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Abstract

The present article is part of the program described in [2]. Here we study
the Phan-theoretic flipflop geometries related to the flip induced by a nonde-
generate orthogonal form on a vector space over an arbitrary field of charac-
teristic distinct from two. We obtain amalgam results in the spirit of Phan’s
theorems [8], [9] for fields that do not admit a quadratic extension and for
real closed fields.

1 Introduction

Let n ≥ 1 and let V be an (n + 1)-dimensional vector space over some field F of
characteristic distinct from two endowed with some nondegenerate orthogonal form
f = (·, ·). By Γ = Γn(F, f) we denote the pregeometry on the proper subspaces of
V that are nondegenerate with respect to (·, ·) with symmetrized containment as
incidence and the vector space dimension as the type. It is easily seen that Γn(F, f)
is a geometry, cf. Proposition 2.1. Our first main result is the simple connectedness
of that geometry:

Theorem 1. Let n ≥ 3 and let F be an arbitrary field of characteristic not two
distinct from F3 and F5, let V be an (n+1)-dimensional vector space over F, and let
f be a nondegenerate symmetric bilinear form on V . Then the geometry Γn(F, f) is
simply connected.
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For sufficiently large n, say n ≥ 7, the geometry Γn(F, f) is also simply connected
over the fields F3 and F5. We do not know whether the geometries in smaller dimen-
sion actually are not simply connected or just are not covered by our particular proof.
Anyway, these cases are less interesting because of their lack of flag-transitivity, as
one will see in the sequel.

Our goal is to give a presentation of flag-transitive groups of automorphisms of
the above geometries via Tits’ Lemma (Lemma 4.3). The flag-transitive geometries
are essentially given in the following theorem.

Theorem 2. Let V be an (n + 1)-dimensional vector space over some field F of
characteristic distinct from two and let f be a nondegenerate symmetric bilinear
form on V . The group SOn+1(F, f) acts flag-transitively on the geometry Γn(F, f)
if F does not admit a quadratic extension. If f has Witt index at least one, then
the group SOn+1(F, f) acts flag-transitively on the geometry Γn(F, f) if and only if
F does not admit a quadratic extension.

As usual we want to combine Theorems 1 and 2 by Tits’ Lemma (Lemma 4.3) in
order to obtain a presentation of the group SOn+1(F, f). As mentioned before this
lemma does not apply in case of intransitive geometries. (For an extension of Tits’
Lemma and the general covering theory of intransitive geometries see [6] or [7].) In
the present paper we will use the following method to construct a flag-transitive
subgeometry of Γn(F, f). Let as before Γn(F, f) = (X, ∗, typ) be the geometry on
the nondegenerate proper subspaces of V and let F = (xi)1≤i≤n be some flag of Γ
(not necessarily maximal). Define the geometry

∆F
n (F, f) = (Y, ∗|Y ×Y , typ|Y )

over typ|Y (Y ) with

Y = {x ∈ X | x ∈ F g for some g ∈ SOn+1(F, f)} .

Theorem 3. Let V be an (n + 1)-dimensional vector space over some field F of
characteristic distinct from two, let f be a nondegenerate symmetric bilinear form on
V , and let F be a flag of Γn(F, f). Then the group SOn+1(F, f) acts flag-transitively
on the geometry ∆F

n (F, f).

The proof of Theorem 3 relies on Witt’s theorem. In general, if G = (X, ∗, typ)
is an arbitrary geometry, the geometry

(Y, ∗|Y ×Y , typ|Y )

with
Y = {x ∈ X | x ∈ Fα for some α ∈ Aut(G)}

for some flag F of G, is not a flag-transitive geometry. The reader is referred to [6]
for a treatment of that general case.

Of course, by passing to a flag-transitive subgeometry ∆F
n (F, f) from an intran-

sitive geometry Γn(F, f) we have lost elements of our geometry, so in the worst case
we may end up with a geometry that is no longer simply connected. However, in
some cases one can prove that the smaller geometry still is simply connected as in
the following setting.
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Theorem 4. Let m,n ≥ 0 such that one of m and n is greater than or equal to
three and the sum of m and n is greater than or equal to four. Let R be a real
closed field and let V ∼= Rm+n be endowed with a nondegenerate symmetric bilinear
form f with isometry group SOR(m, n). If F is a flag of Γm+n−1(R, f) containing
anisotropic one-, two-, and three-dimensional subspaces of V , then ∆F

m+n−1(R, f) is
simply connected.

From the point of view of finite geometry, probably the most interesting geometry
in this context is the geometry ∆F

n (F, f) obtained from the geometry Γn(F, f) for
a finite field F and the flag F consisting of an arbitrary maximal flag of Γn(F, f).
However, proving simple connectedness for that geometry seems to be a very hard
problem, because each line of Γ contains points of both + and − type. Passing to
∆ hence results in a loss of half the points of each line, making counting arguments
nearly impossible. For sufficiently large dimension, the simple connectedness can be
established nevertheless. Probably the best possible result in this direction has been
achieved in [10]. See [7] for an alternative attempt using the theory of intransitive
geometries.

Combining Theorem 1 and Theorem 2 we get the following.

Theorem 5. Let n ≥ 3, let V be an (n+1)-dimensional vector space over some field
F of characteristic distinct from two that does not admit a quadratic extension and
let f be a nondegenerate symmetric bilinear form on V . Let F be a maximal flag
of Γn(F, f) and let A(2) be the amalgam of all rank two parabolics, i.e., stabilizers
in SOn+1(F, f) of subflags of F of corank two. Then SOn+1(F, f) is the universal
completion of A(2).

Finally, Theorem 3 and Theorem 4 imply an analogous result.

Theorem 6. Let m, n ≥ 0 such that one of m and n is greater than or equal
to three and the sum of m and n is greater than or equal to four. Let R be a
real closed field and let V ∼= Rm+n be endowed with a nondegenerate symmetric
bilinear form f with isometry group SOR(m,n) and let F be a flag of Γm+n−1(R, f)
containing anisotropic one-, two-, and three-dimensional subspaces of V . Let A(2)

be the amalgam of all rank two parabolics in SOR(m, n) with respect to the maximal
flag F of ∆F

m+n−1(R, f). Then SOR(m, n) is the universal completion of A(2).

This paper is organized as follows. In Section 2 we study the connectedness and
residual connectedness of Γn(F, f). In Section 3 we turn our attention to the simple
connectedness of Γn(F, f) and provide a proof of Theorem 1. Section 4 deals with
transitivity properties of Γn(F, f) and proofs of Theorem 2 and Theorem 5. Finally,
Section 5 focuses on flag-transitive subgeometries of Γn(F, f) and provides proofs of
Theorems 3, 4, and 6.

2 Nondegenerate subspaces of orthogonal space

Our geometric notions are standard. As a reference see [3] or [4]. We will remind
the reader of relevant notions as they occur. Let n ≥ 1 and let V be an (n +
1)-dimensional vector space over some field F of characteristic distinct from two
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endowed with some nondegenerate orthogonal form f = (·, ·). By Γ = Γn(F, f)
we denote the pregeometry on the proper subspaces of V that are nondegenerate
with respect to (·, ·) with symmetrized containment as incidence and the vector
space dimension as the type. Recall that the difference between a geometry and a
pregeometry over the type set {1, . . . , n} is that in the former each flag is contained in
a chamber, i.e., a flag of type {1, . . . , n}, while in the latter this need not necessarily
be the case.

Proposition 2.1. The pregeometry Γn(F, f) is a geometry.

Proof: We have to prove that each flag can be embedded in a flag of cardinality
n. To this end let F = {x1, . . . , xt} be a flag of Γ. We can assume that the
nondegenerate subspace x1 of V has dimension one. Indeed, if it has not, then
we can find a nondegenerate one-dimensional subspace x0 of x1 and study the flag
F ′ = F ∪ {x0} instead. Now observe that the residue of the nondegenerate one-
dimensional subspace x1 is isomorphic to Γn−1(F, f ′) for some induced form f ′ via
the map that sends an element U of the residue of x1 to U ∩ x⊥1 . Hence induction
applies.

Lemma 2.2. If l is a line and p is a point not on l, then there are at most two
points of Γ on l which are not collinear to p.

Proof: This follows immediately from the fact that at most two two-dimensional
subspaces of 〈p, l〉 containing p are degenerate with respect to (·, ·).

The collinearity graph of a pregeometry Γ is the graph on the points of Γ in which
two vertices are adjacent if and only if the corresponding points of Γ are collinear.

Proposition 2.3. Let n ≥ 2. The collinearity graph of Γn(F, f) has diameter two.

Proof: Suppose n ≥ 3, then the dimension of the vector space V is at least 4.
Now fix two points 〈a〉 and 〈b〉, which are not collinear. Two points 〈a〉 and 〈b〉 are
not collinear if and only if the space 〈a, b〉 is singular with respect to (·, ·). However
〈a, b〉 is a two-dimensional subspace of V which is not totally singular, because (a, a)
and (b, b) are distinct from zero. Therefore the radical of 〈a, b〉 is a one-dimensional
space. The dimension of 〈a, b〉⊥ is greater or equal to two, as n ≥ 3. Consequently,
the orthogonal complement of 〈a, b〉 contains a point, say 〈c〉. Now consider the
two-dimensional subspaces 〈a, c〉 and 〈b, c〉. Since 〈a〉 and 〈b〉 are perpendicular to
〈c〉 both 〈a, c〉 and 〈b, c〉 are lines. The distance between 〈a〉 and 〈c〉 is one and so
is the distance between 〈c〉 and 〈b〉. Thus the distance between 〈a〉 and 〈b〉 is two.
Certainly Γ contains a pair of noncollinear points, so we are done.

Now assume n = 2 and let 〈a〉 and 〈b〉 be two arbitrary points in V . If the space
l = 〈a, b〉 is a line then the distance between 〈a〉 and 〈b〉 is one. Otherwise pick a
point 〈ã〉 in 〈a〉⊥. The space 〈a, ã〉 is a line and the point 〈b〉 is not on 〈a, ã〉. The
point 〈b〉 is collinear with at least two points on 〈a, ã〉 by Lemma 2.2. Pick one of
these points, say the point 〈c〉. The distance between 〈a〉 and 〈c〉 is one, because
the space 〈a, c〉 is the line 〈a, ã〉. The distance between 〈b〉 and 〈c〉 is one as well,
because 〈c〉 and 〈b〉 are collinear. This implies that the distance between point 〈a〉
and point 〈b〉 is two.
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Recall that a pregeometry is called residually connected if each residue of a
flag of corank at least two is connected and each residue of a flag of corank one is
non-empty.

Corollary 2.4. Let n ≥ 2. Then Γn(F, f) is residually connected.

Proof: Each residue of Γn(F, f) with respect to some flag of corank at least two
is of the form

⊕
Γm(F, f ′), i.e., the direct sum of geometries Γm(F, f ′) for suitable m

and suitable nondegenerate orthogonal forms f ′. If
⊕

Γm(F, f ′) consists of a unique
direct summand, this summand is connected by Proposition 2.3. If

⊕
Γm(F, f ′) has

more than one direct summand then every point of one summand is adjacent to
every point of the other summand, and again the incidence graph of the residue has
diameter at most two.

3 Simple connectedness

Recall the definition of the fundamental group of a connected geometry ∆. A path
of length k in the geometry is a sequence of elements x0, . . . , xk such that xi and
xi+1 are incident, 0 ≤ i ≤ k − 1. A cycle based at an element x is a path in which
x0 = xk = x.

Two paths are homotopically equivalent if one can be obtained from the other
via the following operations called elementary homotopies:

(1) inserting or deleting a repetition (i.e., a cycle of length 1),

(2) inserting or deleting a return (i.e., a cycle of length 2), or

(3) inserting or deleting a triangle (i.e., a cycle of length 3).

The equivalence classes of cycles based at an element x form a group under the
multiplication induced by concatenation of cycles. This group is called the fun-
damental group of ∆ and denoted by π1(∆, x). A geometry is called simply
connected if its fundamental group is trivial. Notice that in order to prove that
∆ is simply connected it is enough to prove that any cycle based at x is homo-
topically equivalent to the cycle of length 0. A cycle with this property is called
null-homotopic, or homotopically trivial. We refer the reader to [11] or [14] for
more detailed information.

Recall that the incidence graph of some geometry is the graph on the elements
of that geometry in which two distinct elements are adjacent if and only if they are
incident. This means the fundamental group of a rank n geometry is nothing else
than the fundamental group of its incidence graph considered as a (n−1)-dimensional
simplicial complex.

Lemma 3.1. Let n ≥ 1. Every cycle γ = x0x1 . . . xk−1x0 in the incidence graph of
Γn(F, f) is homotopically equivalent to a cycle γ′ touching only points and lines.

Proof: This follows by a standard argument using the residual connectedness of
Γ, see Lemma 5.1 of [5].



172 K. Altmann – R. Gramlich

If n = 2, then the vector space V has dimension three. Thus, the geometry
Γ2(F, f) contains only elements of type one or two. In the incidence graph of Γ2(F, f),
only points and lines are adjacent but never two different points or two different lines.
Therefore, the incidence graph of Γ2(F, f) cannot be decomposed into triangles. We
have proved the following.

Proposition 3.2. The geometry Γ2(F, f) is not simply connected. �

In the remainder of this section we will prove the simple connectedness of Γn(F, f)
for n ≥ 3. Since every closed path based on an arbitrary element in the incidence
graph of Γ is homotopically equivalent to a cycles based on a point and passing only
points and lines, there is, for every cycle in the incidence graph, a homotopically
equivalent closed path in the point-line-incidence graph which implies that it suffices
to study the point-line-incidence graph. Moreover, since Γ is a partial linear space,
each line is uniquely determined by two of its points, so it is enough to study the
collinearity graph of Γ.

In the nondegenerate vector space V , let 〈a〉, 〈b〉 and 〈c〉 be different points
and the three two-dimensional spaces 〈a, b〉, 〈a, c〉, and 〈b, c〉 be lines. We call
the 3-cycle 〈a〉〈b〉〈c〉〈a〉 a nondegenerate triangle or good triangle if 〈a, b, c〉
is a nondegenerate vector subspace of V . Otherwise 〈a〉〈b〉〈c〉〈a〉 is a degenerate
triangle or bad triangle.

Since the diameter of the collinearity graph of Γ is two and since good triangles
of the collinearity graph correspond to null-homotopic cycles in the incidence graph,
in order to prove simple connectedness it suffices to prove that we can decompose
triangles, quadrangles and pentagons in the collinearity graph into products of good
triangles.

Let’s start with pentagons:

Proposition 3.3. Let n ≥ 3 and let |F| ≥ 5. Every pentagon in the collinearity
graph of Γ can be decomposed into a product of triangles and quadrangles.

Proof: Let γ = 〈a〉〈b〉〈c〉〈d〉〈e〉〈a〉 be an arbitrary 5-cycle in the collinearity graph
of Γ. Since |F| ≥ 5, the line 〈c, d〉 contains at least four points of Γ, so by Lemma
2.2 it contains a point of Γ collinear to 〈a〉, say 〈y〉. Since 〈a〉 is collinear to 〈y〉 the
space 〈a, y〉 is a line. We have decomposed the 5-cycle γ into a product of 4-cycles
and 3-cycles.

Now we deal with 4-cycles.

Proposition 3.4. Let n ≥ 3 and let |F| ≥ 7. Every quadrangle in the collinearity
graph of Γ can be decomposed into a product of triangles.

Proof: Let γ = 〈a〉〈b〉〈c〉〈d〉〈a〉 be an arbitrary 4-cycle in the collinearity graph
of Γ. Since |F| ≥ 7, the line 〈a, b〉 contains at least six points of Γ. By Lemma 2.2 of
those six points at least four are collinear to 〈c〉, and, by Lemma 2.2 again, of those
four points at least two are collinear to 〈d〉 decomposing the 4-cycle γ into 3-cycles.
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We have decomposed pentagons and quadrangles into products of triangles.
However, those triangles may be bad. For that reason we finish the proof of the sim-
ple connectedness of the geometry Γ by showing that a bad triangle in the collinearity
graph of Γ can be decomposed in a product of good triangles.

Let 〈a〉〈b〉〈c〉〈a〉 be a 3-cycle in the collinearity graph of Γ. We call 〈a〉〈b〉〈c〉〈a〉
of perpendicular type if one of the equalities (a, b) = 0, (a, c) = 0, or (b, c) = 0
holds.

The idea is to show that every triangle can be decomposed into a product of
triangles of perpendicular type and then that every triangle of perpendicular type
can be decomposed again into a product of nondegenerate triangles.

For the first step assume |F| ≥ 5. Let γ = 〈a〉〈b〉〈c〉〈a〉 be an arbitrary 3-cycle. If
γ is a cycle of perpendicular type then we have nothing to prove. Otherwise take the
line 〈a, c〉⊥ and pick a point 〈d〉 from that line, which is collinear with 〈b〉. Lemma
2.2 implies that such a point 〈d〉 exists. The resulting 3-cycles are of perpendicular
type. We have proved the following.

Lemma 3.5. Let n ≥ 3 and let |F| ≥ 5. Any 3-cycle can be decomposed into a
product of 3-cycles of perpendicular type. �

Let 〈a, b, c〉 be a 3-space and take 〈d〉 to be a point in 〈a, c〉⊥. We say 〈d〉 is good
if the vector subspace 〈c, b, d〉 of V is nondegenerate; otherwise we call 〈d〉 bad.

Assume |F| ≥ 7 and let γ = 〈a〉〈b〉〈c〉〈a〉 be a degenerate 3-cycle of perpendicular
type, say a is perpendicular to b. The two-dimensional vector subspace 〈a, c〉⊥ is a
line and because 〈a, b, c〉 is singular, b is not an element of 〈a, c〉⊥. Using Lemma
2.2, there exists a point 〈d〉 of 〈a, c〉⊥ such that 〈d〉 and 〈b〉 are collinear. The point
〈d〉 can be good or bad with respect to the space 〈b, c, d〉. We claim that we can find
a good point. Suppose 〈d〉 is a bad point. Then Ud = 〈b, c, d〉 is a singular space.
Because the line 〈b, c〉 is properly contained in Ud, the radical of Ud has dimension
one. Let 〈s〉 be the radical of Ud. Then 〈s〉 is contained in the space 〈b, c〉⊥. It
follows that 〈b, c, s〉 is a three-dimensional space contained in 〈b, c, d〉 which implies
that 〈b, c, s〉 = 〈b, c, d〉. We claim that there is an one-to-one correspondence between
a bad point 〈d〉 and the radical of Ud. For, suppose for two different bad points 〈d〉
and 〈d̄〉 we have Rad(Ud) = Rad(Ud̄) = 〈s〉, and hence 〈b, c, d〉 = 〈b, c, s〉 = 〈b, c, d̄〉.
Moreover, s, d and d̄ are elements of 〈c〉⊥, in fact 〈s, d, d̄〉 ⊆ 〈c〉⊥ ∩ 〈b, c, s〉. The
dimension of 〈c〉⊥ ∩ 〈b, c, s〉 is two, which implies 〈s, d, d̄〉 = 〈s, d〉 = 〈s, d̄〉. Since
〈s, d〉 is singular, the space 〈s, d〉 is distinct from the space 〈a, c〉⊥. Therefore the
vector subspace 〈s, d〉 ∩ 〈a, c〉⊥ = 〈s, d̄〉 ∩ 〈a, c〉⊥ has dimension one and contains
both point 〈d〉 and point 〈d̄〉, which shows that the vector d̄ is an element of 〈d〉, a
contradiction to the hypothesis that 〈d〉 is distinct from 〈d̄〉.

It follows that the number of different bad points is equal to the number of
different one-dimensional singular vector subspaces in 〈b, c〉⊥, which is at most two
as 〈b, c〉 is nondegenerate.

Since we assumed F to contain at least seven elements, we can find a good point
〈d〉. We know that 〈a, c, d〉 and 〈b, c, d〉 are nondegenerate vector subspaces. To prove
〈a, b, d〉 is nondegenerate, we look at the Gram matrix. The Gram matrix G〈a,b,d〉 is (a, a) (a, b) (a, d)

(a, b) (b, b) (b, d)
(a, d) (b, d) (d, d)

 =

 (a, a) 0 0
0 (b, b) (d, b)
0 (b, d) (d, d)

. Since 〈a〉 is a nondegenerate
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point and 〈b, d〉 is a line, the determinant of G〈a,b,d〉 is (a, a) · det(G〈b,d〉) 6= 0. This
proves the following proposition.

Proposition 3.6. Let n ≥ 3 and let |F| ≥ 7. Each degenerate triangle of perpendic-
ular type in the collinearity graph of Γn(F, f) can be decomposed into nondegenerate
triangles. �

Altogether we have proved Theorem 1:

Theorem 1. Let n ≥ 3 and let F be an arbitrary field of characteristic not two
distinct from F3 and F5, let V be an (n+1)-dimensional vector space over F, and let
f be a nondegenerate symmetric bilinear form on V . Then the geometry Γn(F, f) is
simply connected. �

4 Flag transitivity

Let F be a field of characteristic distinct from two that does not admit a quadratic
extension and let V be a nondegenerate orthogonal space over F of dimension n+1.
The classification of nondegenerate orthogonal forms shows that each orthogonal
form on V is isometric to the form whose Gram matrix is the identity matrix.

Proposition 4.1. Let V be an (n + 1)-dimensional vector space over some field F
of characteristic distinct from two that does not admit a quadratic extension. Then
the group SOn+1(F, f) acts transitively on the points of Γ.

Proof: The group On+1(F, f) acts transitively on the points of Γ by Witt’s the-
orem, see e.g. on page 562 of [3], so for any pair p, q of points of Γ we can find an

element of On+1(F, f) that maps p to q. On the other hand, the matrix

(
−1 0
0 idn×n

)
,

where idn×n denotes the (n× n)-identity matrix, with respect to a basis whose first
vector spans q has determinant −1 and stabilizes q. Therefore also SOn+1(F, f) acts
transitively on the points of Γ.

Lemma 4.2. Let F be a field of characteristic distinct from two whose subset of
squares is a subfield. Then this subfield of squares of F is in fact equal to F. In
particular, F does not admit a quadratic extension.

Proof: Since 1 is a square, the subfield of squares of F contains the prime field
of F. In particular, 2 is a square. The claim now follows by the characteristic of F
and the equality

x =
(x + 1)2 − x2 − 12

2
for each x ∈ F.

Theorem 2. Let V be an (n + 1)-dimensional vector space over some field F of
characteristic distinct from two and let f be a nondegenerate symmetric bilinear
form on V . The group SOn+1(F, f) acts flag-transitively on the geometry Γn(F, f)
if F does not admit a quadratic extension. If f has Witt index at least one, then
the group SOn+1(F, f) acts flag-transitively on the geometry Γn(F, f) if and only if
F does not admit a quadratic extension.
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Proof: The first part of the claim follows from Proposition 4.1 by induction on
n using the isomorphism between the residue of a point in Γn(F, f) and Γn−1(F, f ′).

For the second part, assume that f is a nondegenerate symmetric bilinear form
of Witt index one such that the group SOn+1(F, f) acts flag-transitively on the
geometry Γn(F, f). Choose a two-dimensional nondegenerate subspace l of V con-
taining singular one-dimensional subspaces and let v1, v2 be an orthogonal basis of
l. By transitivity of SOn+1(F, f), the values f(v1, v1) and f(v2, v2) belong to the
same square class of F, hence, after a scaling of v1 and v2, we can assume that the

Gram matrix of f on l with respect to the basis v1, v2 equals

(
1 0
0 1

)
. Therefore the

quadratic form induced by f equals

(x, y)

(
1 0
0 1

)(
x

y

)
= x2 + y2.

Since l contains a singular one-dimensional subspace, the equation

x2 + y2 = 0

has a solution with x 6= 0 6= y, whence the equation(
x

y

)2

= −1

has a solution, so −1 is a square in F. Moreover, as SOn+1(F, f) is transitive on
the set of non-singular one-dimensional subspaces of l, each sum x2 + y2 has to be a
square. Consequently, the set of squares of F forms an additive subgroup of (F, +),
and so the set of squares of F is a subfield of F. The claim now follows from Lemma
4.2, as the characteristic of F is distinct from two.

In the present paper an amalgam A of groups is a set with a partial operation
of multiplication and a collection of subsets {Hi}i∈I , for some index set I, such that
the following hold:

(1) A = ∪i∈IHi;

(2) the product ab is defined if and only if a, b ∈ Hi for some i ∈ I;

(3) the restriction of the multiplication to each Hi turns Hi into a group;

(4) Hi ∩Hj is a subgroup of both Hi and Hj for all i, j ∈ I.

It follows that the groups Hi share the same identity element, which is then the only
identity element in A, and that a−1 ∈ A is well-defined for every a ∈ A. We will
call the groups Hi the members of the amalgam A. The concept of amalgams can
be found in a generalized version in [12] or [13].

A group H is called a completion of an amalgam A if there exists a map
π : A → H such that

(1) for all i ∈ I the restriction of π to Hi is a homomorphism of Hi to H;
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(2) π(A) generates H.

Among all completions of A there is one “largest” which can be defined as the group
having the presentation

U(A) = 〈th | h ∈ A, txty = tz, whenever xy = z in A〉.

Obviously, U(A) is a completion of A since one can take π to be the mapping
h 7→ th. Every completion of A is isomorphic to a quotient of U(A), and because of
that U(A) is called the universal completion.

Suppose a group H ≤ Aut(Γ) acts flag-transitively on a geometry Γ. A rank k
parabolic is the stabilizer in H of a flag of corank k from Γ. Parabolics of rank
n− 1 (where n is the rank of Γ) are called maximal parabolics. They are exactly
the stabilizers in H of single elements of Γ.

Let F be a maximal flag in Γ, and let Hx denote the stabilizer in H of x ∈ Γ. The
amalgam A = A(F ) = ∪x∈F Hx is called the amalgam of maximal parabolics
in H. Since the action of H is flag-transitive, this amalgam is defined uniquely up
to conjugation in H. For a fixed flag F we can also use the notation Mi for the
maximal parabolic Hx, where x ∈ F is of type i. For a subset J ⊂ I = {1, 2 . . . , n},
define MJ to be ∩j∈J Mj, including M∅ = H. Notice that MJ is a parabolic of rank
|I \ J |; indeed, it is the stabilizer of the subflag of F of type J . Similarly to A,
we can define the amalgam A(s) as the union of all rank s parabolics. With this
notation we can write A = A(n−1). Moreover, according to our definition, A(n) = H.

Now we need to define coverings of geometries. Suppose Γ and Γ̂ are two geome-
tries over the same type set and suppose φ : Γ̂ → Γ is a morphism of geometries,
i.e., φ preserves the type and sends incident elements to incident elements. The
morphism φ is called a covering if and only if for every non-empty flag F̂ in Γ̂ the
mapping φ induces an isomorphism between the residue of F̂ in Γ̂ and the residue
of F = φ(F̂ ) in Γ. Coverings of a geometry correspond to the usual topological
coverings of its flag complex, see also [11] or [14]. In particular, by §55 of [11] or
Theorem 1.1 of [14] a simply connected geometry (as defined in Section 3) admits
no nontrivial covering.

The following lemma from [15] combines the topological structure of a geometry
with amalgams obtained from flag-transitive groups of automorphisms. (Again, we
refer to [6] or [7] for Tits’ Lemma for intransitive geometries.)

Lemma 4.3 (Tits’ Lemma). Suppose a group H acts flag-transitively on a geome-
try Γ and let A be the amalgam of maximal parabolics associated with some maximal
flag F . Then H is the universal completion of the amalgam A if and only if Γ is
simply connected.

Tits’ Lemma together with Theorems 1 and 2 immediately implies that
SOn+1(F, f) is the universal completion of the amalgam of maximal parabolics in
SOn+1(F, f) with respect to some maximal flag of Γ. Theorem 5 follows from that
observation by a standard induction argument using the residual connectedness of
Γ and the simple connectedness of all residues of Γ as in the proof of Theorem 1 of
[5] (see also [6]).
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Theorem 5. Let n ≥ 3, let V be an (n+1)-dimensional vector space over some field
F of characteristic distinct from two that does not admit a quadratic extension and
let f be a nondegenerate symmetric bilinear form on V . Let F be a maximal flag
of Γn(F, f) and let A(2) be the amalgam of all rank two parabolics, i.e., stabilizers
in SOn+1(F, f) of subflags of F of corank two. Then SOn+1(F, f) is the universal
completion of A(2).

5 Flag-transitive parts

What remains is a discrepancy between the fields that occur in Theorem 1 and
the ones that occur in Theorem 2. The standard method to force flag-transitivity,
which works here because of Witt’s Theorem, would be to study the orbit of one
flag under the group SOn+1(F, f) of isometries of the form (·, ·) on V . To be precise
let as before

Γn(F, f) = (X, ∗, typ)

be the geometry on the nondegenerate proper subspaces of V and let F = (xi)i∈J ,
J ⊆ I = {1, . . . , n} be a flag of Γ. Define the geometry

∆F
n (F, f) = (Y, ∗|Y ×Y , typ|Y )

with
Y = {x ∈ X | x ∈ F g for some g ∈ SOn+1(F, f)} .

Theorem 3. Let V be an (n + 1)-dimensional vector space over some field F of
characteristic distinct from two, let f be a nondegenerate symmetric bilinear form on
V , and let F be a flag of Γn(F, f). Then the group SOn+1(F, f) acts flag-transitively
on the geometry ∆F

n (F, f).

Proof: Let x1 and x2 be elements of ∆F
n (F, f) ⊆ Γn(F, f) with x1 ∗ x2. This

means there exist g1, g2 in SOn+1(F, f) with x1 ∈ F g1 and x2 ∈ F g2 or, equivalently,

x
g−1
1

1 ∈ F and x
g−1
1

2 ∈ F g2g−1
1 . Note that x

g−1
1

1 is incident with both x
g−1
1

2 and the

element y ∈ F of type typ(x
g−1
1

2 ). The subspaces y and x
g−1
1

2 of V are isometric so by

Witt’s theorem, see e.g. on page 562 of [3], applied to x
g−1
1

1 if typ(x1) = dim(x1) >

dim(x2) = typ(x2), respectively (x
g−1
1

1 )⊥ if typ(x1) = dim(x1) < dim(x2) = typ(x2),

(there exists an element of SOn+1(F, f) stabilizing x
g−1
1

1 that maps x
g−1
1

2 onto y).
Induction on |J | shows that SOn+1(F, f) acts flag-transitively on ∆F

n (F, f).

As already mentioned in the introduction, in general, if G = (X, ∗, typ) is an
arbitrary geometry, the geometry

(Y, ∗|Y ×Y , typ|Y )

with
Y = {x ∈ X | x ∈ Fα for some α ∈ Aut(G)}

for some flag F of G, is not a flag-transitive geometry. The reader is referred to [6]
for a treatment of that general case.
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Theorem 4. Let m, n ≥ 0 such that one of m and n is greater than or equal to
three and the sum of m and n is greater than or equal to four. Let R be a real
closed field and let V ∼= Rm+n be endowed with a nondegenerate symmetric bilinear
form f with isometry group SOR(m, n). If F is a flag of Γm+n−1(R, f) containing
anisotropic one-, two-, and three-dimensional subspaces of V , then ∆F

m+n−1(R, f) is
simply connected.

Proof: Again we reduce to the collinearity graph of the geometry and follow
the strategy of Section 3. Let U be the three-dimensional space of the flag F .
Notice that, as U is anisotropic, any subspace of U is in ∆F

m+n−1(R, f) and any cycle
consisting of subspaces of U is null-homotopic. If p and q are points of ∆F

m+n−1(R, f),
then p⊥∩q⊥∩U contains an anisotropic one-dimensional subspace r collinear to both
p and q. Therefore the diameter of ∆F

m+n−1(R, f) is two. The argument of Lemma
3.1 implies that it suffices to decompose triangles, quadrangles and pentagons in the
collinearity graph of ∆F

m+n−1(R, f). Pentagons decompose as for any point p and
any line l there exists a point q in p⊥ ∩ l collinear to p. A quadrangle a, b, c, d
decomposes by the following argument. Let pab be a point contained in a⊥∩ b⊥∩U .
Similarly, define pbc, pcd, pad. As pab, pbc, pcd, pad ∈ U , the quadrangle pab, pbc, pcd,
pad is null-homotopic. Therefore we have decomposed the original quadrangle into
a null-homotopic quadrangle and a number of triangles. A triangle is decomposed
in exactly the same way as a quadrangle.

Tits’ Lemma (Lemma 4.3) together with Theorems 3 and 4 immediately implies
that SOR(m, n) is the universal completion of the amalgam of maximal parabol-
ics in SOR(m, n) with respect to some maximal flag of ∆F

m+n−1(R, f). Theorem 6
follows from that observation by a standard induction argument using the resid-
ual connectedness of ∆F

m+n−1(R, f) and the simple connectedness of all residues of
∆F

m+n−1(R, f) as in the proof of Theorem 1 of [5] (see also [6]).

Theorem 6. Let m, n ≥ 0 such that one of m and n is greater than or equal to
three and the sum of m and n is greater than or equal to four. Let R be a real closed
field and let V ∼= Rm+n be endowed with a nondegenerate symmetric bilinear form f
with isometry group SOR(m, n) and let F be a flag of Γm+n−1(R, f) of rank at least
three consisting of all positive definite (negative definite) subspaces of V . Let A(2)

be the amalgam of all rank two parabolics in SOR(m, n) with respect to the maximal
flag F of ∆F

m+n−1(R, f). Then SOR(m, n) is the universal completion of A(2). �
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