Integrability of homogeneous polynomials on the unit ball

Piotr Kot

Abstract

We construct some measure Θ^{α} such that if $0<\alpha \leq 2 n-2, \beta=n-\frac{2+\alpha}{2}$ and E is a circular set of type G_{δ} such that $E \subset \partial \mathbb{B}^{n}$ and $\Theta^{\alpha}(E)=0$ then there exists $f \in \mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ such that $$
E=E^{\beta}(f):=\left\{z \in \partial B^{n}: \int_{\mathbb{D} z}|f|^{2} \chi_{\beta} d \mathfrak{L}^{2}=\infty\right\}
$$ where $\chi_{s}: \mathbb{B}^{n} \ni z \longrightarrow \chi_{s}(z)=\left(1-\|z\|^{2}\right)^{s}$ and \mathbb{D} denotes the unit disc in \mathbb{C}.

1 Introduction

In the paper [6] a natural number K and a sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ of homogeneous polynomials in \mathbb{C}^{d} was constructed so that $\left|p_{n}(z)\right| \leq 2$ and $\sum_{j=K m}^{K(m+1)-1}\left|p_{n}(z)\right| \geq 0.5$ for all z belonging to the boundary of the unit ball $\partial \mathbb{B}^{d}$. In the paper [1] we introduced some additional arguments in such a way that for any circular set $E \subset \partial \mathbb{B}^{d}$ of type G_{δ} and F_{σ} we could construct a holomorphic function f on the unit ball \mathbb{B}^{d} such that $E_{\mathbb{B}^{d}}^{2}(f)=E$.

Let $\chi_{s}: \mathbb{B}^{n} \ni z \longrightarrow \chi_{s}(z)=\left(1-\|z\|^{2}\right)^{s}$. In the paper [3, Lemma 2.6, Theorem 2.7] we showed that there exists a constant $C>0$ such that

$$
\int_{\mathbb{D}_{z}}|f|^{2} \chi_{n-1} d \mathfrak{N}^{2} \leq C \int_{\mathbb{B}^{n}}|f|^{2} d \mathfrak{N}^{2 n}
$$

[^0]for a holomorphic, square integrable function f. In particular $E^{n-1}(f)=\emptyset$. Due to the above inequality the following question can be posed: what additional conditions have to be fulfilled for the set E of type G_{δ} from $\partial \mathbb{B}^{n}$ so that there exists a holomorphic function f square integrable such that, for some $0<s<n-1$, $E=E^{s}(f):=\left\{z \in \partial B^{n}: \int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}^{2}=\infty\right\}$. In this paper we investigate this question.

1.1 Geometric notions.

Let X be a metric space with a pseudometric ρ. Assume that topology of X is given by countable base of open sets.

The set $E \subset X$ is ρ complete iff $\rho(z, w)>0$ for $z \in E$ and $w \in X \backslash E$. If $D, T \subset X$ then we denote $\rho(D, T):=\inf _{z \in D, w \in T} \rho(z, w)$.

We say that τ is a premeasure on X iff $0 \leq \tau(D) \leq \infty$ for $D \subset X$. Moreover μ is a measure defined from premeasure τ on (X, ρ) iff

$$
\begin{aligned}
d_{\rho}(E) & :=\sup _{z, w \in E} \rho(z, w), \\
\mu_{\delta}(E) & :=\inf \left\{\sum_{i \in \mathbb{N}} \tau\left(E_{i}\right): E \subset \bigcup_{i \in \mathbb{N}} E_{i}, d_{\rho}\left(E_{i}\right) \leq 2 \delta, E_{i}=\overline{E_{i}} \subset X\right\}, \\
\mu(E) & :=\sup _{\delta>0} \mu_{\delta}(E)
\end{aligned}
$$

for $E \subset X$.
If ρ is a norm on \mathbb{R}^{n} or \mathbb{C}^{n} then we write symbol Y in place of Y_{ρ}.
Observe that if H^{α} is a measure from $h^{\alpha}(\circ)=(d(\circ))^{\alpha}$ on \mathbb{R}^{n}, then H^{α} is a Hausdorff measure. We also denote \mathfrak{L}^{n} - n-dimensional Lebesgue measure on \mathbb{R}^{n}.

We denote $K_{\rho}(D, \varepsilon):=\left\{z \in X: \inf _{w \in D} \rho(z, w)<\varepsilon\right\}$ and $K_{\rho}(x, \varepsilon)=K_{\rho}(\{x\}, \varepsilon)$ for $x \in X$. Now we define $s_{\rho \varepsilon}$ index of D as

$$
s_{\rho \varepsilon}(D):=\inf \left\{s:\left\{x_{i}\right\}_{i=1}^{s} \subset D \subset \sum_{i=1}^{s} K_{\rho}\left(x_{i}, \varepsilon\right) \subset X\right\} .
$$

We say that X is (n, ρ, η)-regular if there exist constants $\kappa_{1}, \kappa_{2}, \varepsilon_{0}>0$, measure η constructed from some premeasure so that $\kappa_{1} \varepsilon^{n} \leq \eta\left(K_{\rho}(x, \varepsilon)\right) \leq \kappa_{2} \varepsilon^{n}$ for $x \in X$ and $0<\varepsilon<\varepsilon_{0}$.

Now we can consider the following premeasure

$$
\tau_{\rho}^{\alpha}(D):=\limsup _{\varepsilon \rightarrow 0} 2^{\alpha} \varepsilon^{\alpha} s_{\rho \varepsilon}(D)
$$

If additionally X is (n, ρ, η)-regular then we consider the premeasure

$$
\nu_{\rho \mu}^{\alpha}(D):=\limsup _{\varepsilon \rightarrow 0} 2^{\alpha} \varepsilon^{\alpha-n} \eta\left(K_{\rho}(D, \varepsilon)\right)
$$

We also define measure Q_{ρ}^{α} from τ_{ρ}^{α} and $\Theta_{\rho \mu}^{\alpha}$ from $\nu_{\rho \mu}^{\alpha}$.
We use the pseudometric $\rho(z, w):=\sqrt{1-|\langle z, w\rangle|}$ and $\sigma-(2 n-1)$-dimensional, natural measure on $\partial \mathbb{B}^{n}$.

Definition 1.1. Let $T \subset \partial \mathbb{B}^{n}$ and $C>0$. If $A=\left\{\xi_{1}, \ldots, \xi_{s}\right\} \subset T$ and $\rho\left(\xi_{i}, \xi_{j}\right)>\beta$ for $i \neq j$ then we say that A is β-separated subset of T. Let us define homogeneous polynomials for the pair (C, T) as:

$$
p_{m}(z)=p_{m, A}(z)=\sum_{\xi \in A}\langle z, \xi\rangle^{m}
$$

where $A \subset T, A$ is $\frac{C}{\sqrt{N}}$-separated subset of T and $N \leq m \leq 2 N$.

$2 Q_{\rho}^{\alpha}$ and $\Theta_{\rho \mu}^{\alpha}$ measure

In this section we describe some basic properties of measures $Q_{\rho}^{\alpha}, \Theta_{\rho \mu}^{\alpha}$. Let us define relation $y \in[x]$ iff $\rho(x, y)=0$ and the metric space $X_{\sim}:=\{[x]: x \in X\}$.

Lemma 2.1. We have the following properties:

1. If D is a closed subset of X_{\sim} then $H_{\rho}^{\alpha}(D) \leq \liminf _{\varepsilon \rightarrow 0} 2^{\alpha} \varepsilon^{\alpha} s_{\rho \varepsilon}(D) \leq \tau_{\rho}^{\alpha}(D)$.
2. If E is a Borel subset of X_{\sim} then $H_{\rho}^{\alpha}(E) \leq Q_{\rho}^{\alpha}(E)$.
3. If E is a Borel subset of X_{\sim} then E is $H_{\rho}^{\alpha}, Q_{\rho}^{\alpha}$ and $\Theta_{\rho \mu}^{\alpha}$ measurable.

Proof. Observe that $H_{\rho \varepsilon}^{\alpha}(D) \leq 2^{\alpha} \varepsilon^{\alpha} s_{\rho \varepsilon}(D)$ for $\varepsilon>0$. Therefore property (1) is clear.

Let E be a Borel subset of X_{\sim} such that $Q_{\rho}^{\alpha}(E)<\infty$. Let $\delta, \varepsilon>0$. There exists a sequence $\left\{K_{i}\right\}_{i \in \mathbb{N}}$ of closed subsets of X_{\sim} such that $E \subset \cup_{i \in \mathbb{N}} K_{i}, d_{\rho}\left(K_{i}\right) \leq 2 \delta$ and $\sum_{i \in \mathbb{N}} \tau_{\rho}^{\alpha}\left(K_{i}\right) \leq Q_{\rho \delta}^{\alpha}(E)+\varepsilon$. We may estimate

$$
H_{\rho}^{\alpha}(E) \leq H_{\rho}^{\alpha}\left(\bigcup_{i \in \mathbb{N}} K_{i}\right) \leq \sum_{i \in \mathbb{N}} H_{\rho}^{\alpha}\left(K_{i}\right) \leq \sum_{i \in \mathbb{N}} \tau_{\rho}^{\alpha}\left(K_{i}\right) \leq Q_{\rho \delta}^{\alpha}(E)+\varepsilon
$$

We conclude that $H_{\rho}^{\alpha}(E) \leq Q_{\rho}^{\alpha}(E)$.
Property (3) follows from [4, Theorem 19].

Lemma 2.2. Let X be (n, ρ, μ)-regular. There exists $\kappa_{1}, \kappa_{2}, \varepsilon_{0}>0$ such that:

1. If D is a closed subset of X_{\sim} then $\kappa_{1} s_{\rho \varepsilon}(D) \leq \varepsilon^{-n} \mu\left(K_{\rho}(D, \varepsilon)\right) \leq \kappa_{2} s_{\rho \varepsilon}(D)$ for $0<3 \varepsilon<\varepsilon_{0}$.
2. If $\left\{K_{i}\right\}_{i \in \mathbb{N}}$ is a sequence of closed subsets of X_{\sim} such that $\rho\left(K_{i}, K_{j}\right)>0$ for $i \neq j$ then $\nu_{\rho \mu}^{n}\left(\bigcup_{i \in \mathbb{N}} K_{i}\right)=\sum_{i \in \mathbb{N}} \nu_{\rho \mu}^{n}\left(K_{i}\right)$.
3. If D is a closed subset of X_{\sim} then $\kappa_{1} \tau_{\rho}^{\alpha}(D) \leq \nu_{\rho \mu}^{\alpha}(D) \leq \kappa_{2} \tau_{\rho}^{\alpha}(D)$ for $\alpha>0$.
4. If E is a Borel subset of X_{\sim} then $\kappa_{1} Q_{\rho}^{\alpha}(E) \leq \Theta_{\rho \mu}^{\alpha}(E) \leq \kappa_{2} Q_{\rho}^{\alpha}(E)$ for $\alpha>0$.
5. If E is a Borel subset of X_{\sim} then $\Theta_{\rho \mu}^{n}(E) \leq \kappa_{2} H_{\rho}^{n}(E)$.

Proof. Due to X is (n, ρ, μ)-regular, there exists $\kappa_{1}, \kappa_{2}, \varepsilon_{0}>0$ such that $2^{n} \kappa_{1} \leq$ $\varepsilon^{-n} \mu\left(K_{\rho}(x, \varepsilon)\right) \leq 3^{-n} \kappa_{2}$ for $x \in X$ and $0<\varepsilon<\varepsilon_{0}$. We denote $s=s_{\rho \varepsilon}(D)$. Let r be a maximal natural number such that there exist points x_{1}, \ldots, x_{r} in D such that $\rho\left(x_{i}, x_{j}\right) \geq \varepsilon$ for $i \neq j$. Observe that $D \subset \bigcup_{i=1}^{r} K_{\rho}\left(x_{i}, \varepsilon\right)$. Therefore $s \leq r$. Moreover $\bigcup_{i=1}^{r} K_{\rho}\left(x_{i}, \frac{\varepsilon}{2}\right) \subset K_{\rho}(D, \varepsilon)$. If $s=\infty$ then $r=\infty$ and $\mu\left(K_{\rho}(D, \varepsilon)\right) \geq$ $\sum_{i=1}^{\infty} \mu\left(K_{\rho}\left(x_{i}, \frac{\varepsilon}{4}\right)\right)=\infty$. Therefore we can assume that $s, r<\infty$.

There exist points y_{1}, \ldots, y_{s} such that $\left\{y_{i}\right\}_{i=1}^{s} \subset D \subset \bigcup_{i=1}^{s} K_{\rho}\left(y_{i}, \varepsilon\right)$. We define the sequence $i(1), \ldots, i(t)$ such that $i(1)=1$ and $i(k+1)$ is a minimal index such that $\rho\left(y_{i(k+1)}, y_{i(j)}\right)>\varepsilon$ for $j=1, \ldots, k$. Observe that $t \leq s$. We prove that

$$
D \subset \bigcup_{k=1}^{t} K_{\rho}\left(y_{i(k)}, 2 \varepsilon\right)
$$

Let $z \in D$. There exists $m \in\{1, \ldots, s\}$ such that $z \in K_{\rho}\left(y_{m}, \varepsilon\right)$. There exists maximal $k \leq t$ such that $i(k) \leq m$. If $i(k)=m$ then $y \in K_{\rho}\left(y_{i(k)}, 2 \varepsilon\right)$. If $i(k)<$ m, then there exists an index $k_{1} \leq k$ such that $\rho\left(y_{m}, y_{i\left(k_{1}\right)}\right) \leq \varepsilon$. In particular $\rho\left(z, y_{i\left(k_{1}\right)}\right) \leq \rho\left(z, y_{m}\right)+\rho\left(y_{m}, y_{i\left(k_{1}\right)}\right)<2 \varepsilon$. We conclude that $z \in K_{\rho}\left(y_{i\left(k_{1}\right)}, 2 \varepsilon\right)$. Now we have

$$
\bigcup_{k=1}^{r} K_{\rho}\left(x_{k}, \frac{\varepsilon}{2}\right) \subset K_{\rho}(D, \varepsilon) \subset \bigcup_{k=1}^{t} K_{\rho}\left(y_{i(k)}, 3 \varepsilon\right) .
$$

Due to $\rho\left(x_{i}, x_{j}\right) \geq \varepsilon$ for $i \neq j$ we can estimate

$$
\kappa_{1} s \varepsilon^{n} \leq \sum_{k=1}^{r} \mu\left(K_{\rho}\left(x_{k}, \frac{\varepsilon}{2}\right)\right) \leq \mu\left(K_{\rho}(D, \varepsilon)\right) \leq \sum_{k=1}^{t} \mu\left(K_{\rho}\left(y_{i(k)}, 3 \varepsilon\right)\right) \leq \kappa_{2} s \varepsilon^{n} .
$$

Now we prove (2). Observe that

$$
\nu_{\rho \mu}^{n}(T)=\lim _{\varepsilon \rightarrow 0} \mu\left(K_{\rho}(T, \varepsilon)\right)=\mu(\bar{T}) .
$$

Moreover

$$
\sum_{j<i \Rightarrow \rho\left(T_{i}, T_{j}\right)>2 \varepsilon} \mu\left(K_{\rho}\left(T_{i}, \varepsilon\right)\right) \leq \mu\left(K_{\rho}\left(\bigcup_{i \in \mathbb{N}} T_{i}, \varepsilon\right)\right) \leq \sum_{i \in \mathbb{N}} \mu\left(K_{\rho}\left(T_{i}, \varepsilon\right)\right) .
$$

In particular

$$
\nu_{\rho \mu}^{n}\left(\bigcup_{i \in \mathbb{N}} T_{i}\right)=\sum_{i \in \mathbb{N}} \nu_{\rho \mu}^{n}\left(T_{i}\right) .
$$

The properties (3)-(4) are consequences of (1).
We prove (5). Let E be a Borel subset of X_{\sim} such that $H_{\rho}^{n}(E)<\infty$. Let $\delta, \varepsilon>0$. There exists a sequence $\left\{K_{i}\right\}_{i \in \mathbb{N}}$ of closed subsets of X_{\sim} such that $E \subset \cup_{i \in \mathbb{N}} K_{i}$, $r_{i}:=d_{\rho}\left(K_{i}\right) \leq 2 \delta$ and $\sum_{i \in \mathbb{N}} r_{i}^{n} \leq H_{\rho \delta}^{n}(E)+\varepsilon$. There exists a sequence of points $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ such that $K_{i} \subset K_{\rho}\left(x_{i}, 2 r_{i}\right)$. In particular for δ small enough we may estimate $\Theta_{\rho \mu(8 \delta)}^{n}(E) \leq \sum_{\in \mathbb{N}} \nu_{\rho \mu}^{n}\left(\overline{K_{\rho}\left(x_{i}, 2 r_{i}\right)}\right) \leq \sum_{\in \mathbb{N}} \mu\left(\overline{K_{\rho}\left(x_{i}, 2 r_{i}\right)}\right) \leq \sum_{i \in \mathbb{N}} 3^{-n} \kappa_{2} 2^{n} r_{i}^{n} \leq$ $\kappa_{2} H_{\rho \delta}^{n}(E)+\kappa_{2} \varepsilon$. Now we conclude that $\Theta_{\rho \mu}^{n}(E) \leq \kappa_{2} H_{\rho}^{n}(E)$.

Lemma 2.3. Let $0<q<\frac{1}{2}, m \in \mathbb{N}$ and $\alpha_{0}=\frac{-m \log 2}{\log q}$. If $E_{0}:=[0,1]^{m} \subset \mathbb{R}^{m}$, $E_{j+1}:=([0, q] \cup[1-q, 1]) E_{j}$ and $E=\bigcap_{j \in \mathbb{N}} E_{j}$ then $H^{\alpha}(E)=Q^{\alpha}(E)=0$ where $\alpha_{0}<\alpha$. Moreover $H^{\alpha}(E)=Q^{\alpha}(E)=\infty$ for $0<\alpha<\alpha_{0}$ and $2^{-2 m} \leq H^{\alpha_{0}}(E) \leq$ $Q^{\alpha_{0}}(E) \leq \sqrt{m^{\alpha_{0}}} q^{-\alpha_{0}}$. Additionally E is $\left(\alpha_{0},\|\circ\|, Q^{\alpha_{0}}\right)$ regular.
Proof. Let ε be such that $\sqrt{m} q^{k}<2 \varepsilon<\sqrt{m} q^{k-1}$ for some k. Since E_{k} can be covered by $2^{m k}$ cubes with the edge equal to q^{k} therefore we may estimate: $2^{\alpha} \varepsilon^{\alpha} s_{\varepsilon}(D) \leq$ $2^{\alpha} \varepsilon^{\alpha} 2^{m k} \leq \sqrt{m^{\alpha}} q^{-\alpha}\left(q^{\alpha} 2^{m}\right)^{k}$.

If $\alpha_{0}<\alpha \leq m$ then $2^{m} q^{\alpha}<1$ and $\tau^{\alpha}(E)=\liminf _{\varepsilon \rightarrow 0} 2^{\alpha} \varepsilon^{\alpha} s_{\varepsilon}(D)=0$. In particular $Q^{\alpha}(E)=0$ for $\alpha_{0}<\alpha \leq m$.

Observe that $2^{m} q^{\alpha_{0}}=1$. Moreover E_{k} is the sum of $2^{m k}$ disjoint cubes $I_{1}, \ldots, I_{2^{m k}}$ with the edges equal to q^{k}. Due to $2^{m k} \tau^{\alpha_{0}}\left(E \cap I_{s}\right)=\tau^{\alpha_{0}}\left(E \cap E_{k}\right)=\tau^{\alpha_{0}}(E) \leq$ $\sqrt{m^{\alpha_{0}}} q^{-\alpha_{0}}$ we conclude that $Q^{\alpha_{0}}(E) \leq \sqrt{m^{\alpha_{0}}} q^{-\alpha_{0}}$.

Let U be an open subset of \mathbb{R}^{m}. Let $f_{n}(U)$ be a number of cubes from E_{n} which intersects U. Let $g_{n}(U)=2^{-n m} f_{n}(U)$. Observe that $f_{n+1}(U) \leq 2^{m} f_{n}(U)$ and $g_{n+1}(U)=2^{-(n+1) m} f_{n+1}(U) \leq 2^{-n m} f_{n}(U)=g_{n}(U)$. Let $g(U)=\lim _{n \rightarrow \infty} g_{n}(U)$. If $[0,1]^{m} \subset U$ then $g(U)=1$. Moreover $g(U \cup V) \leq g(U)+g(V)$.

Let I be an open cube with the edges equal to $r<q$. There exists $n \in \mathbb{N}$ such that $q^{n+1} \leq r<q^{n}$. Observe that $f_{n}(I) \leq 2^{m}$. In particular

$$
g(I) \leq 2^{-n m} f_{n}(I) \leq 2^{-n m} 2^{m} \leq q^{\alpha_{0} n} 2^{m} \leq q^{-\alpha_{0}} 2^{m} r^{\alpha_{0}}
$$

Let I_{1}, \ldots, I_{s} be a covering of E so that I_{k} is an open cube with the edges equal to r_{k} with $r_{k}<q$. We can estimate

$$
\sum_{k=1}^{s} r_{k}^{\alpha_{0}} \geq q^{\alpha_{0}} 2^{-m} \sum_{k=1}^{s} g\left(I_{k}\right) \geq q^{\alpha_{0}} 2^{-m} g\left(\bigcup_{k=1}^{s} I_{k}\right) \geq q^{\alpha_{0}} 2^{-m}=2^{-2 m}
$$

Therefore $2^{-2 m} \leq H^{\alpha_{0}}(E) \leq Q^{\alpha_{0}}(E)$ and $\infty=H^{\alpha}(E) \leq Q^{\alpha}(E)$ for $0<\alpha<\alpha_{0}$.
Let $x \in E$ and $\varepsilon>0$ be such that $0<2 \varepsilon<q$. There exist $n, r \in \mathbb{N}$ such that $q^{r}<\varepsilon \leq q^{r-1}$ and $q^{n+1} \leq 2 \varepsilon<q^{n}$. The set E_{k} is the sum of $2^{m k}$ disjoint, identical cubes $I_{1}^{k}, \ldots, I_{2^{m k}}^{k}$ with the edges equal to q^{k}. In particular $2^{n m} Q^{\alpha_{0}}\left(I_{i(k)}^{n} \cap E\right)=$ $\sum_{i=1}^{2^{n m}} Q^{\alpha_{0}}\left(I_{i}^{n} \cap E\right)=Q^{\alpha_{0}}(E)$ for $k=1, . ., 2^{n m}$. Due to $f_{n}(K(x, \varepsilon)) \leq 2^{m}$ we conclude that there exist $I_{i(1)}^{n}, \ldots, I_{i(s)}^{n}$ cubes such that $K(x, \varepsilon) \cap E \subset \bigcup_{k=1}^{s} I_{i(k)}$ and $s \leq 2^{m}$. Moreover there exists k_{0} such that $I_{k_{0}}^{r} \cap E \subset K(x, \varepsilon) \cap E$. We may estimate

$$
q^{\alpha_{0}} \varepsilon^{\alpha_{0}} \leq q^{\alpha_{0} r}=2^{-m r} \leq \frac{Q^{\alpha_{0}}(K(x, \varepsilon) \cap E)}{Q^{\alpha_{0}}(E)} \leq 2^{m-n m}=q^{\alpha_{0}(n-1)} \leq q^{-2 \alpha} 2^{\alpha_{0}} \varepsilon^{\alpha_{0}}
$$

We conclude that E is $\left(\alpha_{0},\|\circ\|, Q^{\alpha_{0}}\right)$ regular.
Lemma 2.4. Assume that $H_{\rho}^{\alpha}(U)=\infty$ for $0<\alpha<m$ and all the open U non empty subsets of X. There exists a set $G \subset X$ of type G_{δ} such that $0=H_{\rho}^{\alpha}(G)<$ $Q_{\rho}^{\alpha}(G)=\infty$ for $0<\alpha<m$.
Proof. Let $A=\left\{x_{i}\right\}_{i \in \mathbb{N}}$ be a countable and dense subset of X such that $x_{\lfloor i, j\rfloor}=x_{\lfloor i, 1\rfloor}$ for all $i, j \in \mathbb{N}$. Let $U_{i}:=\bigcup_{j=i}^{\infty} K_{\rho}\left(x_{j}, 2^{-j^{2}}\right)$ and $G=\bigcap_{i \in \mathbb{N}} U_{i}$. Let $\alpha>0$ and $\delta, \varepsilon>0$. Let j_{0} be such that $\alpha\left(j^{2}-1\right) \geq j, 2^{-j^{2}}<\delta, 2^{-j+1} \leq \varepsilon$ for $j \geq j_{0}$. We may estimate

$$
H_{\rho \delta}^{\alpha}(G) \leq \sum_{j=j_{0}} 2^{-\alpha j^{2}+\alpha} \leq \sum_{j=j_{0}} 2^{-j}=2^{-j_{0}+1} \leq \varepsilon .
$$

We now conclude that $H_{\rho}^{\alpha}(G)=0$ for $\alpha>0$.
Observe that $A \subset G$. Therefore $\bar{G}=X$. Suppose that $\tau_{\rho}^{\alpha_{0}}(G)<\infty$ for some $0<\alpha_{0}<m$. There exists a sequence $\left\{F_{i}\right\}_{i \in \mathbb{N}}$ of closed subsets of X such that $G \subset \bigcup_{i \in \mathbb{N}} F_{i}$ and $\sum_{i \in \mathbb{N}} \tau_{\rho}^{\alpha_{0}}\left(F_{i}\right)<\infty$. Moreover because G is of type G_{δ} there exists a sequence of closed sets $\left\{H_{i}\right\}_{i \in \mathbb{N}}$ with empty interiors such that $X \backslash G=\bigcup_{i \in \mathbb{N}} H_{i}$. Observe that:

$$
X \subset X \backslash G \cup G \subset \bigcup_{i \in \mathbb{N}} H_{i} \cup \bigcup_{i \in \mathbb{N}} F_{i} .
$$

Due to Bair's Theorem we conclude that there exists k such that interior of F_{k} is non empty. In particular due to Lemma 2.1 we conclude a contradiction $\infty=H_{\rho}^{\alpha_{0}}\left(F_{k}\right) \leq$ $\tau_{\rho}^{\alpha_{0}}\left(F_{k}\right)$.

Therefore $Q_{\rho}^{\alpha}(G)=\infty$ for $0<\alpha<m$.

Lemma 2.5. There exists a compact E subset of \mathbb{R}^{m} which is uncountable and $Q^{\alpha}(E)=\tau^{\alpha}(E)=0$ for $\alpha>0$.

Proof. Let $E_{0}:=[0,1]^{m} \subset \mathbb{R}^{m}, E_{j+1}:=\left(\left[0,4^{-j-1}\right] \cup\left[1-4^{-j-1}, 1\right]\right) E_{j}$ and $E=$ $\bigcap_{j \in \mathbb{N}} E_{j}$. Let $\alpha>0$ and $\sqrt{m} 2^{-k(k+1)}<2 \varepsilon \leq \sqrt{m} 2^{-(k-1) k}$. Since E_{k} has $2^{m k}$ cubes with the edges equal to $\prod_{j=1}^{k} 4^{-j}=2^{-k(k+1)}$ therefore we may estimate: $2^{\alpha} \varepsilon^{\alpha} s_{\varepsilon}(E) \leq$ $2^{\alpha} \varepsilon^{\alpha} s_{\varepsilon}\left(E_{k}\right) \leq 2^{\alpha} \varepsilon^{\alpha} 2^{m k} \leq \sqrt{m^{\alpha}} 2^{m k-\alpha k(k-1)}$. Due to $\lim _{k \rightarrow \infty} m k-\alpha k(k-1)=-\infty$ we have $\tau^{\alpha}(E)=0$. In particular $Q^{\alpha}(E)=0$.

We prove that the set E is uncountable. Let U be an open set such that $U \cap E \neq \emptyset$. Observe that there exists $k \in \mathbb{N}$ such that $U \cap E_{k} \neq \emptyset$. Therefore there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset U \cap E$ such that $x_{i} \neq x_{j}$ for $i \neq j$. We may conclude that if $x \in E$ then $\{x\}$ is a not open subset of E. Suppose that E is countable and there exists a sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}}=E$. Due to Bair's Theorem the interior of $\left\{w_{n_{0}}\right\}$ in E is not empty for some n_{0}. Therefore $\left\{w_{n_{0}}\right\}$ is an open subset of E which is impossible.

Lemma 2.6. Let X be a metric space with pseudometric ρ and \tilde{X} - metric space with the pseudometric $\tilde{\rho}$. Let $f: X \rightarrow \tilde{X}$ be a continuous function such that $c_{1} \rho(x, y) \leq$ $\tilde{\rho}(f(x), f(y)) \leq c_{2} \rho(x, y)$ for $x, y \in X$ and some constants $c_{1}, c_{2}>0$. Then

1. $c_{1}^{\alpha} \tau_{\rho}^{\alpha}(D) \leq \tau_{\tilde{\rho}}^{\alpha}(f(D)) \leq c_{2}^{\alpha} \tau_{\rho}^{\alpha}(D)$ for $\alpha>0$ and $D \subset X$.
2. $c_{1}^{\alpha} Q_{\rho}^{\alpha}(D) \leq Q_{\tilde{\rho}}^{\alpha}(f(D)) \leq c_{2}^{\alpha} Q_{\rho}^{\alpha}(D)$ for $\alpha>0$ and $D \subset X$.

Proof. Let $\left\{x_{i}\right\}_{i=1}^{s} \subset D$ be such that $D \subset \bigcup_{i=1}^{s} K_{\rho}\left(x_{i}, \varepsilon\right)$. Observe that $f(D) \subset$ $\bigcup_{i=1}^{s} f\left(K_{\rho}\left(x_{i}, \varepsilon\right)\right) \subset \bigcup_{i=1}^{s} K_{\tilde{\rho}}\left(f\left(x_{i}\right), c_{2} \varepsilon\right)$. In particular $\tau_{\tilde{\rho}}^{\alpha}(f(D)) \leq c_{2}^{\alpha} \tau_{\rho}^{\alpha}(D)$.

Let $\left\{y_{i}\right\}_{i=1}^{s} \subset D$ be such that $f(D) \subset \bigcup_{i=1}^{s} K_{\tilde{\rho}}\left(f\left(y_{i}\right), c_{1} \varepsilon\right)$. Observe that $D \subset$ $\bigcup_{i=1}^{s} f^{-1}\left(K_{\tilde{\rho}}\left(f\left(y_{i}\right), c_{1} \varepsilon\right)\right) \subset \bigcup_{i=1}^{s} K_{\rho}\left(y_{i}, \varepsilon\right)$. In particular $c_{1}^{\alpha} \tau_{\rho}^{\alpha}(D) \leq \tau_{\tilde{\rho}}^{\alpha}(f(D))$.

The property (2) follows directly from (1).

Lemma 2.7. Let M be k-dimensional, C^{1} class submanifold of \mathbb{R}^{m}. Then $Q^{\alpha}(M)=$ 0 for $k<\alpha$ and $Q^{\alpha}(M)=\infty$ for $0<\alpha<k$.

Proof. Observe that M is a local graph of class C^{1} function. Let $x \in M$. There exists an open, convex set U and C^{1} function $f \in C^{1}(U)$ such that $\psi: \mathbb{R}^{k} \supset U \ni$ $x \rightarrow(x, f(x)) \in M \subset \mathbb{R}^{m}$ and $x \in \psi(U) \subset M$. We can assume that f^{\prime} is bounded on U. Observe that

$$
\|x-y\| \leq\|\psi(x)-\psi(y)\| \leq \sqrt{1+\left\|f^{\prime}\right\|}\|x-y\|
$$

Due to $H^{\alpha}(U)=\infty$ for $0<\alpha<k$ and Lemma 2.1 we may conclude that $Q^{\alpha}(U)=\infty$ for $0<\alpha<k$. Now due to Lemma 2.6 we have $\infty=Q^{\alpha}(\psi(U)) \leq Q^{\alpha}(M)$ for $0<\alpha<k$. Moreover due to Lemma $2.2 Q^{k}(U)<\infty$ and therefore $Q^{k}(\psi(U))<\infty$ and $Q^{\alpha}(M)=0$ for $k<\alpha$.

3 Homogeneous polynomials

In this section we consider $\rho(z, w):=\sqrt{1-|\langle z, w\rangle|}$ and a natural (2n-1)-dimensional measure σ on $\partial \mathbb{B}^{n}$. Observe that $\partial \mathbb{B}^{n}$ is $(2 n-2, \rho, \sigma)$-regular. In fact there exist constants κ_{1}, κ_{2} such that $\kappa_{1} \varepsilon^{2 n-2} \leq \sigma\left(K_{\rho}(x, \varepsilon)\right) \leq \kappa_{2} \varepsilon^{2 n-2}$ for $x \in \partial \mathbb{B}^{n}$ and $0<\varepsilon<1$. In particular $\nu_{\rho \sigma}^{\alpha}\left(\partial \mathbb{B}^{n}\right)=0$ for $\alpha>2 n-2$.

Definition. Let us denote $\chi_{s}: \mathbb{B}^{n} \ni z \longrightarrow \chi_{s}(z)=\left(1-\|z\|^{2}\right)^{s}$ and

$$
E^{s}(f):=\left\{z \in \partial B^{n}: \int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}^{2}=\infty\right\} .
$$

Definition 3.1. Let $\alpha>0$. A subset $A \subset \partial \mathbb{B}^{n}$ is called α-separated iff $\rho\left(z_{1}, z_{2}\right)>\alpha$ for different elements $z_{1}, z_{2} \in A$.

Definition. Let a sequence of the pairs (i, j) be ordered according to the formula

$$
\lfloor i, j\rfloor<\lfloor k, l\rfloor \Leftrightarrow\left\{\begin{array}{cll}
i+j<k+l & \text { gdy } & i+j \neq k+l \\
i<k & \text { gdy } & i+j=k+l
\end{array} .\right.
$$

Lemma 3.2. Let $C>2$. Assume that a set A is $\frac{C}{\sqrt{N}}$-separated. For $z \in \partial \mathbb{B}^{n}$ we define

$$
A_{m}(z):=\left\{\xi \in A: \frac{m C}{2 \sqrt{N}} \leq \rho(z, \xi) \leq \frac{(m+1) C}{2 \sqrt{N}}\right\}
$$

Therefore for $m=1,2, \ldots$ a set $A_{m}(z)$ has up to $2^{n-1}(m+2)^{2 n-2}$ elements. A set $A_{0}(z)$ has up to one element. Additionally $s \leq N^{n-1}$.

Proof. First part of the Lemma it is in fact the [6, Lemma 1]. To prove that $s \leq N^{n-1}$ we can estimate

$$
s \frac{C^{2 n-2}}{2^{2 n-2} N^{n-1}} \leq \sum_{j=1}^{s} \sigma\left(K_{\rho}\left(\zeta_{j} ; \frac{C}{2 \sqrt{N}}\right)\right) \leq 1
$$

since the balls $B\left(\zeta_{j} ; C /(2 \sqrt{N})\right)$ are disjoint. Therefore we get $s \leq N^{n-1}$.

Lemma 3.3. [6, Lemma 2] If $A \subset \partial \mathbb{B}^{n}$ is α / \sqrt{N}-separated then for each $\beta>\alpha$ there exists an integer $K=K(\alpha, \beta)$ such that A can be partitioned into K disjoint β / \sqrt{N}-separated sets.

Proposition 3.4. We can estimate $\left(1+\frac{1}{x}\right)^{x}<e<\left(1+\frac{1}{x}\right)^{x+1}$ for $x \geq 1$.
Proof. For $0<y<1$ we have the following inequality $y-\frac{y^{2}}{2} \leq \ln (1+y)<y$. Let $f(x)=x \ln \left(1+\frac{1}{x}\right)$ and $g(x)=(x+1) \ln \left(1+\frac{1}{x}\right)$. We may estimate $f^{\prime}(x)=$ $\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1} \geq \frac{1}{x}-\frac{1}{2 x^{2}}-\frac{1}{x+1}=\frac{x^{2}-x}{2 x^{3}(x+1)}>0$ for $x>1$. Moreover $g^{\prime}(x)=$ $\ln \left(1+\frac{1}{x}\right)-\frac{1}{x}<0$ for $x>1$. In particular $f(x)<f(\infty)=1=g(\infty)<g(x)$ for $x \geq 1$.

Theorem 3.5. There exists a constant C_{0} such that $C_{0}>2$ and for all $C>C_{0}$, $\delta \in(0,1), 0<\alpha \leq 2 n-2$ there exists a natural number $K=K(C)$ such that if T, D are compact, circular, disjoint subsets of $\partial \mathbb{B}^{n}$, such that $\nu^{\alpha}(T)<\infty$ then there exists $m_{0} \in \mathbb{N}$ such that homogeneous polynomials for (C, T) fulfills properties:

1. $\left|p_{m}(z)\right| \leq 2$ for $z \in \partial \mathbb{B}^{n}$ and $m \in \mathbb{N}$.
2.

$$
\int_{\partial \mathbb{B}^{n}}\left|p_{m}\right|^{2} d \sigma \leq \frac{6 C^{2 n}\left(\nu_{\rho \sigma}^{\alpha}(T)+\delta\right)}{m^{n-\frac{2+\alpha}{2}}}
$$

for $m \geq m_{0}$.
3. $\left|p_{m}(z)\right| \leq 2^{-\sqrt{K m}}$ for all $z \in D, m \geq m_{0}$.
4. For $\alpha \geq 0, K m \geq m_{0}$ and $z \in T$ we have $\sum_{j=K m}^{K(m+1)-1} j^{\alpha}\left|p_{j}(z)\right|^{2} \geq \frac{(K m)^{\alpha}}{4}$.

Proof. Let $\beta=n-\frac{2+\alpha}{2}$. There exist $M, \varepsilon_{0}>0$ such that $M-\delta \leq \nu_{\rho \sigma}^{\alpha}(T)$ and $\sigma\left(K_{\rho}(T, \varepsilon)\right) \leq M \varepsilon^{2 \beta}$ for $\varepsilon \in\left(0,2 \varepsilon_{0}\right)$. Denote $S:=\partial \mathbb{B}^{n} \backslash K\left(T, \varepsilon_{0}\right)$. We may assume that ε_{0} is so small that $D \subset S$.

Let $A=\left\{\xi_{1}, \ldots, \xi_{s}\right\}$ be $\frac{C}{\sqrt{N}}$-separated subset of T. Let

$$
A_{j}(z)=\left\{\xi \in A: \frac{j C}{2 \sqrt{N}} \leq \rho(z, \xi)<\frac{(j+1) C}{2 \sqrt{N}}\right\}
$$

There exists $C_{0}>0$ such that

$$
\exp \left(-\left(\frac{j C}{2}\right)^{2}\right)(j+2)^{2 n-2} \leq \frac{1}{(j+2)^{2 n} 2^{j+n}}
$$

for $C>C_{0}$ and $j \geq 1$.
Let N be so large that $\frac{C}{\sqrt{N}} \leq \varepsilon_{0}$ and $\rho(z, w)>\frac{1}{N^{0.1}}$ for $\xi \in A, w \in S$.
Due to Lemma 3.2 we can estimate

$$
\begin{aligned}
\left|p_{m}(z)\right| & \leq \sum_{\xi \in A}\left|\left\langle z, \xi_{j}\right\rangle\right|^{m} \leq \sum_{\xi \in A}\left(1-\frac{1}{N^{0.2}}\right)^{N} \leq(2 N)^{n-1}\left(1-N^{0.2}\right)^{N^{0.2} N^{0.8}} \\
& \leq 2^{-N^{0.8}} \leq 2^{-\sqrt{K m}} \leq \frac{\delta}{2 m^{\beta}}
\end{aligned}
$$

for $z \in S, N$ high enough and $N \leq m \leq 2 N$. We have proved the property (3). Moreover we may estimate

$$
\int_{S}\left|p_{m}(z)\right|^{2} \leq \int_{S} \frac{\delta}{2 m^{\beta}} \leq \frac{\delta}{2 m^{\beta}} \leq \frac{M C^{2 n}}{m^{\beta}}
$$

Let us denote

$$
\begin{aligned}
B_{0} & :=K_{\rho}\left(T, \frac{C}{2 \sqrt{N}}\right) \\
B_{k+1} & :=K_{\rho}\left(T, \frac{(k+2) C}{2 \sqrt{N}}\right) \backslash B_{k} .
\end{aligned}
$$

If $z \in B_{k+1}$ then $\rho(z, w) \geq \frac{(k+1) C}{2 \sqrt{N}}$ for $w \in T$. In particular $A_{j}(z)=\emptyset$ for $j \leq k$. There exists $N_{1} \in \mathbb{N}$ such that $K\left(T, \varepsilon_{0}\right) \subset \bigcup_{k=0}^{N_{1}} B_{k} \subset K\left(T, 2 \varepsilon_{0}\right)$. We may estimate

$$
\begin{aligned}
\left|p_{m}(z)\right| & \leq \sum_{\xi \in A}|\langle z, \xi\rangle|^{m} \leq \sum_{j=0}^{\infty} \sum_{\xi \in A_{j}(z)}|\langle z, \xi\rangle|^{m} \\
& \leq \sum_{j=0}^{\infty} \sum_{\xi \in A_{j}(z)}\left(1-\frac{j^{2} C^{2}}{4 N}\right)^{N} \leq \sum_{j=0}^{\infty} \sum_{\xi \in A_{j}(z)} \exp \left(-\frac{j^{2} C^{2}}{4}\right) \\
& \leq \sum_{j=0}^{\infty} \# A_{j}(z) \exp \left(-\frac{j^{2} C^{2}}{4}\right) \\
& \leq 1+\sum_{j=1}^{\infty} 2^{n-1}(j+2)^{2 n-2} \exp \left(-\frac{j^{2} C^{2}}{4}\right) \leq 1+\sum_{j=1}^{\infty} 2^{-j-1} \leq 2
\end{aligned}
$$

for $z \in \partial \mathbb{B}^{n}$ and now we have the property (1). Moreover

$$
\left|p_{m}(z)\right| \leq \sum_{j=k}^{\infty} 2^{n-1}(j+2)^{2 n-2} \exp \left(-\frac{j^{2} C^{2}}{4}\right) \leq \sum_{j=k}^{\infty}(j+2)^{-2 n} 2^{-j-1} \leq \frac{1}{(k+2)^{2 n} 2^{k}}
$$

for $z \in B_{k}$ and $k \geq 1$. Observe that

$$
\sigma\left(B_{k}\right) \leq M\left(\frac{(k+1) C}{2 \sqrt{N}}\right)^{2 \beta} \leq M \frac{(k+1)^{2 n} C^{2 n}}{2^{2 \beta} N^{\beta}} \leq M \frac{(k+1)^{2 n} C^{2 n}}{2^{\beta} m^{\beta}}
$$

for $k \geq 0, N \leq m \leq 2 N$. We can estimate

$$
\begin{aligned}
\int_{K_{\rho}\left(T, \varepsilon_{0}\right)}\left|p_{m}\right|^{2} d \sigma & \leq \sum_{k=0}^{N_{1}} \int_{B_{k}}\left|p_{m}\right|^{2} d \sigma \leq 4 \sigma\left(B_{0}\right)+\sum_{k=1}^{N_{1}} \sigma\left(B_{k}\right)(k+2)^{-2 n} 2^{-2 k} \\
& \leq \frac{4 M C^{2 n}}{m^{\beta}}+\sum_{k=1}^{\infty} \frac{M C^{2 n}}{m^{\beta} 2^{2 k}} \leq \frac{5 M C^{2 n}}{m^{\beta}}
\end{aligned}
$$

In particular we may prove the property (2):

$$
\begin{aligned}
\int_{\partial \mathbb{B}^{n}}\left|p_{m}\right|^{2} d \sigma & \leq \int_{K_{\rho}\left(T, \varepsilon_{0}\right)}\left|p_{m}\right|^{2} \sigma+\int_{S}\left|p_{m}\right|^{2} \sigma \leq \frac{6 M C^{2 n}}{m^{\beta}} \\
& \leq \frac{6 C^{2 n}\left(\nu^{\alpha}(T)+\delta\right)}{m^{\beta}}
\end{aligned}
$$

Now we prove the property (4).
Let $K=K(\alpha, \beta)$ be from Lemma 3.3 for $\alpha=0.25$ and $\beta=C$. For $N=K m$ fix a maximal $1 /(4 \sqrt{N})$-separated subset $B \subset T$. Using Lemma 3.3 we can divide B into at least K disjoint C / \sqrt{N}-separated subsets $B_{0}, B_{1}, \ldots, B_{K-1}$. We define

$$
p_{K m+j}(z):=\sum_{\xi \in B_{j}}\langle z, \xi\rangle^{K m+j}
$$

for $j=0,1, \ldots, K-1$. There exists $C_{0}>0$ such that

$$
\exp \left(-\left(\frac{k C}{2}\right)^{2}\right) k^{2 n} 2^{3 n} \leq \frac{1}{2^{k+3}}
$$

for $C>C_{0}$ and $k \geq 1$.
Let

$$
A_{i, j}(z)=\left\{\xi \in B_{i}: \frac{j C}{2 \sqrt{N}} \leq \rho(z, \xi)<\frac{(j+1) C}{2 \sqrt{N}}\right\}
$$

Due to Lemma $2.2 \# A_{i, 0}=0$ and $\# A_{i, j} \leq 2^{n-1}(j+2)^{2 n-2}$.
Due to Proposition 3.4 we have $\left(1-\frac{1}{x+1}\right)^{x}>e^{-1}>\left(1-\frac{1}{x+1}\right)^{x+1}$ for $x \geq 1$. Let $\xi \in B_{j}$. Let k_{N} be a maximal possible natural number such that $\frac{k_{N}^{2} C^{2}}{4 N} \leq \frac{1}{2}$. If $z \in K_{\rho}\left(\xi, \frac{1}{4 \sqrt{N}}\right)$ then we may estimate:

$$
\begin{aligned}
\left|p_{K m+j}(z)\right| & \geq|\langle z, \xi\rangle|^{K m+j}-\sum_{\eta \in B_{j} \backslash\{\xi\}}|\langle z, \eta\rangle|^{K m+j} \\
& \geq\left(1-\frac{1}{16 N}\right)^{K m+j}-\sum_{k=1}^{k_{N}}\left(1-\frac{k^{2} C^{2}}{4 N}\right)^{N} 2^{n}(k+2)^{2 n}-2^{-N} N^{n} \\
& \geq\left(1-\frac{1}{16 N}\right)^{2 N}-\sum_{k=1}^{\infty} \exp \left(-\left(\frac{k C}{2}\right)^{2}\right) k^{2 n} 2^{3 n}-2^{-N} N^{n} \\
& \geq \exp \left(\frac{-2 N}{16 N-1}\right)-2^{-N} N^{n}-\sum_{k=1}^{\infty} 2^{-k-3} \geq \frac{1}{2}
\end{aligned}
$$

for $m_{0} \leq N \leq m \leq 2 N$ and m_{0} high enough.
Since $B=\bigcup_{l=0}^{K-1} B_{l}$ is a maximal $1 /(4 \sqrt{N})$-separated subset of T we conclude that

$$
\bigcup_{j=0}^{K-1} \bigcup_{\xi \in B_{j}} K_{\rho}\left(\xi ; \frac{1}{4 \sqrt{N}}\right)=\bigcup_{\xi \in B} K_{\rho}\left(\xi ; \frac{1}{4 \sqrt{N}}\right) \supset T
$$

and from this follows that

$$
\sum_{j=K m}^{K(m+1)-1} j^{\alpha}\left|p_{j}(z)\right|^{2} \geq \frac{(K m)^{\alpha}}{4} \text { for all } z \in T, m>m_{0} .
$$

Now we are ready to prove our first, main result.

Theorem 3.6. Let $0<\alpha \leq 2 n-2$. Let T be a compact, circular subset of $\partial \mathbb{B}^{n}$ such that $\nu_{\rho \sigma}^{\alpha}(T)=0$. There exists $f \in \mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ such that $T=E^{\beta}(f)$ and $E^{\beta+\varepsilon}(f)=\emptyset$ for $\beta=n-\frac{2+\alpha}{2}, \varepsilon>0$

Proof. Let D_{j} be a sequence of compact, circular subsets of $\partial \mathbb{B}^{n}$ such that $D_{j} \cap T=\emptyset$, $D_{j} \subset D_{j+1}$ and $T=\bigcup_{j \in \mathbb{N}} D_{j}$. Due to Theorem 3.5 there exist numbers $C, M>0$, a sequence of natural number $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ and s sequence of polynomials $\left\{p_{m}\right\}_{m \in \mathbb{N}}$ such that

1. $m_{j} \geq 2^{j}$ and $K\left(m_{j}+1\right) \leq K m_{j+1}$
2. p_{m} is a homogeneous polynomial of degree m.
3. $\sum_{k \in I(i)}\left|p_{k}(z)\right|^{2} \geq \frac{1}{4}$ for $z \in T$ and

$$
I(i):=\left\{m \in \mathbb{N}: K m_{i} \leq m \leq K\left(m_{i}+1\right)-1\right\} .
$$

4. $\left|p_{m}(z)\right| \leq 2$ for $z \in \partial \mathbb{B}^{n}$ and $m \in \mathbb{N}$.
5. $\int_{\partial \mathbb{B}^{n}}\left|p_{m}\right|^{2} d \sigma \leq M C^{2 n} 2^{-j} m^{-\beta}$ for $m \in I(j)$.
6. $\left|p_{m}(z)\right| \leq 2^{-j}$ for all $z \in D_{j}, m \in I(j)$

Let

$$
f:=\sum_{j=1}^{\infty} \sum_{k \in I(j)} \sqrt{k^{1+\beta}} p_{k} .
$$

There exists a constant c_{1} such that

$$
\begin{aligned}
c_{1} \int_{\mathbb{B}^{n}}|f|^{2} d \mathfrak{L}^{2 n} & \leq \sum_{j=1}^{\infty} \sum_{k \in I(j)} k^{1+\beta} \int_{\partial \mathbb{B}^{n}} \frac{1}{k+1} \int_{0}^{1}\left|p_{k}(t w)\right|^{2} d t d \sigma(w) \\
& \leq \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{2 k+1} \int_{\partial \mathbb{B}^{n}}\left|p_{k}\right|^{2} d \sigma \\
& \leq \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{\beta} M C^{2 n} 2^{-j}}{2 k^{\beta}}=\sum_{j=1}^{\infty} K M C^{2 n} 2^{-j-1}<\infty .
\end{aligned}
$$

There exist constants $c_{2}, c_{3}>0$ such that

$$
\frac{c_{2}}{(k+1)^{\beta+1} .} \leq \int_{0}^{1} t^{2 k+1}\left(1-t^{2}\right)^{\beta}=2 \frac{(k+1)!(k+1)^{\beta}}{(k+1)(k+1)^{\beta} \prod_{j=1}^{k+1}(\beta+j)} \leq \frac{c_{3}}{(k+1)^{\beta+1}}
$$

Therefore we can estimate

$$
\begin{aligned}
\int_{\mathbb{D} z}|f|^{2} \chi_{\beta} d \mathfrak{L}^{2} & \geq \pi \sum_{j=1}^{\infty} \sum_{k \in I(j)} k^{1+\beta} \int_{0}^{1}\left|p_{k}(t z)\right|^{2} t\left(1-t^{2}\right)^{\beta} d t \\
& \geq \pi c_{2} \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{(k+1)^{\beta+1}}\left|p_{k}(z)\right|^{2}=\infty
\end{aligned}
$$

for $z \in T$. Moreover if $z \in \partial \mathbb{B}^{n} \backslash T$ then there exists a constant $c_{4}=c_{4}(z)<\infty$ and j_{0} such that $z \in D_{j}$ for $j \geq j_{0}$ and:

$$
\begin{aligned}
\int_{\mathbb{D} z}|f|^{2} \chi_{\beta} d \mathfrak{L}^{2} & \leq \pi c_{2} \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{(k+1)^{\beta+1}}\left|p_{k}(z)\right|^{2} \\
& \leq c_{4}(z)+\pi c_{2} \sum_{j=j_{0}}^{\infty} \sum_{k=\in I(j)} 2^{-j}<\infty
\end{aligned}
$$

We have proved that $T=E^{\beta}(f)$. Now let $\varepsilon>0$. Then

$$
\begin{aligned}
\int_{\mathbb{D} z}|f|^{2} \chi_{\beta+\varepsilon} d \mathfrak{L}^{2} & \leq \pi c_{2} \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{(k+1)^{\beta+\varepsilon+1}}\left|p_{k}(z)\right|^{2} \\
& \leq \pi c_{2} \sum_{j=1}^{\infty} \sum_{k=\in I(j)} \frac{4}{\left(K 2^{j}\right)^{\varepsilon}}<\infty
\end{aligned}
$$

for all $z \in \partial \mathbb{B}^{n}$. From this follows that $E^{\beta+\varepsilon}(f)=\emptyset$ for $\varepsilon>0$.
Lemma 3.7. Let U be an open, circular set and K be a compact, circular set such that $\nu_{\rho \sigma}^{\alpha}(K)<\infty, U, K \subset \partial \mathbb{B}^{n}$. Then there exists a sequence $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ of compact, circular sets such that

1. $U \cap K=\bigcup_{i \in \mathbb{N}} T_{i}$.
2. If $T_{i} \cap T_{j} \neq \emptyset$ then $|i-j|<2$.
3. $\sum_{i=1}^{\infty} \nu_{\rho \sigma}^{s}\left(T_{i}\right)=0$ for $s>\alpha$.

Proof. Let

$$
\begin{aligned}
T_{-1} & :=\left\{z \in K \cap U: \inf _{w \in \partial U} \rho(z, w) \geq 1\right\} \\
T_{i} & :=\left\{z \in K \cap U: 2^{-i-1} \leq \inf _{w \in \partial U} \rho(z, w) \leq 2^{-i}\right\}
\end{aligned}
$$

Observe that $U \cap K=\bigcup_{i \in \mathbb{N}} T_{i}$ and $T_{i} \cap T_{j}=\emptyset$ when $|i-j| \geq 2$. Moreover $\nu_{\rho \sigma}^{\alpha}\left(T_{i}\right) \leq$ $\nu_{\rho \sigma}^{\alpha}(K)$ and therefore $\nu^{s}\left(T_{i}\right)=0$ for $s>\alpha$.

Theorem 3.8. Let $0<\alpha<2 n-2$ and $\beta=n-\frac{2+\alpha}{2}$. Let E be a circular set of type G_{δ} such that $E \subset \partial \mathbb{B}^{n}$ and $\Theta_{\rho \sigma}^{s}(E)=0$ for $s>\alpha$. There exists $f \in \mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ such that $E^{\beta}(f)=\emptyset$ and $E=E^{s}(f)$ for $0 \leq s<\beta$.
Proof. Let $\alpha_{i}=\alpha+\frac{1}{i+2}(2 n-2-\alpha)$ and $\beta_{i}=n-\frac{2+\alpha_{i}}{2}$. There exists a sequence $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ of open, circular subsets of $\partial \mathbb{B}^{n}$ such that $E=\bigcap_{i=1}^{\infty} U_{i}$ and $U_{i+1} \subset U_{i}$. There exists a sequence $\left\{S_{i}\right\}_{i \in \mathbb{N}}$ of compact, circular subsets of $\partial \mathbb{B}^{n}$ such that $E \subset$ $\bigcup_{j \in \mathbb{N}} S_{\lfloor i, j\rfloor}$ and $\sum_{j \in \mathbb{N}} \nu_{\rho \sigma}^{\alpha_{\lfloor i, j\rfloor-1}}\left(S_{\lfloor i, j\rfloor}\right) \leq 2^{-i}$. We denote $\lfloor i, j, k\rfloor:=\lfloor\lfloor i, j\rfloor, k\rfloor$. Due to Lemma 3.7 there exists a sequence $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ of compact, circular subsets of $\partial \mathbb{B}^{n}$ such that

1. $T_{\lfloor i, j, k\rfloor} \subset U_{\lfloor i, j\rfloor}$.
2. $S_{\lfloor i, j\rfloor} \cap U_{\lfloor i, j\rfloor}=\bigcup_{k \in \mathbb{N}} T_{\lfloor i, j, k\rfloor}$.
3. $T_{\lfloor i, j, k\rfloor} \cap T_{\lfloor i, j, l\rfloor}=\emptyset$ when $|l-k| \geq 2$.
4. $\nu_{\rho \sigma}^{\alpha_{[i, j, k]}}\left(T_{[i, j, k\rfloor}\right)=0$.

Let $T_{-1}=\emptyset$ and

$$
D_{\lfloor i, j, k\rfloor}=\overline{\partial \mathbb{B}^{n} \backslash\left(T_{\lfloor i, j, k-1\rfloor} \cup T_{\lfloor i, j, k\rfloor} \cup T_{\lfloor i, j, k+1\rfloor}\right)}
$$

for $i, j, k \in \mathbb{N}$. Observe that $D_{\lfloor i, j, k\rfloor} \cap T_{\lfloor i, j, k\rfloor}=\emptyset$. Therefore due to Theorem 3.5 there exists a number $C>0$, a sequence of natural number $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ and a sequence of polynomials $\left\{p_{m}\right\}_{m \in \mathbb{N}}$ such that

1. $m_{j}^{\beta-\beta_{j}} \geq 2^{j}$ and $K\left(m_{j}+1\right) \leq K m_{j+1}$
2. p_{m} is a homogeneous polynomial of degree m.
3. $\sum_{m \in I(i, j, k)}\left|p_{m}(z)\right|^{2} \geq \frac{1}{4}$ for $z \in T_{\lfloor i, j, k\rfloor}$ and

$$
I(i, j, k):=\left\{l \in \mathbb{N}: K m_{\lfloor i, j, k\rfloor} \leq l \leq K\left(m_{\lfloor i, j, k\rfloor}+1\right)-1\right\} .
$$

4. $\left|p_{m}(z)\right| \leq 2$ for $z \in \partial \mathbb{B}^{n}$ and $m \in \mathbb{N}$.
5. $\int_{\partial \mathbb{B}^{n}}\left|p_{m}\right|^{2} d \sigma \leq 6 C^{2 n} 2^{-\lfloor i, j, k\rfloor} m^{-\beta_{[i, j, k]}}$ for $m \in I(i, j, k)$.
6. $\left|p_{m}(z)\right| \leq 2^{-\sqrt{m}}$ for all $z \in D_{\lfloor i, j, k\rfloor}, m \in I(i, j, k)$

Let

$$
f:=\sum_{i, j \in \mathbb{N}} \sum_{m \in I(i, j, k)} \sqrt{m^{\left.1+\beta_{\lfloor i, j, k}\right]}} p_{m}
$$

We denote

$$
\phi(f, z, s):=\int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}^{2} .
$$

There exists a constant $c_{1}>0$ such that

$$
\begin{aligned}
c_{1} \int_{\mathbb{B}^{n}}|f|^{2} d \mathfrak{L}^{2 n} & \leq \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} m^{1+\beta_{\lfloor i, j, k]}} \int_{\partial \mathbb{B}^{n}} \frac{1}{m+1} \int_{0}^{1}\left|p_{m}(t w)\right|^{2} d t d \sigma(w) \\
& \leq \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{1+\beta_{\lfloor i, j, k\rfloor}}}{2 m+1} \int_{\partial \mathbb{B}^{n}}\left|p_{m}\right|^{2} d \sigma \\
& \leq \sum_{i, j . k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{\beta_{l i, j, k\rfloor}} 6 C^{2 n} 2^{-\lfloor i, j, k\rfloor}}{2 m^{\beta_{[i, j, k\rfloor}}} \leq 3 C^{2 n} \sum_{i \in \mathbb{N}} 2^{-i}<\infty
\end{aligned}
$$

Let $0 \leq s<\beta$. We can use the similar arguments as in [3, Lemma 2.1,2.3] to conclude that there exist constants $c_{2}, c_{3}>0$ such that

$$
\frac{c_{2}}{\pi(k+1)^{r+1} .} \leq \int_{0}^{1} t^{2 k+1}\left(1-t^{2}\right)^{r}=2 \frac{(k+1)!(k+1)^{r}}{(k+1)(k+1)^{r} \prod_{j=1}^{k+1}(r+j)} \leq \frac{c_{3}}{\pi(k+1)^{r+1}}
$$

for $0 \leq r<\beta$. Moreover

$$
\sum_{\substack{i, j, k \in \mathbb{N} \\ z \in T_{\lfloor i, j, k\rfloor}}} 1 \geq \sum_{\substack{i, j \in \mathbb{N} \\ \beta_{\lfloor i, j, k\rfloor}>s \\ z \in S_{\lfloor[i, j\rfloor} \cap U_{\lfloor i, j\rfloor}}} 1=\infty .
$$

We may estimate

$$
\begin{aligned}
& \phi(f, z, s) \geq \pi \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} m^{1+\beta_{\lfloor i, j, k\rfloor}} \int_{0}^{1}\left|p_{m}(t z)\right|^{2} t\left(1-t^{2}\right)^{s} d t \\
& \geq c_{2} \sum \sum_{k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{1+\beta_{\lfloor i, j, k\rfloor}}}{(m+1)^{1+s}}\left|p_{m}(z)\right|^{2}=\infty \\
& \beta_{\lfloor i, j, k\rfloor}>s \\
& z \in T_{\lfloor i, j, k\rfloor}
\end{aligned}
$$

for $z \in E$. Let now $z \in \partial \mathbb{B}^{n} \backslash E$. There exists a minimal $\eta(z) \in \mathbb{N}$ such that $z \in \partial \mathbb{B}^{n} \backslash U_{\lfloor i, j\rfloor}$ for $\lfloor i, j\rfloor \geq \eta(z)$. Observe that $z \in U_{\lfloor i, j\rfloor}$ for $\lfloor i, j\rfloor<\eta$. In particular there exists $k_{i, j}$ such that $z \in T_{\left\lfloor i, j, k_{i, j}\right\rfloor}$ for $\lfloor i, j\rfloor<\eta(z)$. Let

$$
J(\eta(z)):=\left\{(i, j, l):\lfloor i, j\rfloor<\eta(z),\left|l-k_{i, j}\right| \leq 1\right\} .
$$

Observe that $\# J(\eta(z)) \leq 3 \eta(z)$. If $(i, j, k) \notin J(\eta(z))$ then $z \in D_{\lfloor i, j, k\rfloor}$. Therefore we may estimate:

$$
\begin{aligned}
c_{3}^{-1} \phi(f, z, s) & \leq \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{\beta_{[i, j, k]}+1}}{(m+1)^{s+1}}\left|p_{m}(z)\right|^{2} \\
& \leq \sum_{\substack{(i, j, k) \in J(\eta(z)) \\
m \in I(i, j, k)}} m^{\beta}\left|p_{m}(z)\right|^{2}+\sum_{\substack{(i, j, k) \notin J(\eta(z)) \\
m \in I(i, j, k)}} m^{\beta}\left|p_{m}(z)\right|^{2} \\
& \leq \sum_{\substack{(i, j, k) \in J(\eta(z)) \\
m \in I(i, j, k)}} 4 m^{\beta}+\sum_{\substack{(i, j, k) \notin J(\eta(z)) \\
m \in I(i, j, k)}} K m^{\beta} 2^{-2 \sqrt{m}}<\infty .
\end{aligned}
$$

We have proved that $E=E^{s}(f)$. Moreover

$$
\begin{aligned}
& \phi(f, z, \beta) \leq c_{3} \sum_{\substack{i, j, k \in \mathbb{N} \\
m}} m^{\beta_{\lfloor i, j, k\rfloor}-\beta}\left|p_{m}(z)\right|^{2} \\
& \leq 4 c_{3} \sum_{\substack{i, j, k \in \mathbb{N} \\
m \in I(i, j, k)}} \frac{1}{\left(K m_{\lfloor i, j, k\rfloor}\right)^{\beta-\beta_{\lfloor i, j, k\rfloor}}} \leq 4 K c_{3} \sum_{i, j, k \in \mathbb{N}} 2^{-\lfloor i, j, k\rfloor}<\infty
\end{aligned}
$$

for all $z \in \partial \mathbb{B}^{n}$. We conclude that $E^{\beta}(f)=\emptyset$.

Lemma 3.9. Let U be an open, circular subset of $\partial \mathbb{B}^{n}$. Let M be a compact, circular subset of $\partial \mathbb{B}^{n}$ and η a probability measure on M, such that M is (α, ρ, η)-regular. There exists a constant $c>0$ such that if K is a compact, circular set such that $\nu_{\rho \sigma}^{\alpha}(K)<\infty, K \subset M$ then there exists a sequence $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ of compact, circular sets such that

1. $U \cap K=\bigcup_{i \in \mathbb{N}} T_{i}$.
2. If $T_{i} \cap T_{j} \neq \emptyset$ then $|i-j|<2$.
3. $\sum_{i=1}^{\infty} \nu_{\rho \sigma}^{\alpha}\left(T_{i}\right) \leq c \nu_{\rho \sigma}^{\alpha}(K)$.

Proof. Observe that $\partial \mathbb{B}^{n}$ is $(2 n-2, \rho, \sigma)$-regular. Due to Lemma 2.2 there exist constants $c_{1}, c_{2}>0$ such that $c_{1}^{-1} \nu_{\rho \sigma}^{\alpha}(K) \leq \nu_{\rho \eta}^{\alpha}(K) \leq c_{2} \nu_{\rho \sigma}^{\alpha}(K)$ for a closed, circular K subset of M. We denote

$$
\begin{aligned}
T_{0} & :=\left\{z \in K \cap U: \inf _{w \in \partial U} \rho(z, w) \geq 1\right\} \\
T_{i+1} & :=\left\{z \in K \cap U: 2^{-i-1} \leq \inf _{w \in \partial U} \rho(z, w) \leq 2^{-i}\right\} .
\end{aligned}
$$

Observe that $U \cap K=\bigcup_{i \in \mathbb{N}} T_{i}$ and $\rho\left(T_{i}, T_{j}\right)>0$ when $|i-j| \geq 2$. We may estimate

$$
\sum_{i=0}^{\infty} \nu_{\rho \eta}^{\alpha}\left(T_{2 i}\right)+\sum_{i=0}^{\infty} \nu_{\rho \eta}^{\alpha}\left(T_{2 i+1}\right)=\nu_{\rho \eta}^{\alpha}\left(\bigcup_{i=0}^{\infty} T_{2 i}\right)+\nu_{\rho \eta}^{\alpha}\left(\bigcup_{i=0}^{\infty} T_{2 i+1}\right) \leq 2 \nu_{\rho \eta}^{\alpha}\left(\bigcup_{i=0}^{\infty} T_{i}\right)
$$

In particular

$$
\begin{aligned}
\sum_{i=1}^{\infty} \nu_{\rho \sigma}^{\alpha}\left(T_{i}\right) & \leq c_{1} \sum_{i=1}^{\infty} \nu_{\rho \eta}^{\alpha}\left(T_{i}\right) \leq 2 c_{1} \nu_{\rho \eta}^{\alpha}\left(\bigcup_{i=0}^{\infty} T_{i}\right) \\
& \leq 2 c_{1} \nu_{\rho \eta}^{\alpha}\left(\overline{\bigcup_{i=0}^{\infty} T_{i}}\right) \leq 2 c_{1} c_{2} \nu_{\rho \sigma}^{\alpha}\left(\bigcup_{i=0}^{\infty} T_{i}\right) \leq 2 c_{1} c_{2} \nu_{\rho \sigma}^{\alpha}(K)
\end{aligned}
$$

Theorem 3.10. Let $0<\alpha \leq 2 n-2$ and $\beta=n-\frac{2+\alpha}{2}$. Let E be a circular set of type G_{δ} such that $E \subset \partial \mathbb{B}^{n}$ and $\Theta_{\rho \sigma}^{\alpha}(E)=0$. Assume that there exists $M-a$ compact, circular subset of $\partial \mathbb{B}^{n}$ and η a probability measure on M, such that M is (α, ρ, η)-regular and $E \subset M$. There exists $f \in \mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ such that $E^{\beta}(f)=E$ and $E^{s}(f)=\emptyset$ for $s>\beta$.

Proof. Let $c>0$ be a constant from Lemma 3.9. There exists a sequence $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ of open, circular subsets of $\partial \mathbb{B}^{n}$ such that $E=\bigcap_{i=1}^{\infty} U_{i}$ and $U_{i+1} \subset U_{i}$. There exists a sequence $\left\{S_{i}\right\}_{i \in \mathbb{N}}$ of compact, circular subsets of $\partial \mathbb{B}^{n}$ such that $E \subset \bigcup_{j \in \mathbb{N}} S_{\lfloor i, j\rfloor}$ and $\sum_{j \in \mathbb{N}} \nu_{\rho \sigma}^{\alpha}\left(S_{\lfloor i, j\rfloor}\right) \leq 2^{-i}$. We denote $\lfloor i, j, k\rfloor:=\lfloor\lfloor i, j\rfloor, k\rfloor$. Due to Lemma 3.9 there exists a sequence $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ of compact, circular subsets of $\partial \mathbb{B}^{n}$ such that

1. $T_{\lfloor i, j, k\rfloor} \subset U_{\lfloor i, j\rfloor}$.
2. $S_{\lfloor i, j\rfloor} \cap U_{\lfloor i, j\rfloor}=\bigcup_{k \in \mathbb{N}} T_{\lfloor i, j, k\rfloor}$.
3. $T_{\lfloor i, j, k\rfloor} \cap T_{\lfloor i, j, l\rfloor}=\emptyset$ when $|l-k| \geq 2$.
4. $\sum_{k \in \mathbb{N}} \nu_{\rho \sigma}^{\alpha}\left(T_{\lfloor i, j, k\rfloor}\right) \leq c \nu_{\rho \sigma}^{\alpha}\left(S_{\lfloor i, j\rfloor}\right)$.

Let $T_{-1}=\emptyset$ and

$$
D_{\lfloor i, j, k\rfloor}=\overline{\partial \mathbb{B}^{n} \backslash\left(T_{\lfloor i, j, k-1\rfloor} \cup T_{\lfloor i, j, k\rfloor} \cup T_{\lfloor i, j, k+1\rfloor}\right)}
$$

for $i, j, k \in \mathbb{N}$. Observe that $D_{\lfloor i, j, k\rfloor} \cap T_{\lfloor i, j, k\rfloor}=\emptyset$. Therefore due to Theorem 3.5 there exists a number $C>0$, a sequence of natural number $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ and a sequence of polynomials $\left\{p_{m}\right\}_{m \in \mathbb{N}}$ such that

1. $m_{j} \geq 2^{j}$ and $K\left(m_{j}+1\right) \leq K m_{j+1}$
2. p_{m} is a homogeneous polynomial of degree m.
3. $\sum_{m \in I(i, j, k)}\left|p_{m}(z)\right|^{2} \geq \frac{1}{4}$ for $z \in T_{\lfloor i, j, k\rfloor}$ and

$$
I(i, j, k):=\left\{l \in \mathbb{N}: K m_{\lfloor i, j, k\rfloor} \leq l \leq K\left(m_{\lfloor i, j, k\rfloor}+1\right)-1\right\} .
$$

4. $\left|p_{m}(z)\right| \leq 2$ for $z \in \partial \mathbb{B}^{n}$ and $m \in \mathbb{N}$.
5. $\int_{\partial \mathbb{B}^{n}}\left|p_{m}\right|^{2} d \sigma \leq 6 C^{2 n}\left(\nu_{\rho \sigma}^{\alpha}\left(T_{\lfloor i, j, k\rfloor}\right)+2^{-\lfloor i, j, k\rfloor}\right) m^{-\beta}$ for $m \in I(i, j, k)$.
6. $\left|p_{m}(z)\right| \leq 2^{-\sqrt{m}}$ for all $z \in D_{\lfloor i, j, k\rfloor}, m \in I(i, j, k)$

Let

$$
f:=\sum_{i, j \in \mathbb{N}} \sum_{m \in I(i, j, k)} \sqrt{m^{1+\beta}} p_{m} .
$$

We denote

$$
\phi(f, z, s):=\int_{\mathbb{D} z}|f|^{2} \chi_{s} d \mathfrak{L}^{2} .
$$

There exists a constant $c_{1}>0$ such that

$$
\begin{aligned}
c_{1} \int_{\mathbb{B}^{n}}|f|^{2} d \mathfrak{L}^{2 n} & \leq \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} m^{1+\beta} \int_{\partial \mathbb{B}^{n}} \frac{1}{m+1} \int_{0}^{1}\left|p_{m}(t w)\right|^{2} d t d \sigma(w) \\
& \leq \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{1+\beta}}{2 m+1} \int_{\partial \mathbb{B}^{n}}\left|p_{m}\right|^{2} d \sigma \\
& \leq \sum_{i, j . k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{\beta} 6 C^{2 n}\left(\nu_{\rho \sigma}^{\alpha}\left(T_{\lfloor i, j, k\rfloor}\right)+2^{-\lfloor i, j, k\rfloor}\right)}{2 m^{\beta}} \\
& \leq 3 C^{2 n}(1+c) \sum_{i \in \mathbb{N}} 2^{-i}<\infty .
\end{aligned}
$$

Due to [3, Lemma 2.1,2.3] there exist constants $c_{2}, c_{3}>0$ such that

$$
\frac{c_{2}}{\pi(k+1)^{r+1} .} \leq \int_{0}^{1} t^{2 k+1}\left(1-t^{2}\right)^{\beta}=2 \frac{(k+1)!(k+1)^{\beta}}{(k+1)(k+1)^{r} \prod_{j=1}^{k+1}(\beta+j)} \leq \frac{c_{3}}{\pi(k+1)^{\beta+1}} .
$$

Moreover

$$
\sum_{\substack{i, j, k \in \mathbb{N} \\ z \in T_{\lfloor i, j, k\rfloor}}} 1 \geq \sum_{\substack{i, j \in \mathbb{N} \\ z \in S_{\lfloor i, j\rfloor} \cap U_{\lfloor i, j\rfloor}}} 1=\infty .
$$

We may estimate

$$
\begin{aligned}
& \phi(f, z, \beta) \geq \pi \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} m^{1+\beta} \int_{0}^{1}\left|p_{m}(t z)\right|^{2} t\left(1-t^{2}\right)^{s} d t \\
& \geq c_{2} \sum^{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{1+\beta}}{(m+1)^{1+\beta}}\left|p_{m}(z)\right|^{2}=\infty \\
& z \in T_{\lfloor i, j, k\rfloor}
\end{aligned}
$$

for $z \in E$. Let now $z \in \partial \mathbb{B}^{n} \backslash E$ and $0 \leq s$. There exists a minimal $\eta(z) \in \mathbb{N}$ such that $z \in \partial \mathbb{B}^{n} \backslash U_{\lfloor i, j\rfloor}$ for $\lfloor i, j\rfloor \geq \eta(z)$. Observe that $z \in U_{\lfloor i, j\rfloor}$ for $\lfloor i, j\rfloor<\eta$. In particular there exists $k_{i, j}$ such that $z \in T_{\left\lfloor i, j, k_{i, j}\right\rfloor}$ for $\lfloor i, j\rfloor<\eta(z)$. Let

$$
J(\eta(z)):=\left\{(i, j, l):\lfloor i, j\rfloor<\eta(z),\left|l-k_{i, j}\right| \leq 1\right\} .
$$

Observe that $\# J(\eta(z)) \leq 3 \eta(z)$. If $(i, j, k) \notin J(\eta(z))$ then $z \in D_{\lfloor i, j, k\rfloor}$. Therefore we may estimate:

$$
\begin{aligned}
c_{3}^{-1} \phi(f, z, s) & \leq \sum_{i, j, k \in \mathbb{N}} \sum_{m \in I(i, j, k)} \frac{m^{\beta+1}}{(m+1)^{s+1}}\left|p_{m}(z)\right|^{2} \\
& \leq \sum_{\substack{(i, j, k) \in J(\eta(z)) \\
m \in I(i, j, k)}} m^{\beta}\left|p_{m}(z)\right|^{2}+\sum_{\substack{(i, j, k) \notin J(\eta(z)) \\
m \in I(i, j, k)}} m^{\beta}\left|p_{m}(z)\right|^{2} \\
& \leq \sum_{\substack{(i, j, k) \in J(\eta(z)) \\
m \in I(i, j, k)}} 4 m^{\beta}+\sum_{\substack{(i, j, k) \notin J(\eta(z)) \\
m \in I(i, j, k)}} K m^{\beta} 2^{-2 \sqrt{m}}<\infty .
\end{aligned}
$$

We have proved that $E=E^{s}(f)$ for $0 \leq s \leq \beta$. Moreover

$$
\begin{aligned}
& \phi(f, z, \beta+\varepsilon) \leq c_{3} \sum_{\substack{i, j, k \in \mathbb{N} \\
m \in I(i, j, k)}} m^{-\varepsilon}\left|p_{m}(z)\right|^{2} \\
& \leq 4 c_{3} \sum_{\substack{i, j, k \in \mathbb{N} \\
m \in I(i, j, k)}} \frac{1}{\left(K m_{\lfloor i, j, k\rfloor)^{2}}^{\varepsilon}\right.} \leq 4 K c_{3} \sum_{i, j, k \in \mathbb{N}} 2^{-\varepsilon\lfloor i, j, k\rfloor}<\infty .
\end{aligned}
$$

for all $z \in \partial \mathbb{B}^{n}$. We conclude that $E^{\beta+\varepsilon}(f)=\emptyset$ for $\varepsilon>0$.

4 Examples

We consider a pseudometric $\rho(z, w)=\sqrt{1-|\langle z, w\rangle|}$ and a natural measure σ on $\partial \mathbb{B}^{n}$. Let us define $\phi: \mathbb{C}^{n-1} \times \mathbb{R} \ni(z, \theta) \rightarrow \phi(z, \theta) \in \Omega=\partial \mathbb{B}^{n} \backslash \mathbb{C}^{n-1} \times\{0\} \subset \mathbb{C}^{n}$:

$$
\phi(z, \theta)=\exp (2 \pi i \theta)\left(\frac{z_{1}}{\sqrt{1+\|z\|^{2}}}, \ldots, \frac{z_{n-1}}{\sqrt{1+\|z\|^{2}}}, \frac{1}{\sqrt{1+\|z\|^{2}}}\right)
$$

Let $M \subset \mathbb{C}^{n-1}$ be such that $\Im\langle z, w\rangle=0$ for $z, w \in M$. Let $z, w \in M$ be such that $\|\phi(z)-\phi(w)\|<2$. Observe that $\|\phi(z)-\phi(w)\|^{2}=2-2 \Re\langle\phi(z), \phi(w)\rangle<2$. In particular

$$
\begin{equation*}
2 \rho(\phi(z), \phi(w))^{2}=2-2|\langle\phi(z), \phi(w)\rangle|=\|\phi(z)-\phi(w)\|^{2} \tag{4.1}
\end{equation*}
$$

for $z, w \in M$ such that $\|\phi(z)-\phi(w)\|<2$.
We prove the following fact:
Lemma 4.1. Let us consider the maximum norm $\|\circ\|$ on \mathbb{R}^{m}. We have the property: $\nu_{\mathfrak{R}^{m}}^{\alpha}(T)=\nu_{\mathfrak{R}^{m+1}}^{\alpha}(T \times[0,1])$.
Proof. Let $\varepsilon>0$. Observe that $K(T, \varepsilon) \times[0,1] \subset K(T \times[0,1], \varepsilon) \subset K(T, \varepsilon) \times$ $[-\varepsilon, 1+\varepsilon]$. We may estimate

$$
\begin{aligned}
\frac{\mathfrak{L}^{m}(K(T, \varepsilon))}{\varepsilon^{m-\alpha}} & =\frac{\mathfrak{L}^{m+1}(K(T, \varepsilon) \times[0,1])}{\varepsilon^{m-\alpha}} \leq \frac{\mathfrak{L}^{m+1}(K(T \times[0,1], \varepsilon))}{\varepsilon^{m+1-(\alpha+1)}} \\
& \leq \frac{\mathfrak{L}^{m+1}(K(T, \varepsilon) \times[-\varepsilon, 1-\varepsilon])}{\varepsilon^{m+1-(\alpha+1)}}=\frac{\mathfrak{L}^{m}(K(T, \varepsilon))}{\varepsilon^{m-\alpha}}(1+2 \varepsilon) .
\end{aligned}
$$

This proves the required property.
Example 4.2. Let $0<\alpha<2 n-2$ and $\beta=n-1-\frac{\alpha}{2}$. Let E be a set of type G_{δ} such that $E \subset M$ and $Q^{s}(E)=0$ for $s>\alpha$. There exists $f \in \mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ such that $E^{\beta}(f)=\emptyset$ and $\phi(E \times[0,1])=E^{s}(f)$ for $0 \leq s<\beta$.

Proof. Due to Lemma 4.1 and Lemma 2.2 we conclude that $Q^{s}(E \times[0,1])=0$ for $s>\alpha+1$.

Let K be a compact subset of M. There exist constants $r_{1}=r_{1}(K), r_{2}=$ $r_{2}(K)>0$ such that

$$
r_{1}\left\|\xi_{1}-\xi_{2}\right\| \leq\left\|\phi\left(\xi_{1}\right)-\phi\left(\xi_{2}\right)\right\| \leq r_{2}\left\|\xi_{1}-\xi_{2}\right\| .
$$

In particular due to Lemma 2.6 we have $Q^{s}(\phi(E \times[0,1]))=0$ for $s>\alpha+1$. Due to (4.1) we conclude that $Q_{\rho}^{s}(\phi(E \times[0,1]))=0$ for $s>\alpha+1$. In particular due to Lemma 2.2 we have $\Theta_{\rho \sigma}^{s}(\phi(E \times[0,1]))=0$ for $s>\alpha+1$. Now due to Theorem 3.8 there exists a function f with the required properties.

Example 4.3. There exists E - a compact, uncountable, circular set of type G_{δ} in $\partial \mathbb{B}^{n}$, a function $f \in \mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ such that $E^{n-1}(f)=\emptyset$ and $E=E^{s}(f)$ for $0 \leq s<n-1$.

Proof. Due to Lemma 2.5 there exists a compact, uncountable set K such that $K \subset[0,1]$ and $Q^{s}(K)=0$ for $s>0$. Now it is enough to use the Example 4.2 for $\alpha=0$.

Example 4.4. There exists E - a set of type G_{δ} and a holomorphic function $f \in$ $\mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ such that $E^{n-1}(f)=\emptyset$ and $E=E^{s}(f)$ for $0 \leq s<n-1$. Moreover $\Theta_{\rho \sigma}^{\alpha}(E)=\infty$ for $0 \leq \alpha<2 n-2$.
Proof. We denote $\chi_{s}(z)=\left(1-\|z\|^{2}\right)^{s}$. Let $e_{1}=(1,0, \ldots, 0)$ and

$$
g\left(z_{1}, \ldots, z_{n}\right)=\sum_{m=2}^{\infty} \frac{2^{m n}}{m} z_{1}^{2^{2 m}}
$$

First we show that $g \in \mathbb{O}\left(\mathbb{B}^{n}\right) \cap L^{2}\left(\mathbb{B}^{n}\right)$ and $e_{1} \in E^{s}(g)$ for $0 \leq s<n-1$.
Using [3, Theorem 2.2] we may estimate

$$
\int_{\mathbb{B}^{n}}|g|^{2} d \mathfrak{L}^{2 n}=\sum_{m=2}^{\infty} \frac{2^{2 m n} \pi^{n}\left(2^{2 m}\right)!}{m^{2}\left(2^{2 m}+n\right)!} \leq \sum_{m=2}^{\infty} \frac{1}{m^{2}}<\infty
$$

Let $0<\varepsilon<n-1$ and $s=n-1-\varepsilon$. Due to [3, Theorem 2.2, Lemma 2.3] there exists $c>0$ such that

$$
\begin{aligned}
\int_{\mathbb{D} e_{1}}|g|^{2} \chi_{s} d \mathfrak{L}^{2} & =\sum_{m=2}^{\infty} \frac{2^{2 m n} \pi\left(2^{2 m}\right)!}{m^{2}\left(s+2^{2 m}+1\right) \prod_{i=1}^{2^{2 m}}(s+i)!} \\
& \geq c \sum_{m=2}^{\infty} \frac{2^{2 m n}\left(2^{2 m}\right)!}{m^{2}\left(n+2^{2 m}\right) 2^{2 m s}\left(2^{2 m}\right)!} \\
& \geq c \sum_{m=2}^{\infty} \frac{2^{2 m n}}{m^{2} n 2^{2 m(s+1)}}=c n^{-1} \sum_{m=2}^{\infty} 2^{2 m \varepsilon} m^{-2}=\infty .
\end{aligned}
$$

There exists a sequence $T=\left\{\xi_{i}\right\}_{i \in \mathbb{N}}$ dense in $\partial \mathbb{B}^{n}$ and such that $\xi_{\lfloor i, j\rfloor}=\xi_{\lfloor i, 1\rfloor}$ for $i, j \in \mathbb{N}$. Let now

$$
f_{k}(z):=\sum_{m=k+1}^{\infty} \frac{2^{m n}}{m}\left\langle z, \xi_{k}\right\rangle^{2^{2 m}+2^{2 k}}
$$

and $A_{k}:=\left\{2^{2 m}+2^{2 k}\right\}_{m=k+1}^{\infty}$. Observe that $\int_{\mathbb{B}^{n}}\left|f_{k}\right|^{2} d \mathfrak{L}^{2 n} \leq \int_{\mathbb{B}^{n}}|g|^{2} d \mathfrak{L}^{2 n}$ and $\xi_{k} \in$ $E^{s}\left(f_{k}\right)$ for $0 \leq s<n-1$. Moreover $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. Let

$$
f=\sum_{k \in \mathbb{N}} 2^{-k} f_{k}
$$

We can estimate

$$
\int_{\mathbb{B}^{n}}|f|^{2} d \mathfrak{L}^{2 n}=\sum_{k \in \mathbb{N}} 2^{-2 k} \int_{\mathbb{B}^{n}}\left|f_{k}\right|^{2} d \mathfrak{L}^{2 n} \leq \int_{\mathbb{B}^{n}}|g|^{2} d \mathfrak{L}^{2 n} .
$$

In particular due to [3, Theorem 2.7] we conclude that $E^{n-1}(f)=\emptyset$.
We may estimate $\int_{\mathbb{D} \xi_{k}}|f|^{2} \chi_{s} d \mathfrak{L}^{2}=\sum_{m \in \mathbb{N}} \int_{\mathbb{D} \xi_{k}}\left|f_{m}\right|^{2} \chi_{s} d \mathfrak{L}^{2} \geq \int_{\mathbb{D} \xi_{k}}\left|f_{k}\right|^{2} \chi_{s} d \mathfrak{L}^{2}=\infty$ for $0 \leq s<n-1$. In particular $T \subset E^{s}(f)$ for $0 \leq s<n-1$.

Let $0<\alpha<2 n-2$. It is known that $E^{s}(f)$ is a circular set of type G_{δ} in $\partial \mathbb{B}^{n}$. Let $\delta>0$ and $\left\{K_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of compact, circular sets such that $T \subset E^{s}(f) \subset \bigcup_{i \in \mathbb{N}} K_{i} \subset \partial \mathbb{B}^{n}$ and $d_{\rho}\left(K_{i}\right) \leq 2 \delta$. Due to Bair's Theorem we conclude that there exists $K_{i_{0}}$ with a non empty interior in $\partial \mathbb{B}^{n}$. In particular due to $0<$ $H_{\rho}^{2 n-2}\left(\partial \mathbb{B}^{n}\right)<\infty$ we have $H_{\rho}^{\alpha}\left(K_{i_{0}}\right)=\infty$ and $\sum_{i \in \mathbb{N}} \tau_{\rho}^{\alpha}\left(K_{i}\right) \geq \tau_{\rho}^{\alpha}\left(K_{i_{0}}\right) \geq H_{\rho}^{\alpha}\left(K_{i_{0}}\right)=$ ∞. Therefore $Q_{\rho}^{\alpha}\left(E^{s}(f)\right)=\infty$ and $\Theta_{\rho \sigma}^{\alpha}\left(E^{s}(f)\right)=\infty$ for $0 \leq \alpha<2 n-2$.

References

[1] P. Kot, Description of simple exceptional sets in the unit ball, Czechoslovak Mathematical Journal 54 (129), (2004), 55-63.
[2] P. Kot, Maximum sets of semicontinuous functions, Potential Analysis (2005) 23, 323-356.
[3] P. Kot, Exceptional sets with a weight in a unit ball, Bull. Belg. Math. Soc. Simon Stevin, 13, no. 1 (2006) 43-53.
[4] C. A. Rogers, Hausdorff Measures, Cambridge University Press 1970.
[5] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer, New York, 1980.
[6] P. Wojtaszczyk, On highly nonintegrable functions and homogeneous polynomials, Annales Polonici Mathematici no. 65, (1997), 245-251.

Politechnika Krakowska, Instytut Matematyki ul. Warszawska 24, 31-155 Kraków, Poland email: pkot@usk.pk.edu.pl

[^0]: Received by the editors August 2005.
 Communicated by F. Brackx.
 1991 Mathematics Subject Classification : 32A05, 32A35.
 Key words and phrases : homogeneous polynomials, exceptional sets, highly nonintegrable holomorphic functions.

