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Abstract

A version of the Kontorovich–Lebedev transformation, involving the Han-
kel function of second kind in its kernel and connected with the Helmholtz’s
equation, has been investigated from a classical point of view by D. S. Jones.
The main objective of this work is to extend this transform to certain space of
generalized functions, establishing the corresponding distributional inversion
formula.

1 Introduction

A. H. Zemanian affirmed that one of the integral transformations that more difficul-
ties offered to its extension to spaces of generalized functions was the Kontorovich–
Lebedev transform [19], defined by

(KLf)(τ) = F (τ) =
∫ ∞

0
Kiτ (x)f(x)dx;

(KL−1F )(x) = f(x) =
2

π2x

∫ ∞

0
τ sinh πτKiτ (x)F (τ)dτ,
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where Kiτ (x) is the Macdonald function ([14, p.355], [17]). Besides A. H. Zemanian,
who was the first one in analysing this transformation in the space of distributions
with compact supports, the same has been investigated by R. S. Pathak and J. N.
Pandey [12], H.–J. Glaeske and A. Hess [5] and S. B. Yakubovich and B. Fisher [16]
in other classes of generalized function spaces.

A different version of this transform is given by the pair

(J f)(ν) = F (ν) =
∫ ∞

0
H(2)

ν (x)f(x)dx, (1.1)

(J −1F )(x) = f(x) = − 1

2x

∫ i∞

−i∞
νJν(x)F (ν)dν, (1.2)

where Jν(z) is the well-known Bessel function of the first kind and order ν, and
H(2)

ν (z) is the Bessel function of the third kind, named also the Hankel function of
the second kind ([3], [9], [15]), introduced by means of

H(2)
ν (z) =

eνπiJν(z)− J−ν(z)

i sin νπ
. (1.3)

Regarded as functions of the argument z both Jν(z) and H(2)
ν (z) are analytic func-

tions in the complex plane cut along the nonpositive real axis, whereas they are
entire functions of the order ν, for every z 6= 0. They satisfy the Bessel equation

z2d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0. (1.4)

D. S. Jones explained through a counterexample [7, §2] that the inversion formula
(1.2) is, in general, faulty. By this reason he proposed to introduce a factor and
replaced (1.2) by

(J −1F )(x) = f(x) = lim
ε−→0+

− 1

2x

∫ i∞

−i∞
eεν2

νJν(x)F (ν)dν, (1.5)

which will ease the deformation of the path of integration, as it will be pointed out
later, in order to establish under which conditions the existence of this limit could
be insured. Indeed, he proved [7] the following

Theorem 1 (D. S. Jones’ theorem). Suppose that the function f satisfies

(a)
∫ 1

0
|f(x)| ln xdx < ∞,

(b)
∫ ∞

c
x−

1
2 f(x)e−i(x−π

4
)dx is finite for any real positive number c.

Then, there exists

F (ν) =
∫ ∞

0
H(2)

ν (x)f(x)dx, (Reν = 0),

and we have

lim
ε−→0+

− 1

2x

∫ i∞

−i∞
eεν2

νJν(x)F (ν)dν =
f(x + 0) + f(x− 0)

2
,

whenever the function f be of bounded variation in a neighborhood of the point x > 0.
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The main objective of this work is to give a distributional version of the Kontoro-
vich–Lebedev transformation in the form studied by D. S. Jones [7]. We remark
that M. I. Kontorovich and N. N. Lebedev [8] researched this transform in the
reverse order, in other words, they started from the expression (1.2) assuming certain
hypotheses on the function F (ν), to show later that the corresponding inversion
formula was provided by (1.1). However, from a point of view of the applications,
the sequence proposed by D. S. Jones is more logical and useful: the direct formula
is given by (1.1), the conditions being imposed on the function f , and its inversion
is supplied by the formula (1.2).
Next, we recall some results that we need along this paper. Amongst them, the
asymptotic behaviours of the functions Jν(x) and H(2)

ν (x).

H(2)
ν (x) ≈

√
2

πx
e−i(x−πν

2
−π

4
), as x −→∞ (1.6)

H(2)
ν (x) ≈ i

2

x

ν
Γ(ν)

π
, as x −→ 0+, Reν > 0 (1.7)

H
(2)
0 (x) ≈ i

2

π
ln

2

x
, as x −→ 0 + (1.8)

Jν(x) ≈ xν

2νΓ(1 + ν)
, as x −→ 0 + (1.9)

Jν(x) ≈
√

2

πx
cos(x− πν

2
− π

4
), as x −→∞, (1.10)

with ν fixed ([3], [9], [15]). For large values of the order ν one has [15, p. 225]

Jν(z) ≈ 1√
2πν

eν−ν ln 2ν
z (1.11)

For values of the argument z greater than those ones of the order ν, we can use [15,
p. 244]

H(2)
ν (z) ≈

√
2

π
(z2 − ν2)−

1
4 e−i

√
z2−ν2−i arcsin ν

z e
πi
2

(ν+ 1
2
) (1.12)

On the contrary, for values of the argument z less than the order ν, it turns out to
be [15, p. 262]

H(2)
ν (z) ≈

√
2

π
i(ν2 − z2)−

1
4 e
−
√

ν2−z2+ν ln

(
ν
z
+

√
ν2

z2−1

)
(1.13)

In the sequel I denotes the positive real interval (0,∞). D(I) stands for the space of
infinitely differentiable functions whose supports are contained in I, being endowed
with the topology of the inductive limit. Its dual D′(I) is the space of Schwartz
distributions ([13], [18]), which is equipped with the weak topology. E(I) represents
the space of all infinitely differentiable functions on I with the topology generated
by the collection of seminorms

γK,k(ϕ) = sup
x∈K

|Dkϕ(x)|, (1.14)
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where ϕ ∈ E(I), D = d
dx

, K is any compact subset of I and k = 0, 1, 2, . . .. Its dual
E ′(I) is the space of distributions with compact supports.

Along this paper by C we will understand a positive constant not necessarily the
same in each occurrence.

2 The Kontorovich–Lebedev transformation with the Hankel

function in the kernel in the space E ′
(I)

Through the kernel method, we will define the version of D. S. Jones of the Kontoro-
vich–Lebedev transform of a generalized function f ∈ E ′(I), directly as the applica-
tion of f to H(2)

ν (·), (
J f

)
(ν) = F (ν) = 〈f(x), H(2)

ν (x)〉 (2.15)

The right-hand side of (2.15) has a sense because, for any fixed ν ∈ C, the function
H(2)

ν (·) ∈ C∞(I) and its derivatives of all orders are bounded on every compact
subset of I. We now list some properties of this transform:
(i) F is an entire function. Indeed, for an arbitrary but fixed ν ∈ C, let M ν be a
non zero complex increment, and consider the expression

F (ν+ M ν)− F (ν)

M ν
− 〈f(x),

∂

∂ν
H(2)

ν (x)〉 = 〈f(x), AMν(x)〉 (2.16)

where

AMν(x) =
H

(2)
ν+Mν(x)−H(2)

ν (x)

M ν
− ∂

∂ν
H(2)

ν (x).

By resorting to accustomed techniques, as in the proof of analogous property con-
cerning the Hankel transform [18, p. 145], we can verify easily that, as M ν −→ 0,
DkAMν(x) tends to zero uniformly on compact subsets of I, that is, AMν converges to
zero in the topology of the space E(I) when M ν −→ 0. Then, 〈f(x), AMν(x)〉 −→ 0,
as M ν −→ 0, and, consequently

F ′(ν) = 〈f(x),
∂

∂ν
H(2)

ν (x)〉.

(ii) Now we equip the space E(I) with the topology generated by the separating
family of seminorns {λK,k}k∈N, defined by

λK,k(ϕ) = sup
x∈K

|∆kϕ(x)|, ϕ ∈ E(I),

where 4 = 4x = x2D2 + xD + x2 and K is a compact of I. This topology
is equivalent to that one given rise by the collection of seminorns (1.14). In effect,
suppose that the sequence (ϕn) converges to zero in the space E(I) with the topology
due to the family of seminorns {λK,k}k∈N. Then, (4`ϕn) converges uniformly to zero
on K, for every ` = 0, 1, 2, . . .. From here and following a standard method, it is
concluded that (Dkϕn) converges uniformly to zero on K, for all k = 0, 1, 2, . . .; that
is, (ϕn) converges to zero in the space E(I) endowed with the topology assigned by
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the collection of seminorns (1.14) ([18, p.177],[19]). And conversely, assume the last
statement. By an inductive argument, we get easily

4kϕ(x) =
2k∑

j=0

Pj(x)D2k−jϕ(x), k = 0, 1, 2, . . . , (2.17)

where Pj(x) denote polynomials of order less or equal to 2k with positive integer
coefficients. So, it is quickly inferred that

λK,k(ϕn) ≤
2k∑

j=0

CjγK,2k−j(ϕn) −→ 0, as n −→∞,

where Cj = supx∈K |Pj(x)|. This implies that (ϕn) tends towards zero in E(I)
equipped with the second topology. Consequently, with the topology supplied by
the family of seminorns {λK,k}k∈N, E(I) is also a Fréchet space [18, p.37].
Recall finally that D(I) ⊂ E(I) ([13],[18]), the dual space E ′(I) being a subspace of
D′(I).
(iii) By virtue of [18, theorem 1.8-1] and the fact that the kernel is a solution of the
Bessel equation (1.4), there exist a positive constant C and a nonnegative integer
number r such that

|F (ν)| ≤ C max
0≤k≤r

sup
x∈K

|∆k
xH

(2)
ν (x)| = C max

0≤k≤r
sup
x∈K

|ν2kH(2)
ν (x)|.

Bearing in mind asymptotic expansions (1.8) and (1.13) and the facts that x belongs
to the compact set K ⊂ [x0, y0] with 0 < x0 < y0 and ln 2

x
is bounded on K, we are

led to

F (ν) =


O(1), as ν −→ 0

O
(
ν2r− 1

2 e
ν(ln 2ν

x0
−1)
)
, as ν −→∞

3 The inversion formula.

In this paragraph we establish the main result of this work

Theorem 2. Let f ∈ E ′(I). We define its Kontorovich–Lebedev transform by(
J f

)
(ν) = F (ν) = 〈f(x), H(2)

ν (x)〉 (3.18)

Then, we have

lim
N−→∞
ε−→0+

− 1

2x

∫ iN

−iN
eεν2

νJν(x)F (ν)dν = f(x),

in the sense of the convergence in the space D′(I).

Proof: We have to prove that, for every ϕ ∈ D(I),〈
− 1

2x

∫ iN

−iN
eεν2

νJν(x)F (ν)dν, ϕ(x)

〉
−→ 〈f, ϕ〉 (3.19)
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when N −→ ∞ and ε −→ 0+. We assume that support of ϕ is contained in [a, b],
where 0 < a < b < ∞.
In the sequel we will denote

Φ(ν) = −1

2
eεν2

ν
∫ b

a
Jν(y)

ϕ(y)

y
dy (3.20)

and

ΩN,ε(x) = −1

2

∫ iN

−iN
H(2)

ν (x)eεν2

ν
∫ b

a
Jν(y)

ϕ(y)

y
dydν =

∫ iN

−iN
Φ(ν)H(2)

ν (x)dν (3.21)

Observe that the integral in the first functional of (3.19) defines a continuous function
of x. This allows us to write

∫ b

a
−1

2

∫ iN

−iN
eεν2

νJν(y)F (ν)dν
ϕ(y)

y
dy =

− 1

2

∫ iN

−iN
〈f(x), H(2)

ν (x)〉eεν2

ν
∫ b

a
Jν(y)

ϕ(y)

y
dydν

=
∫ iN

−iN

〈
f(x), H(2)

ν (x)
〉
Φ(ν)dν, (3.22)

in accordance with definition (2.15) and notation (3.20).
We will proceed in two steps:
(a) Firstly, by using the Riemann sums techniques [18, p. 187], we obtain

∫ iN

−iN

〈
f(x), H(2)

ν (x)
〉
Φ(ν)dν =

〈
f(x),

∫ iN

−iN
H(2)

ν (x)Φ(ν)dν
〉
, (3.23)

in other words, the integral operator interchanges with the functional. Notice that,
according to (3.21), the right-hand side in (3.23) adopts the form〈

f(x), ΩN,ε(x)

〉
. (3.24)

(b) In the second step we have to prove that ΩN,ε(x) −→ ϕ(x) in the topology of
the space E(I), when N −→ ∞, ε −→ 0+. To do it, we shall need some previous
results.
On the one hand, an integration by parts two times yields

∫ b

a
4y{Jν(y)}ϕ(y)

y
dy =

∫ b

a
Jν(y)

4yϕ(y)

y
dy (3.25)

On the other hand, it is well-known that Jν(x) and H(2)
ν (x) are solutions of the

differential equation (1.4), and, consequently,

4xH
(2)
ν (x) = ν2H(2)

ν (x)

4xJν(x) = ν2Jν(x)
(3.26)
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We can introduce the differential operator 4 under the integral sign and use (3.26)
and (3.25) to derive

4k
xΩN,ε(x) = −1

2

∫ iN

−iN
4k

x{H(2)
ν (x)}eεν2

ν
∫ b

a
Jν(y)

ϕ(y)

y
dydν

= −1

2

∫ iN

−iN
ν2kH(2)

ν (x)eεν2

ν
∫ b

a
Jν(y)

ϕ(y)

y
dydν

= −1

2

∫ iN

−iN
H(2)

ν (x)eεν2

ν
∫ b

a
{4k

yJν(y)}ϕ(y)

y
dydν

= −1

2

∫ iN

−iN
H(2)

ν (x)eεν2

ν
∫ b

a
Jν(y)

4k
yϕ(y)

y
dydν (3.27)

Now the change of the order of integration is valid in (3.27) and we can break the
integral into three parts

− 1

2

∫ b

a

4k
yϕ(y)

y

∫ iN

−iN
eεν2

νH(2)
ν (x)Jν(y)dνdy

= −1

2

∫ ∞

0

4k
yϕ(y)

y

∫ iN

−iN
eεν2

νH(2)
ν (x)Jν(y)dνdy

= −1

2


∫ x−δ

0
+
∫ x+δ

x−δ
+
∫ ∞

x+δ

4
k
yϕ(y)

y

∫ iN

−iN
eεν2

νH(2)
ν (x)Jν(y)dνdy (3.28)

where δ > 0 will be fixed farther on.
We investigate first the integral

∫ ∞

x+δ

4k
yϕ(y)

y

∫ iN

−iN
eεν2

νH(2)
ν (x)Jν(y)dνdy (3.29)

For x + δ ≥ b this integral is identically zero, since the support of ϕ is contained
in [a, b]. When x + δ < b, the path of the inner integral in (3.29) can be deformed
moving it from Reν = 0 (the integral is calculated over the imaginary axis) to a
region of the ν-plane where Reν > 0. If we choose ν0 ∈ R, ν0 > b > 0, the new path
of integration is composed of two semi-straight lines starting from ν0 and making
angles ±θ with the positive real axis, as it has been drawn in the figure
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!

"

#

!" " 0

!" " 0

The angle θ is fixed and slightly greater than π
4
. This path is denoted by Γ,

whereas ΓT stands for the part of it constituted by the segments CD and DE, that
is to say, by the points ν ∈ C such that ν = ν0 + te−iθ and ν = ν0 + teiθ, with
0 ≤ t ≤ T , respectively.
By means of definition (1.3) and some straightforward manipulations, D. S. Jones
realized that ∫ i∞

−i∞
eεν2

νH(2)
ν (x)Jν(y)dν =

∫ i∞

−i∞
eεν2

νH(2)
ν (y)Jν(x)dν

Hence, instead of (3.29) we can consider∫ ∞

x+δ

4k
yϕ(y)

y

∫ iN

−iN
eεν2

νH(2)
ν (y)Jν(x)dνdy (3.30)

and demonstrate that this expression converges uniformly to zero, when N −→ ∞
and ε −→ 0+, for every compact K ⊂ I. Inasmuch as the function y−14kϕ(y),
ϕ ∈ D(I), satisfies the hypotheses assumed by D. S. Jones in [7, p. 135 ], the
integral along the path (−i∞, i∞) can be replaced by the integral throughout the
path Γ described formerly. Thus, to prove that (3.30) converges uniformly to zero,
as N −→∞ and ε −→ 0+, is equivalent to verify that∫ ∞

x+δ

4k
yϕ(y)

y

∫
ΓT

eεν2

νH(2)
ν (y)Jν(x)dνdy (3.31)

converges uniformly to zero if T −→ ∞ and ε −→ 0+. The last integral converges
absolutely. Certainly, along the straight line DE we have ν = ν0 + teiθ, 0 ≤ t < T ,
θ > π

4
, and when T −→∞ we are led to∣∣∣∣∣
∫

DE
eεν2

νH(2)
ν (y)Jν(x)dν

∣∣∣∣∣ ≤
∫ ∞

0
|eεν2 ||νH(2)

ν (y)Jν(x)|dt

≤ C
∫ ∞

0
eε(ν2

0+2ν0t cos θ+t2 cos 2θ)e(ν0+t cos θ) ln x
y dt,
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owing to asymptotic formulas (1.11) and (1.13) (Let see also [7, (16)]). Due to the
special choice of θ, we see that cos 2θ < 0 and consequently this integral exists.
But we can assure more, the aforesaid integral converges absolutely even in the case
ε = 0, because

C
∫ ∞

0
e(ν0+t cos θ) ln x

y dt ≤ C
∫ ∞

0
e(ν0+t cos θ) ln x

x+δ dt = Ceν0 ln x
x+δ

(
ln

x + δ

x

)−1

sec θ,

which is uniformly bounded on every compact K ⊂ I. Through an argument similar
to the one given, we arrive at the same conclusion over the semi-straight line DC.
By dominated convergence theorem we can put ε = 0 in (3.31), that is, we get

∫ ∞

x+δ

4k
yϕ(y)

y

∫
ΓT

νH(2)
ν (y)Jν(x)dνdy (3.32)

Next, if the region corresponding to the angular vector of amplitude 2θ is closed by
an arc of circumference of radius T and center in ν0, the integral along the closed
path DCFED is equal to zero by virtue of the Cauchy Theorem [1], since the only
singularities of the function νH(2)

ν (y)Jν(x) are simple poles in ν = 1, 2, 3, . . ., but
they are removable in agreement with the elementary result J−n(y) = (−1)nJn(y),
n ∈ N [9, (5.3.3)]; in other words, νH(2)

ν (y)Jν(x) is a holomorphic function in that
region. Note that the points of the arc of circumference EFC adopt the form
ν = ν0 + Teiφ, −θ < φ < θ. Then, by resorting once more to (1.11) and (1.13),
making the change of variable α = π

2
− φ and using the fact that sin α ≥ 2α

π
for all

α ∈ [0, π
2
], it is inferred∣∣∣∣∣
∫

EFC
νH(2)

ν (y)Jν(x)dν

∣∣∣∣∣ ≤ C
∫ θ

−θ
e(T cos φ+ν0) ln x

x+δ Tdφ

= CTeν0ln x
x+δ

∫ θ

0
eT cos φ ln x

x+δ dφ

= CTeν0ln x
x+δ

∫ π
2

π
2
−θ

eT sin α ln x
x+δ dα

≤ CTeν0 ln x
x+δ

∫ π
2

π
2
−θ

e
2T
π

(ln x
x+δ

)αdα

= C
eν0 ln x

x+δ

ln x
x+δ

[eT ln( x
x+δ

) − e
2T
π

(ln x
x+δ

)(π
2
−θ)],

that tends uniformly to zero, as T −→ ∞, on every compact K ⊂ I, because
ln x

x+δ
< ln b−δ

b
< 0. From all the above considerations, we deduce∫

Γ
νH(2)

ν (y)Jν(x)dν = 0

This result permits to conclude, starting from (3.32), that∣∣∣∣∣
∫ ∞

x+δ

4k
yϕ(y)

y

∫
ΓT

νH(2)
ν (y)Jν(x)dνdy

∣∣∣∣∣
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≤ sup
y∈[a,b]

|y4k
yϕ(y)| 1

a + δ
sup

(x,y)∈K×[a,b]

∣∣∣∣∣
∫
ΓT

νH(2)
ν (y)Jν(x)dν

∣∣∣∣∣ −→ 0,

if T −→∞, uniformly on every compact K ⊂ I.
In like manner we can make ε = 0 and assure that the integral

∫ x−δ

0

4k
yϕ(y)

y

∫
ΓT

eεν2

νH(2)
ν (x)Jν(y)dνdy (3.33)

converges uniformly to zero when T −→∞, on any compact K ⊂ I.
Finally, we discuss

−1

2

∫ x+δ

x−δ

4k
yϕ(y)

y

∫ iN

−iN
eεν2

νH(2)
ν (x)Jν(y)dνdy (3.34)

If either b ≤ x − δ or x + δ ≤ a, the integral (3.34) is identically equal to zero.
Therefore, we need only consider the range a − δ < x < b + δ. Henceforth we fix
0 < δ < a

2
.

We next recall the inversion formula of the Laplace transformation L. For every
ϕ ∈ D(I)

4k
yϕ(y)

y
= L−1

(
L
(
4k

xϕ

x

))
(y)

= lim
N−→∞

1

2πi

∫ c+iN

c−iN
esy

∫ ∞

0
e−sx4k

xϕ(x)

x
dxds

= lim
N−→∞

1

π

∫ ∞

0

4k
xϕ(x)

x

sin N(y − x)

y − x
dx

holds. In the corresponding proof of this inversion formula (see G. Doetsch, [2, pp.
148-151]), the integrals on ranges (0, x− δ) and (x + δ,∞) vanish when N −→ ∞,
the integral on the interval (x− δ, x + δ) being the only one which is meaningful.
It is well know that ([7], [4, p. 188 (55)])

H(2)
ν (y) =

1

2π

∫ c+i∞

c−i∞

bν − eiνπb−ν

(s2 + 1)
1
2 sin νπ

esyds

where b = s + (s2 + 1)
1
2 , y > 0 and |Reν| < 1. From here, using similar reasoning

as in [7, p. 139], we can come to

∫ x+δ

x−δ
H(2)

ν (y)
4k

yϕ(y)

y
dy =

∫ x+δ

x−δ

4k
yϕ(y)

y

1

2π

∫ c+i∞

c−i∞

bν − eiνπb−ν

(s2 + 1)
1
2 sin νπ

esydsdy

=
1

2π

∫ c+i∞

c−i∞

bν − eiνπb−ν

(s2 + 1)
1
2 sin νπ

∫ x+δ

x−δ
esy4

k
yϕ(y)

y
dyds (3.35)

Hence, by multiplying by −1
2
eεν2

νJν(x) and integrating from −i∞ to i∞, we obtain
from (3.35)

lim
ε−→0+

−1

2

∫ i∞

−i∞
eεν2

νJν(y)
∫ x+δ

x−δ
H(2)

ν (y)
4k

yϕ(y)

y
dydν
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= lim
ε−→0+

− 1

4π

∫ i∞

−i∞

eεν2
νJν(y)

sin νπ

∫ c+i∞

c−i∞

bν − eiνπb−ν

(s2 + 1)
1
2

∫ x+δ

x−δ
esy4

k
yϕ(y)

y
dydsdν

= lim
ε−→0+

− 1

4π

∫ c+i∞

c−i∞

1

(s2 + 1)
1
2

∫ x+δ

x−δ
esy4

k
yϕ(y)

y

∫ i∞

−i∞
eεν2

νJν(x)
bν − eiνπb−ν

sin νπ
dνdyds

(3.35)
But the path of the integral in the variable ν can be deformed by employing the
same argument applied to preceding cases and it is licit to make ε = 0. The resultant
integral along the path Γ can be evaluated by means of Cauchy’s residue theorem
[1], as it is made by D. S. Jones in [7, p. 139], giving rise to∫

Γ
νJν(x)

bν − eiνπb−ν

sin νπ
dν = 2ix(s2 + 1)

1
2 e−sx

If we take account of this and of the above remark concerning the integral Laplace
transform, the right-hand side of (3.35) can be written

− 1

4π

∫ c+i∞

c−i∞
2ixe−sx

∫ x+δ

x−δ
esy4

k
yϕ(y)

y
dyds

=
x

2πi

∫ c+i∞

c−i∞
L
(4k

yϕ(y)

y

)
(−s)e−sxds = 4k

xϕ(x)

So we have proved that

−1

2

∫ x+δ

x−δ

4k
yϕ(y)

y

∫ iN

−iN
eεν2

νH(2)
ν (x)Jν(y)dνdy −→ 4k

xϕ(x),

as N −→∞ (T −→∞) and ε −→ 0+, uniformly on every compact K ⊂ I.
Finally, by combining all the above results, we can conclude that

λK,k(ΩN,ε − ϕ(x)) −→ 0,

as N −→∞, ε −→ 0+, that is to say, ΩN,ε(·) −→ ϕ(·) in the topology of the space
E(I), when N −→∞, ε −→ 0+. We need merely invoke the last conclusion and the
linearity of f in (3.24) to finish the proof of our assertion.

4 Applications

Regarding the applications, it is more convenient to use the Kontorovich–Lebedev
transformation given by(

J ∗g
)
(ν) = G(ν) =

∫ ∞

0

H(2)
ν (x)

x
g(x)dx (4.36)

(J ∗−1G)(x) = g(x) = −1

2

∫ i∞

−i∞
νJν(x)G(ν)dν (4.37)

instead of the pair (1.1)-(1.2). The consideration of this new version produces
scarcely any substantial modification in the theoretic study carried out before. Thus,
if g ∈ E ′(I), its generalized Kontorovich–Lebedev transform will be defined by(

J ∗g
)
(ν) = G(ν) =

〈
g(x),

H(2)
ν (x)

x

〉
. (4.38)

Theorem 2 is now stated as follows
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Theorem 3. Let g ∈ E ′(I) and suppose that J ∗g is given by (4.38). Then,

lim
N−→∞
ε−→0+

−1

2

∫ iN

−iN
eεν2

νJν(x)G(ν)dν = g(x). (4.39)

in the sense of the convergence in the space of distributions D′(I).

If g ∈ E ′(I), we have ∆g ∈ E ′(I) as well, due to the usual manner of defining the
generalized differentiation. In our case, we wish to evaluate J ∗(∆g). By invoking
(3.26) some manipulations yield

J ∗(∆g)(ν) =
〈
∆g(x),

H(2)
ν (x)

x

〉
=
〈
g(x),

∆xH
(2)
ν (x)

x

〉
= ν2

〈
g(x),

H(2)
ν (x)

x

〉
= ν2J ∗(g)(ν).

In a word, the operational rule

J ∗(∆g)(ν) = ν2J ∗(g)(ν), (4.40)

holds for every g ∈ E ′(I).
By way of illustration the applications of the transform (4.36)-(4.37), we propose to
find the solution u(r, θ) of the equation

r2∂2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
+ r2u = −rδ(r − r0) (4.41)

in the wedge 0 < θ < θ0, where the constants θ0 and r0 are such that 0 < θ0 < π
and r0 > 0. The corresponding boundary conditions, u(r, 0) = 0 and u(r, θ0) = 0,
are fixed on the sides of the wedge. Here δ(·) stands for the Dirac functional,
which belongs to E ′(I). If we set U(ν, θ) = J ∗(u(r, θ)) and apply the transform
J ∗ to (4.41), by using (4.40) and the fact that J ∗(−rδ(r − r0)) = −H(2)

ν (r0), the
boundary value problem for the partial differential equation (4.41) is converted into
the ordinary problem 

∂2U(ν, θ)

∂θ2
+ ν2U(ν, θ) = −H(2)

ν (r0)

U(ν, 0) = 0, U(ν, θ0) = 0,

whose solution is given by

U(ν, θ) = 2
H(2)

ν (r0)

ν2
sin

νθ

2
sin

ν(θ0 − θ)

2
sec

νθ0

2
.

Lastly, the inversion formula (4.39) supplies the formal solution

u(r, θ) = lim
ε−→0+

∫ i∞

−i∞
eεν2 Jν(r)H

(2)
ν (r0)

ν
sin

νθ

2
sin

ν(θ − θ0)

2
sec

νθ0

2
dν

Some problems of grand physical interest and connected with the Helmholtz’s equa-
tion have been analysed in great detail in [6], [7] and [10].
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