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Abstract

An existence result to infinite boundary-value problem (1) − (2) below is
proved via Schauder-Tychonoff fixed point theorem.

1 Introduction

Last years, the boundary-value problems on infinite intervals have been treated
especially for bounded or periodic solutions. In this field a different contribution is
due to Jean Mawhin (see [8], [9], [10], [11]), who uses various topological methods
(involving interesting applications of the topological degree theory). The reader can
find in [1], [2], [3], [5], [8], [9], [10], [11], [12], [13] a rich bibliography in the study of
the qualitative properties of the ODE of second order.

This Note is devoted to the existence of the solutions to the infinite boundary-
value problem

x′′ + 2f (t) x′ + β (t) x + g (t, x) = 0, t ∈ R+, (1)

x (∞) = x′ (∞) = 0, (2)

where f, β : R+ → R, and g : R+ ×R → R are three given functions, R+ := [0,∞),
and

x (∞) := lim
t→∞

x (t) , x′ (∞) := lim
t→∞

x′ (t) .

∗This paper is dedicated to Professor Cezar Avramescu on the occasion of his 70th birthday
Received by the editors December 2004.
Communicated by J. Mawhin.
2000 Mathematics Subject Classification : 34B40, 34D05, 34D10.
Key words and phrases : boundary-value problems on infinite interval, asymptotic properties,

perturbation.

Bull. Belg. Math. Soc. 13 (2006), 355–362



356 C. Vladimirescu

Equation (1) has been considered by different authors (see, e.g. [4], [6], [7], [14],
[15], and the references therein). The most familiar interpretation of this equation
is that it describes nonlinear oscillations (see [12], wherein the author presents a
delightful history of the forced pendulum equation).

In [6], the authors have introduced a new method to study the stability of the null
solution to equation (1), which is based on Schauder’s fixed point theorem applied
to an adequate operator H, built in the Banach space

C :=
{
z : R+ → R2, z continuous and bounded

}
,

equipped with the usual norm ‖z‖∞ := sup
t∈R+

{‖z (t)‖}, where ‖·‖ represents a norm

in R2.
In order to build the operator H one changes equation (1) to system

z′ = A (t) z + G (t, z) , (3)

which is a perturbed system to
z′ = A (t) z. (4)

(Here A is a quadratic matrix 2× 2, z = (x, y)> , and G is a function with values in
R2; the expressions of A and G will be given in Section 3.)

In [14] we proved stability results for the null solution to (1), by using relatively
classical arguments and in [15] we deduced the generalized exponential asymptotic
stability of the trivial solution to the same equation, under more general assump-
tions, which required more sophisticated arguments (see Theorem 2.1 in [15]).

The purpose of the present paper is to answer to the following question: “How
can we effectively use fixed point theory to prove that problem (1) − (2) admits
solutions ?” First we will show that for initial data small enough, equation (1)
admits solutions defined on R+ and next we will prove that each such a solution
fulfills boundary condition (2) . Unlike [14] and [15], wherein the proof techniques
are based on some Bernoulli type differential inequalities, we will apply, as in [4],
Schauder-Tychonoff fixed point theorem in the Fréchet space

Cc :=
{
z : R+ → R2, z continuous

}
,

endowed with a family of seminorms as chosen as to determine the convergence
on compact subsets of R+. The proof is not too obvious because the fundamental
matrix to system (4) can not be determined explicitly, as in the case when β (t) = 1,
∀t ∈ R+.

2 The main result

The following hypotheses will be required:
(i) f ∈ C1 (R+) and f (t) ≥ 0 for all t ≥ 0;
(ii)

∫∞
0 f (t) dt = ∞;

(iii) there exists a constant K ≥ 0, such that∣∣∣f ′ (t) + f 2 (t)
∣∣∣ ≤ Kf (t) , ∀t ∈ R+; (5)
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(iv) β ∈ C1 (R+), β is decreasing, and

β (t) ≥ β0 > K2, ∀t ∈ R+, (6)

where β0 is a constant;
(v) g ∈ C (R+ × R);
(vi) there exist two constants M > 0 and α > 1, such that

|g (t, x)| ≤ Mf (t) |x|α , ∀x ∈ R, ∀t ∈ R+.

These assumptions are inspired by those in [6]. Notice that (i) and (iii) imply
that f is uniformly bounded (see [14], Remark 2.2).

The main result of this paper is the following theorem.

Theorem 2.1. Suppose that hypotheses (i)-(vi) are fulfilled. Then, there exists an
a > 0 such that every solution x to (1) with |x (0)| < a is defined on R+ and satisfies
condition (2) .

3 Proof of Theorem 2.1

As in [6], we write equation (1) as the following first order system

z′ = A (t) z + B (t) z + F (t, z) , (7)

where

z =

(
x
y

)
, A (t) =

(
−f (t) 1
−β (t) −f (t)

)
, B (t) =

(
0 0

f ′ (t) + f 2 (t) 0

)
,

F (t, z) =

(
0

−g (t, x)

)
.

It is easily seen that our behavior question on the solutions to equation (1) at
∞ reduces to the behavior of the solutions to system (7) at ∞.

For z0 ∈ R2, consider the initial condition

z (0) = z0. (8)

Let Z (t), t ≥ 0, be the fundamental matrix to linear system (4) which is equal
to the identity matrix for t = 0.

Consider for z = (x, y)> ∈ R2 the norm ‖z‖ :=
√

β0x2 + y2.
Then, as in [15], we have the following estimates

‖Z (t) z0‖ ≤ γ
√

1 + β (0)e−
∫ t

0
f(u)du ‖z0‖ , (9)

where γ = max
{
1, 1/

√
β0

}
and∥∥∥∥∥Z (t) Z (s)−1

(
0
1

)∥∥∥∥∥ ≤ e−
∫ t

s
f(u)du, ∀t ≥ s ≥ 0. (10)
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Consider as fundamental the space

Cc :=
{
z : R+ → R2, z continuous

}
.

Cc is a Fréchet space (i.e. a complete, metrizable, and real linear space) with
respect to the family of seminorms

‖z‖n := sup
t∈[0,n]

{‖z (t)‖} , n ∈ N \ {0} .

Notice that the topology defined by this family of seminorms is the topology
of the convergence on compact subsets of R+; in addition, a family A ⊂ Cc is
relatively compact if and only if it is equicontinuous and uniformly bounded on
compacts subsets of R+ (Arzelá-Ascoli theorem).

Define in Cc the operator

(Hw) (t) := Z (t) z0 +
∫ t

0
Z (t) Z−1 (s) [B (s) w (s) + F (s, w (s))] ds, (11)

for all w ∈ Cc, and for all t ∈ R+.

Remark 3.1. It is obvious that the set of solutions to problem (7)− (8) is identical
the set of fixed points to H.

Denote
Bρ := {z ∈ Cc, ‖z (t)‖ ≤ ρ, ∀t ∈ R+} ,

where ρ > 0 is a fixed number; obviously, Bρ is a nonempty, closed, bounded, and
convex subset of Cc.

Lemma 3.1. There exists a number h > 0, such that for every ρ ∈ (0, h) , there
exists a number a > 0 with the property for every z0 with ‖z0‖ ∈ (0, a) ,

HBρ ⊂ Bρ.

Proof. Let z0 ∈ R2, z0 6= 0, w ∈ Bρ, and z := Hw.
Then, by (11) , for all t ∈ R+,

z (t) = Z (t) z0 +
∫ t

0
Z (t) Z−1 (s) [B (s) w (s) + F (s, w (s))] ds. (12)

From hypotheses (iii), (iv), and (vi), we have the following estimates (see, e.g.,
[4], [14], [15]):

‖Z (t) z0‖ ≤ γ
√

1 + β (0) ‖z0‖ e−
∫ t

0
f(s)ds,∥∥∥∥∫ t

0
Z (t) Z−1 (s) B (s) w (s) ds

∥∥∥∥ ≤ K√
β0

∫ t

0
e−
∫ t

s
f(u)duf (s) ‖w (s)‖ ds, (13)

∥∥∥∥∫ t

0
Z (t) Z−1 (s) F (s, w (s)) ds

∥∥∥∥ ≤ M(√
β0

)α

∫ t

0
e−
∫ t

s
f(u)duf (s) ‖w (s)‖α ds. (14)
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By substituting the inequality ‖w (s)‖ ≤ ρ, ∀s ∈ R+, in (13) and (14) , from
(12) , and hypothesis (i), we get

‖z (t)‖ ≤ γ
√

1 + β (0) ‖z0‖+
K√
β0

ρ +
M(√
β0

)α ρα. (15)

Let h :=

 1−K/
√

β0

M/

(√
β0

)α

 1
α−1

and consider ρ ∈ (0, h) arbitrary. Set

a := ρ

1−
 K√

β0

+
M(√
β0

)α ρα−1

 /
(
γ
√

1 + β (0)
)

. (16)

Obviously, a > 0; in addition, by (15) and (16), it follows that

(‖z0‖ < a) =⇒ (‖(Hw) (t)‖ ≤ ρ, ∀t ∈ R+) ,

which ends the proof of Lemma 3.1.

Lemma 3.2. For z0 ∈ R2, let z be a solution to problem (7)− (8) , defined on R+.
Then for ‖z0‖ small enough, z (∞) = 0.

Proof. Let z = (x, y)> be a solution to problem (7)− (8) defined on R+, for z0 ∈ R2.
By (9) , (10) , and Remark 3.1 we infer that for all t ∈ R+,

‖z (t)‖ ≤ γ
√

1 + β (0) ‖z0‖ e−
∫ t

0
f(s)ds

+
∫ t

0
e−
∫ t

s
f(u)du [Kf (s) |x(s)|+ Mf (s) |x (s)|α] ds

=: r (t) . (17)

Then, from (17) , straightforward computations lead us to
r′ (t) ≤ f (t)

( K√
β0

− 1
)

+ M(√
β0

)α r (t)α−1

 r (t) , ∀t ∈ R+

r (0) = γ
√

1 + β (0) ‖z0‖ ,

and so

‖z (t)‖ ≤ r (t) ≤

e
(α−1)

(
1− K√

β0

)∫ t

0
f(s)ds

r (0)1−α −
M/

(√
β0

)α

1−K/
√

β0



+
M/

(√
β0

)α

1−K/
√

β0


1

1−α

, (18)

for all t ∈ R+.
If

0 < ‖z0‖ <

1−K/
√

β0

M/
(√

β0

)α

 1
α−1

/
(
γ
√

1 + β (0)
)

,

then, from (18) and hypothesis (ii), it follows that z (∞) = 0.
The proof of Lemma 3.2 is complete.
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In order to prove Theorem 2.1, it is enough to show that for z0 ∈ R2 with ‖z0‖
small enough, problem (7) − (8) admits solutions defined on R+. To this purpose,
we will use Schauder-Tychonoff fixed point theorem, stated below (see, e.g., [16]).

Theorem 3.1. Let E be a Fréchet space, S ⊂ E a nonempty, closed, bounded, and
convex subset of E, and H : S → S a continuous operator. If HS is relatively
compact in E, then H admits fixed points.

Setting E = Cc, H given by (11) , and S = Bρ we have only to prove the
continuity of H and the relative compactness of HS.

Let wn ∈ Bρ such that wm → w in Cc, as m →∞; that is, ∀ε > 0, ∃m0 = m0 (ε) ,
∀m > m0, ∀t ∈ [0, n] , ‖wm (t)− w (t)‖ < ε.

It is readily seen that there exist constants αn and βn, such that

‖(Hw) (t)− (Hwm) (t)‖ ≤ αn

∫ n

0
‖w (s)− wm (s)‖ ds

+βn

∫ n

0
‖F (s, w (s))− F (s, wm (s))‖ ds.

Since F (t, z) is uniformly continuous for t ∈ [0, n] and ‖z‖ ≤ ρ, it follows that
the sequence F (t, wm (t)) converges uniformly on [0, n] to F (t, w (t)) , which finally
proves the continuity of H.

Let us show that HBρ is relatively compact; from HBρ ⊂ Bρ it follows that HBρ

is uniformly bounded in Cc.
Let w ∈ Bρ be arbitrary; since z = Hw ∈ Bρ and

z′ = A (t) z + B (t) w + F (t, w)

there exist some constants γn and δn, such that

‖z′ (t)‖ ≤ γnρ + δn, ∀t ∈ [0, n] .

So, having the family of derivatives uniformly bounded, HBρ is equicontinuous
on the compact subsets of R+. The proof of Theorem 2.1 is now complete.

Remark 3.2. While the classical transformation (x := x, y := x′) is useless when
trying to obtain behavior results for the solutions to equation (1) at ∞, the transfor-
mation (7), introduced in [6], is essential in deriving our estimates on the solution.

Remark 3.3. If β (t) = 1, ∀t ∈ R+, the fundamental matrix Z (t) can be determined
explicitly (see [4], [6], [14]),

Z (t) = e−
∫ t

0
f(u)du

(
cos t sin t
− sin t cos t

)
.

In general, this is not possible, so in our proof we had to get estimates without having
an explicit form of Z (t).

Example 3.1. Some examples of typical functions f, β, g fulfilling the assumptions
(i)− (vi) are:

f(t) =
1

t + 1
, β (t) = 1 + e−t, g (t, x) = f (t) xα, α > 1, ∀x ∈ R, ∀t ∈ R+.
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