On A_p^* -algebras of the first kind

Aziz Ifzarne

Abstract

We introduce a new class of algebras which extends classical A^* -algebras to the *p*-normed case with generalized involution. We give results concerning the symmetry and the C^* -algebra structure in such algebras.

Introduction

An A^* -algebra E is an involutive Banach algebra which possesses, in addition to its given complete norm, a second algebra norm, called the auxiliary norm, satisfying the C^* -property. The completion \mathcal{U} of E with respect to auxiliary norm is then a C^* -algebra and E is said to be of the first kind if it is a two-sided ideal of \mathcal{U} . For a detailed account of the basic properties of A^* -algebras and A^* -algebras of the first kind, we refer the reader to [9] and [11]. In this paper, we extend the class of A^* algebras to the p-normed case with generalized involution. Thus, we obtain a new class of algebras which will be called A_p^* -algebras. Given an A_p^* -algebra $\left(E, \|.\|_p\right)$, $0 , with a generalized involution <math>x \longmapsto x^*$ and an auxiliary q-norm $|.|_q$, $0 < q \leq 1$, we prove that $|.|_q^{\frac{1}{q}}$ is a norm and hence the completion of $\left(E, |.|_q^{\frac{1}{q}}\right)$ is a C^* -algebra. We also show that an A_p^* -algebra of the first kind E is hermitian. As a consequence, we obtain in this case the uniqueness of the auxiliary norm. If moreover E has a bounded left or right approximate identity, then E is a C^* -algebra.

Bull. Belg. Math. Soc. 13 (2006), 235–240

Received by the editors June 2004 - In revised form in December 2004. Communicated by F. Bastin.

¹⁹⁹¹ Mathematics Subject Classification : Primary: 46K05; Secondary: 46L05.

Key words and phrases : A*-algebra, p-Banach algebra, generalized involution, C*-algebra, hermitian algebra.

1 Preliminaries

A generalized involution on a complex algebra E is a vector involution $x \mapsto x^*$ [5] which is either an algebra involution (i.e., $(xy)^* = y^*x^*$, for every $x, y \in E$) or an involutive anti-morphism (i.e., $(xy)^* = x^*y^*$, for every $x, y \in E$). We define an A_p^* algebra as being a complex *p*-Banach algebra $(E, \|.\|_p), 0 , endowed with a$ generalized involution $x \mapsto x^*$ on which there is defined a second algebra q-norm $|.|_{q}, 0 < q \leq 1$, called auxiliary q-norm, with the C^{*}-property, that is $|xx^{*}|_{q} = |x|_{q}^{2}$, for all $x \in E$. If p = 1 and $x \mapsto x^*$ is an algebra involution, we obtain the classical A^{*}-algebras ([11]). As in the Banach case ([9], [1]), we say that an A_p^* -algebra E is of the first kind if it is a two-sided ideal of its completion with respect to the auxiliary q-norm. Let $(E, \|.\|_p)$, 0 , be a complex p-Banach algebra endowed with ageneralized involution $x \mapsto x^*$. An element a of E is said to be hermitian (resp., normal) if $a = a^*$ (resp., $a^*a = aa^*$). We designate by H(E) (resp., N(E)) the set of hermitian (resp., normal) elements of E. The algebra E is said to be hermitian if the spectrum of every hermitian element is real. We denote the Ptàk function, on E, by P_E that is, for every $x \in E$, $P_E(x) = \rho(xx^*)^{\frac{1}{2}}$, where ρ is the spectral radius i.e., $\rho(x) = \sup \{ |\lambda| : \lambda \in Spx \}$.

Taking in account the fact that, in any *p*-Banach algebra $(E, \|.\|_p)$, we have $\rho(x)^p = \lim_n \|x^n\|_p^{\frac{1}{n}}$, for all $x \in E$, we prove, as in ([2], p.115-117), the following result.

Proposition 1.1. Let $(E, \|.\|_p)$, 0 , be a*p* $-Banach algebra with a generalized involution <math>x \mapsto x^*$. Then *E* is hermitian if, and only if, $\rho_E(a) \le cP_E(a)$, for some c > 0 and every $a \in N(E)$. In this case, if $x \mapsto x^*$ is an algebra involution, we obtain that the Ptàk function P_E is an algebra semi-norm such that $P_E(xx^*) = P_E(x)^2$, for $x \in E$. Moreover $Rad(E) = \{x \in E : P_E(x) = 0\}$, where Rad(E) is the Jacobson radical of *E*.

Using Theorem 3.10 of [13], we prove that Theorem 4.8 of [8] extends to the p-Banach case as follows.

Proposition 1.2. A real semi-simple *p*-Banach algebra, 0 , in which every square is quasi-invertible, is necessarily commutative.

2 A_p^* -algebras of the first kind

The following result shows that any A_p^* -algebra possesses an auxiliary norm which satisfies the C^* -property.

Theorem 2.1.Let $(E, \|.\|_p)$, $0 , be an <math>A_p^*$ -algebra and $|.|_q$, $0 < q \le 1$, its auxiliary *q*-norm. Then $|.|_q^{\frac{1}{q}}$ is a norm and the completion of $(E, |.|_q^{\frac{1}{q}})$ is a C^* -algebra.

Proof. Since $x \mapsto x^*$ is continuous for $|.|_a$, it follows that the equality $|xx^*|_a = |x|_a^2$ extends to the completion $\stackrel{\wedge}{E_q}$ of $(E, |.|_q)$. In particular, we obtain $|h|_q = \rho_{\stackrel{\wedge}{E_q}}(h)^q$, for every $h \in H(\stackrel{\wedge}{E_a})$. Whence

$$\rho_{\stackrel{\wedge}{E_q}}(a)^2 \le |a|_q^{\frac{2}{q}} = |aa^*|_q^{\frac{1}{q}} = P_{\stackrel{\wedge}{E_q}}(a), \text{ for every } a \in N(\stackrel{\wedge}{E_q}).$$

By Proposition 1.1, the algebra $\stackrel{\frown}{E}_q$ is hermitian. Consider first an algebra involution $x \mapsto x^*$. In this case, the Ptàk function is an algebra semi-norm. But

$$P_E(x) = \rho(xx^*)^{\frac{1}{2}} = |xx^*|_q^{\frac{1}{2q}} = |x|_q^{\frac{1}{q}}, \text{ for every } x \in E.$$

Whence $|.|_q^{\frac{1}{q}}$ is a norm in E and hence $\left(\stackrel{\wedge}{E_q}, |.|_q^{\frac{1}{q}}\right)$ is a C^* -algebra. Suppose now that $x \mapsto x^*$ is an involutive anti-morphism. We will show that the algebra E is commutative. It is sufficient to prove that the real algebra H(E) is commutative. Since $|h|_q = P_{\stackrel{\wedge}{E_q}}(h)^q$, for every $h \in H(\stackrel{\wedge}{E_q})$, it follows that $H(\stackrel{\wedge}{E_q})$ is semi-simple. Moreover, every square in $H(\hat{E}_q)$ is quasi-invertible for \hat{E}_q is hermitian. Thus, by Proposition 1.2, the algebra $H(\stackrel{\wedge}{E_q})$ is commutative. Whence the commutativity of H(E).

As a consequence, we obtain the following result.

Corollary 2.2. Let $(E, \|.\|_p)$, $0 , be an <math>A_p^*$ -algebra and $\|.\|_q$, $0 < q \le 1$, its auxiliary q-norm. Then

1) *E* is semi-simple.

2) The involution is continuous for $\|.\|_p$.

3) $|a|_q^{\frac{1}{q}} \leq c ||a||_p^{\frac{1}{p}}$, for some c > 0 and every $a \in E$. Proof.

1) We have $|h|_q = \left|h^{2^n}\right|_q^{\frac{1}{2^n}}$, for every $h \in H(E)$ and $n = 1, 2, \dots$ Since, by

Theorem 2.1, $|.|_q^{\frac{1}{q}}$ is a norm, it follows from Theorem 7 ([5], p. 22), that

$$|h|_q^{\frac{1}{q}} = \lim_n \left(\left| h^{2^n} \right|_q^{\frac{1}{q}} \right)^{\frac{1}{2^n}} \le \rho(h), \text{ for every } h \in H(E).$$

Then $|a|_q^2 = |aa^*|_q \leq \rho(aa^*)^q$, for every $a \in E$. Whence $|a|_q^{\frac{1}{q}} \leq P_E(a)$, for every $a \in E$. It follows from Proposition 1.1 and Theorem 2.1 that the algebra E is semi-simple.

2) We have $|a|_q^2 \leq ||aa^*||_p^{\frac{q}{p}} \leq ||a||_p^{\frac{q}{p}} ||a^*||_p^{\frac{q}{p}}$, for every $a \in E$. A simple application of the closed graph Theorem shows that $x \mapsto x^*$ is continuous for $||.||_p$.

3) Let M > 0 such that $||a^*||_p \le M ||a||_p$, for every $a \in E$. Then

$$|a|_q^{\frac{1}{q}} \le \rho(aa^*)^{\frac{1}{2}} \le ||aa^*||_p^{\frac{1}{2p}} \le M^{\frac{1}{2p}} ||a||_p^{\frac{1}{p}}, \text{ for every } a \in E.$$

According to Theorem 2.1, we use in the sequel the notation $(E, \|.\|_p, |.|)$ to declare an A_p^* -algebra $(E, \|.\|_p)$ with an algebra involution $x \mapsto x^*$ and an auxiliary norm |.| satisfying $|xx^*| = |x|^2$ for all $x \in E$. The completion $\stackrel{\wedge}{E}$ of E with respect to the norm |.| is then a C^* -algebra. By Corollary 2.2(3), $\|.\|_p$ is finer than |.|. Since every A_p^* -algebra $(E, \|.\|_p, |.|)$ is an F-space (Fréchet space) for the metric $d(x, y) = \|x - y\|_p$, using the closed graph theorem and Theorem 2.17 of [12], we can prove that an A_p^* -algebra of the first kind satisfies

$$||ax||_p^{\frac{1}{p}} \le c ||a||_p^{\frac{1}{p}} |x|$$
 and $||xa||_p^{\frac{1}{p}} \le c ||a||_p^{\frac{1}{p}} |x|$,

for some c > 0 and every $a \in E$, $x \in \stackrel{\wedge}{E}$. Conversely, if E is an A_p^* -algebra and there is a constant c > 0 such that $||ab||_p^{\frac{1}{p}} \leq c ||a||_p^{\frac{1}{p}} |b|$, for all $a, b \in E$, then E is an A_p^* -algebra of the first kind.

The following example shows that an A_p^* -algebra $(E, \|.\|_p)$ of the first kind is not necessarily an A^* -algebra for a norm equivalent to $\|.\|_p$.

Example 2.3. For 0 , consider

$$E = \left\{ (x_n)_n \subset C : \sum_{n=1}^{\infty} |x_n|^p < +\infty \right\},\$$

equipped with the pointwise operations and the *p*-norm given by $||x||_p = \sum_{n=1}^{\infty} |x_n|^p$, where $x = (x_n)_n \in E$. Then $(E, ||.||_p)$ is a *p*-Banach (not Banach) algebra. Endowed with the algebra involution $((x_n)_n)^* = (\overline{x_n})_n$, *E* is an A_p^* -algebra with auxiliary norm |.| defined by $|x| = \sup_n |x_n|$. Moreover, it is easily seen that $||xy||_p^{\frac{1}{p}} \leq ||x||_p^{\frac{1}{p}} |y|$, for every $x, y \in E$. Hence, the A_p^* -algebra *E* is of the first kind.

If the algebra admits a bounded left or right approximate identity, the situation is different as the following result shows.

Theorem 2.4. Let $(E, \|.\|_p, |.|)$, $0 , be an <math>A_p^*$ -algebra of the first kind. If E has a bounded left or right approximate identity $(e_i)_{i\in I}$ with respect to $\|.\|_p$, then (E, |.|) is a C^* -algebra. *Proof.* We will show that $\|.\|_p$ and |.| are equivalent. By Theorem 2.1 and Corollary 2.2, it remains to show that $\|a\|_p^{\frac{1}{p}} \le c |a|$, for some c > 0 and every $a \in E$. Since E is an A_p^* -algebra of the first kind, we have $\|ba\|_p^{\frac{1}{p}} \le c \|b\|_p^{\frac{1}{p}} |a|$, for some c > 0 and every $a, b \in E$. In particular $\|e_i a\|_p^{\frac{1}{p}} \le c \|e_i\|_p^{\frac{1}{p}} |a|$, for every $a \in E$, and so $\|a\|_p^{\frac{1}{p}} \le c' |a|$, for some c' > 0 and every $a \in E$.

Remark 2.5. Theorem 2.4 shows that the unitization of an A_p^* -algebra of the first kind is not in general of the same type. But we can always adjoin an identity element so as to preserve the A_p^* -algebra structure. In fact, Let $(E, ||.||_p, |.|)$

be an A_p^* -algebra. By lemma 4.1.13 of [11], there exists a normed algebra B and an isometric *-isomorphism of E into B such that B has an identity element and its norm satisfies the C^* -property. The algebra B consists of all operators of the form $L_x + \alpha I$, $x \in E$, $\alpha \in C$, where I the identity operator of L(E) and L_x the operator defined, in E, by $L_x(a) = xa$. If E does not have an identity element, define $||L_x + \alpha I||_p = ||x||_p + |\alpha|^p$. Then $(B, ||.||_p)$ is a p-Banach algebra and hence an A_p^* -algebra.

By Proposition 1.1, a semi-simple *p*-Banach algebra endowed with a hermitian algebra involution is an A_p^* -algebra with auxiliary norm the Ptàk function. In [7], Gelfand and Naïmark give an example of an A^* -algebra which is not hermitian. However, the following result shows that an A_p^* -algebra of the first kind is hermitian.

Theorem 2.6. Let $(E, \|.\|_p, |.|)$, $0 , be an <math>A_p^*$ -algebra of the first kind. Then E is hermitian. *Proof.* There exists c > 0 such that $\|ab\|_p^{\frac{1}{p}} \leq c \|a\|_p^{\frac{1}{p}} |b|$, for all $a, b \in E$. In particular, for every $a \in E$ and n = 1, 2, ..., we have $\|a^{n+1}\|_p^{\frac{1}{np}} \leq c^{\frac{1}{n}} \|a\|_p^{\frac{1}{np}} |a^n|^{\frac{1}{n}}$. Tending n to infinity, we obtain $\rho_E(a) \leq \rho_{\mathcal{U}}(a)$, where \mathcal{U} is the completion of (E, |.|). On the other hand $Sp_{\mathcal{U}}(a) \subset Sp_E(a), a \in E$, and hence $\rho_E(a) = \rho_{\mathcal{U}}(a)$ for every $a \in E$. Moreover, the algebra $(\mathcal{U}, |.|)$ is hermitian for it is a C^* -algebra. It follows, by Proposition 1.1, that $\rho_{\mathcal{U}} \leq P_{\mathcal{U}}$ in \mathcal{U} . But $P_E = P_{\mathcal{U}}$ in E. Thus $\rho_E \leq P_E$ in E. This implies, by Proposition 1.1, that the algebra E is hermitian.

As a consequence, we obtain the uniqueness of the auxiliary norm in A_p^* -algebras of the first kind.

Corollary 2.7. An A_p^* -algebra E of the first kind has a unique auxiliary norm. This norm is exactly the Ptàk function.

Proof. If |.| is an auxiliary norm in E and \mathcal{U} the completion of E with respect to |.|, then $|.| = P_{\mathcal{U}}$ in \mathcal{U} for $(\mathcal{U}, |.|)$ is a C^* -algebra. But $P_E = P_{\mathcal{U}}$ in E, by Theorem 2.6. Whence $|.| = P_E$ in E.

Remark 2.8. Using Theorem 2.6, we can deduce Corollary 2.7 from a result of Bhatt-Inoue-Kürsten [3; Lemma 4.5(1)] according to which every spectral C^* -seminorm is unique and coincides with Ptàk function. In fact, Theorem 2.6 shows that every A_p^* -algebra E of the first kind is a C^* -spectral algebra, in the sense that there is a C^* -semi-norm |.| (in this case Ptàk function) with $\rho_E(x) \leq |x|$, for every x in E ([4]).

Acknowledgement. I would like to express my gratitude to the referees for their helpful suggestions leading to an improvement of the first version of the paper.

References

- F. E. Alexander, The dual and bidual of certain A*-algebras, Proc. Amer. Math. Soc. 38(1973), 571-576.
- [2] B. Aupetit, Propriétés Spectrales des Algèbres de Banach, Lectures Notes in Mathematics 735, Springer Verlag, Berlin, 1979.
- [3] S.J. Bhatt, A.Inoue, K.-D. Kürsten, Well-behaved unbounded operator *representations and unbounded C*-seminorms, J. Math. Soc. Japan 56(2004), 417-445.
- [4] S.J. Bhatt, A. Inoue, H. Ogi, On C^{*}-spectral algebras, Rend. Circ. Mat. Palermo. 56(1998), 207-213.
- [5] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer Verlag, Berlin, 1973.
- [6] A. El Kinani, A. Ifzarne, M. Oudadess, Commutativité de certaines algèbres de Banach à anti-morphisme involutif, Rev. Academia de Ciencias. Zaragoza. 53(1998), 165-173.
- [7] I. M. Gelfand, M. A. Naimark, Normed rings with their involution and their representations, Izk. Akad. Nauk. SSSR. 12(1948), 445-480.
- [8] I. Kaplansky, Normed algebras, Duke. Math. J. 16(1949), 399-418.
- T. Ogasawara, K. Yoshinaga, Weakly completely continuous Banach *-algebras, J. Sci. Hiroshima Univ. Ser. A. 18(1954), 15-36.
- [10] V. Ptàk, Banach algebras with involution, Manuscr. Math. 6(1972), 245-290.
- [11] C. E. Rickart, General Theory of Banach Algebras, New York, Van Nostrand, 1960.
- [12] W. Rudin, Functional Analysis, New York, Mc Graw Hill, 1973.
- [13] W. Zelazko, Selected Topics on Topological Algebras. Lecture Notes Series 31, 1971.

36 Sidi Boukhari, Tangier (Morocco). E-mail: azizovsky@yahoo.fr