where < -,- > is the usual inner product in R™ and | - |
its corresponding norm. Then there exists & € B,(0) such that F(&) = 0.

Recall that a solution of (1.1) means a weak solution, that is, a function u €
H}(Q) such that

M(J[ul?) /Q Vi Vi — /Q <h(f) + k:(m)uo‘> o, for all p € HY(Q).

u

Another result which will play a fundamental role in our approach is a Hardy-
Sobolev-type inequality . Let us denote by ¢; a positive eigenfunction of (—A, H{ (£2))
corresponding to the first eigenvalue ;.

Proposition 1.2. (Hardy-Sobolev Inequality) If u € H} (), then 7 € Li(Q),
1

where é = % - (1;,7), 1 <~ <1, and there is a constant C' > 0 such that

u
IIEHM < C||V|| g2, for allu € H(Q). (1.4)
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In this inequality the extreme case v = 0 is the Sobolev imbedding theorem

H}(Q) — L* (), where 2* = 2. The other extreme case v = 1 is a fact already
observed in Hardy-Littlewood-Polya[7], that the behavior of a function u € HJ(£2)
near the boundary 0€) is such that 2= belongs to L?(92), see de Figueiredo|[6].

Let M : R — R be a continuous function satisfying
(M;) There exist mg > 0 and 6; > 0 such that M (t) > mg if t > 6.
(Ms) 0y =sup{t > 0; M(t) <0} > 0.

In view of (M;) we have that 6 is finite. Under these assumptions we state the
main result of this paper.

Theorem 1.1. Let h, k : Q — R be positive and continuous functions, o and v real
numbers belonging to the interval (0,1) and M : RT — R, R* = [0, 00), a continuous
function satisfying (My) — (Ms). Then problem (1.1) possesses a positive solution.

2 Proof of Theorem 1.1.

In order to improve the exposition we split the proof of Theorem 1.1 in some lemmas.
First, for each fixed number € > 0, let us consider the auxiliary problem

~M(JuH)Au = 24kt in Q
u > 0 in Q (2.1)
u = 0 on Of).

Lemma 2.1. For each fized € > 0, problem (2.1) possesses a solution u..

Proof. We begin by focusing our attention on the problem

M (ulP)Ae = 2O k@)l w0
u > 0 n Q (2.2)
u = 0 on 01,

where M+ : R™ — R is given by

Mﬂﬂz{ 0 if 0<t<6b,

M(t) if t>0,.

Since we are going to use the Galerkin method let us consider B = {1, 15, ...}
a Hilbertian basis of HJ({2) and for each fixed m € N, let us denote by V,, =

span {1, ..., n}. It is well known that V,, is isomorphic and isometric to R™
in the following way: V, —— R™, 1 = S0 €50 —— & = (&4, &n), [ul® =
ST & = [€?, where [lul]* = [ [Vul* is the usual norm in Hg(Q2) and | - | is the

Fuclidean norm in R™.
From now on we make the identifications v «— £ and V,, «—— R™, as above,
with no additional comments. In order to use Proposition 1.1 we construct the
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map F' : R™ — R™, by considering the aforementioned identifications, F(§) =
(F1(&), ..., Fn(&)), as follows:

R = M () [ Fu- T [ 2 [ K@i =1,

Thus, denoting by < -, - > the usual inner product in H{ (), one has

h
< PO =Ml - [ 25~ [ k@l
We note that: hx) 1
XU u
/Q(E—|—|u|)7 < ”h“oo/gef7 < Cellul|

and

k Q<& k oo/ a+1 < C oz—l—l7
[ k@l < [kl [ el < Clul
where C' and C, are constants which do not depend on v and m. This implies
< F(§),& >> M (|[ull®)[[ull* = Ccllull = Clluf**.
We now take ||ul|? > 6; so that M (||lu|?) = M(||u||*) > mo and therefore

< F(8),6 > mollull” = Cellull = C|lul|**,

|lul|* > ;. Thus, if ||ul| = |£| = r, with r large enough, we have
< F(£),£>>0,
where 7 does not depend on m. From Proposition 1.1 we find w,, € V,¢™
U, €™ € R™ €| = |luy|| < 7, satisfying F(u,,) = 0. Hence
h(x); :
M nﬂ/vm-v,:/il /k =1,
() f Vit - T = [ 2 [ k@i = Lo

which yields

h(x)y
M+ mQ/Vm-V :/7
lunl?) [, Foum Vo = [ i
We now fix [ < m,V, C V,,, and ¢y € V,. In view of boundedness of (||u,,]|), one
has |[un||? — to, Um — u, in H}(Q), wy, — u, in L*(Q), upy(z) — u(z) ae. in Q,
perhaps for subsequences. Thus

/Qk(x)mmw,vw €V,  (23)

M* ([lum|?) — M*(to),
because M ™ is continuous, and
/Vum~V1/)—>/Vu-V¢asm—>oo,
Q Q

for all v € V,.
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Furthermore
h(z)y
(€ + |uml)”
My b
(€+ luml)  (e+|ul)
and by invoking the Lebesgue Dominated Convergence Theorem, we get

/MH/M&MM@EVZ.

Q (€+ |un|) a (e+ |ul)

|@/)|€L( ), for allm € N,

_e,y

a.e. in

To prove that
/ k() |um| 0 — / 2)[ul for all ¥ € V,

we proceed in the following way: u,, — w in Hj(£2), which implies u,,, — u in L'(£),

lum| — [u| in L), [um|® — |u|* in La(Q), because the mapping L'(Q) —

La(Q), |u| — |u|®, is well defined, hence continuous. Also, because 1> 1 one

has L'/*(Q) — L'(£2) and such a immersion is continuous. Consequently, |u,,|* —
lu|* in L1(Q).

Hence
[ @l [ k@] = | [ )l ol <

[ k@)l = [l

We recall that 1 is a linear combination of v1,...,9,, and each ¥;,72 = 1,...,m
Therefore 1) is continuous because we may take 1; as eigenfunctions of (—A, H}(Q)).

Thus
[ k@l = [ k@)l

where C'is a positive constant. Taking limits on both sides of the equality (2.3) one

gets
* (o) /Vu Vip = / €+|u| +/ ) [ul 4, (2.4)

for all ¢ € V;. Since [ € N is arbitrary, equality (2.4) remains valid for all b € H} ()
and so

< C [ Y] = Jul| =0,
Q

*(ty) /VU Vep = / e+yu| +/ ) [ul 4, (2.5)

for all ¢ € H}(€). In view of this one has that M (tg) > 0 and so Mt (ty) = M(to)
which implies

h(z)u
M = [ O o, ’
(ollal? = [, 7+ kol (2:6)
We now take u,, = 1 in equation (2.3) to obtain

2 2 _ h(z)tm
M () e = ¢

Rammi +/Qk(:p)|um|aum, (2.7)
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and taking limits on both sides of this last equation, one gets

M(to)to = /Q M+ /Q () |ulu. (2.8)

By comparing equations in (2.6) and (2.8) we conclude that
M (to)to = M(to)[ul

and because M (ty) > 0 we have that M(to) = M(||u]|*) which implies that u is a
solution of the auxiliary problem (2.1). This concludes the proof of Lemma 2.1. =

For each n € N set € = % and u1 = u, where u1 is obtained in the preceding
lemma. ! !

Lemma 2.2. There is § > 0 such that M (||u,||*) > & > 0, for alln € N.

Proof. We reason by contradiction. Suppose that liminf M (||u,||?) = 0. If this is
the case we infer that (||u,[|?) is bounded, due to assumption (M), and so

|wn||* — 0o, up — uin Hy(9),
perhaps for subsequences. In view of the continuity of M
0 = liminf M (||u,||*) = lim M (||u,|[?) = M (6,).

We now note that

h(x)
(L+1t)

1
klx)t* > C | ——— +t%| > 0
+ k(x)t* > l<1+t)7+ ]_mg> ,

for all z € Q and t > 0, where C is a constant. Since
— M (||un]|?)Au, > mo > 0in €,

and M (||u,||?) > 0, we may take ¢ > 0,¢ € C3(9), so that

M(l[uall®) [ V- Vo 2 mo [ >0

which implies 0 > myq [ ¢ > 0, a contradiction. This completes the proof of Lemma
2.2. ]

Lemma 2.3. (||u,]||) is bounded.

Proof. Indeed, we have

M a2 s = | <h(+’7j>+ [ Ky

Also
1—
[, [ i < Wnlol () < ol
Q (1 T Q @
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and

| k@t < Koo [ ugt < o,
Q Q
where C; and (5 are constants do not depend on n. Hence
Slunll® < M(J[unl*)lunl® < Cullunl'™ + Coljun||**
and because 1 —y < 1 and 1+a < 2, one has that (||u,|*) is bounded. Consequently
0 <6< M(|up|®) € My, foralln=1,2,...

and the proof of Lemma 2.3 is over. [

Lemma 2.4. The sequence (uy,), obtained in Lemma 2.1, converges to a solution of
problem (1.1).

Proof. As we have seen, the sequence (u,,) is bounded and so u,, — v in H}(Q), u, —
win L9(Q),1 < q< 225, N >3, u,(z) — u(z) ae. in Q, up to subsequences.
We now take 1; > 0 an eigenfunction of (—A, H}(f2)) associated to the first

eigenvalue Ay, in such a way that
mgy > )\lMoowl(x); for all z € Q,

where mgy and M, were introduced, respectively, in Lemmas 2.2 and 2.3.

—M([[ull*)Au, = (i’ﬁ))v + k(@u® i Q
> (11(53)W +  k(z)ud in  Q,
> O gy + i) in &,
> myo > )\lMoowl n Q,

Uy = v =0 on 0.

Thus
“AM(lunlPun)) > —A(Msth) in Q
M([lunl|*)un = Mty =0 on 09,

and by invoking the maximum principle, we get

M (|Jun]|*)un > Moty in Q

and so
M

) > TP

Let us show that u,, — u in Hj(Q). Since

M)A = T4 k@ in 0,

(5 + )

we take u,, as a test function in order to obtain

AﬂMM%/WwP:A(ﬂﬁfy+¢¢@mfx

¢1 (JZ‘) in €.
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Let us estimate the two integrals in the right-hand side of the last equality:

h(x)un ’un| HhHoo ‘unl '
Sl g A TI < < C'un,
/Q (% _|_un)7 < A Q ur, — C Ja] T |

where in the last expression we used the Hardy-Sobolev inequality, and
[ k@yugun < Ikl [ g < Cllun**,
Q Q

which implies
Ollunll® < Cllunll + C"flun ||

and, since 0 < a < 1, we conclude that the real sequence (||u,||) is bounded. We
obtain the following convergence, perhaps for subsequences,

lunl* = to = M(||un|*) — M(to),

u, =~ u in Hy(Q), JoVu,Vi — [, VuVi, (fﬁ?w)w — h(ﬁw a.e. in .
Because '
h(z)y Y Y 1
<h —| < |—=| € L(Q),
T <Moo < 5| < 2

by Lebesgue Dominated Convergence Theorem, one has

h(z) h(z)y
A(ww@vﬁﬂ;uv-

n

We also have

Consequently,

h(z)¢

u

M(to) /Q VuVy = /Q

We also note that

+ /Q k(x)u®yp, for all v € Hy(9).

h(l')un «@
M () unll® = 7= + [ (@it
(i tun) o
As we have done before, we have

h(x)uy, ;
(5 + )

/Qk(x)quJr1 —>/Qk:(m)ua+1

and by using again the Lebesgue Dominated Convergence Theorem we get

— h(z)u'™

M(to)to = /Q h(z)ul™" + /Q oz )uo+! (2.9)
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But,
M (to)|[ul|? = /Q h(z)ul™ + /Q e(x)utt, (2.10)

Comparing equalities (2.9) and (2.10) we obtain
M (to)to = M (to) [[ull® = [[ull* = to

because, in view of equality (2.9), M(ty) # 0. Then

h
M) [ vuve = [ "y [ ks,
Q Q u’ Q
for all v € Hj(Q2) and so u is a weak solution of problem (1.1). n
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