A remark on a functor of rational representations
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Abstract

Let k be a field of positive characteristic p. First we describe some specific
subfunctors of the Burnside functor k®z B. We prove next that the restriction
of the functor of rational representations k ®z Rg to abelian finite p-groups,
has a unique maximal filtration

k®zRo=01L 212132

1 Introduction

The theory of Mackey functors for a finite group G over a ring k£ looks like an ex-
tension of the notion of kG-modules. So the usual notions of induction, restriction,
inflation and deflation for modules, have their analogues for Mackey functors. This
leads to the formalism of bisets, which gives a single natural framework involving
restriction, inflation, induction and deflation. The classical properties of those con-
structions, such as the Mackey formula, become a single simple composition formula.

There are two kinds of Mackey functors, one kind defined only on the subgroups
of a fixed group G, called by P. Webb ordinary Mackey functors (see [6]). The
second kind defined on all finite groups, called globally-defined Mackey functors, or
sometimes a subclass of finite groups. For example it could consist of all finite groups
(see [1]), or just the identity group, or all nilpotent groups (see [2]) ore one of many
other possibilities. In this work we consider the class of all abelian finite p-groups,
over it some specific subfunctors of the Burnside functor will be described.
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The consequence of this description is the following :

Theorem : The restriction of the functor of rational representations k ®z Rg to
abelian finite p-groups, has a unique maximal filtration

k@zRg=L 2012132

2 Specific subfunctors of k ®y B

Let () and P be groups. An P-set-() is a set X with a left P-action and a right
(Q-action, which commute, i.e. if g€ Q, h € P and x € X

h-(z-g)=(h-z)-g.

If X is an P-set-Q, and if () and P are clear from context, we will also say that X
is a biset.

As in [1], let k& be a field of positive characteristic p, and C; be the category
whose objects are abelian finite p-groups, and morphisms are k-virtual bisets, i.e.
linear combinations of bisets with coefficients in k.

If G and H are two objects of Cy, then Home, (H, G) is the tensor product by k of
the Grothendieck group of the category of G-sets-H, the product of two morphisms
is defined by k-linearity in the following way :

If L is a subgroup of G x H we denote by (G x H)/L, the biset formed by the classes
(g9,h)L for (g,h) € G x H, considered as G-set-H for the action

z-(g,h)L-y = (zg,y 'h)L.

Let G’ be another object of C, E be a G-set-H and F be a H-set-G’, we denote
by E xpy F the set of orbits of H by its action over the product E x F given by
h-(z,y) = (xh™, hy). Tt is a G-set-G": if g € G and ¢’ € G, then by definition

g-(z,y) -4 = (9z,y9) .

where (z,y) is the image of (z,y) in E xy F.
Let H be a subgroup of GG, the operation associated to the set U = G, viewed as
a G-set-H , is called induction, and denoted by Indfl :

Indf; = (G x H)/{(9,9) | g € H}.

Similarly, if G/N is a factor group of G, then the set U = G/N, viewed as a G-set-
G/N, corresponds to inflation

ISy = (G x (G/N))/{(9.9N) | g € G}.

When U is viewed as GG/N-set-G, the associated operation is called deflation, and
denoted by Def§ N

Defg)y = ((G/N) x G)/{(gN,9) | g € G} .
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Let ¢ be an isomorphism between an object G of C;, and another object G’ of Cy,, the
obvious associated operation of change of group is denoted by Isog,, and corresponds
to the set U = G, viewed as a G'-set-G :

Isod, = (G' x G)/A5, (G), with &, (G) = {(¢(g).9) | g € G}

Let G and G’ be two objects of Cy and L be a subgroup of G x G’, we denote by
p1(L) (resp. p2(L)) the projection on L to G (resp. to G').
Let k1(L) and ky(L) denote

ki(L)=4{9€G|(g,1) € L} and ko(L) ={h € G' | (1,h) € L}.

For every element y of ps(L), there exists x, element of G such that (z,,y) € L.
We associate to yka(L) the element z,k; (L), so we obtain a canonical isomorphism
between po(L)/ko(L) and py(L)/ki(L).

If G” is another object of Cy, and M is a subgroup of G’ x G”, let L x M denote

L«M={(g,9")eGxG" |34 €C, (9.9)€ L, (¢,9") € M}.

It is a subgroup of G x G".
Thus, we obtain the Mackey formula relating to bisets : (cf.[1], 3.2)

(GxG'/L) xa (G' x G"/M) = 3 (G x G")/(L*9IM) .
g€p2(L)\G’ /p1 (M)

In the abelian case, this formula becomes
(G x G'/L) xer (G"x G" /M) = |G'[(p2(L) - pr(M)) | - (G x G") /(L * M).

We denote by Fj. the abelian category whose objects are the k-linear functors
from Ci to the category of k-modules. Let k be a field of positive characteristic p,
the standard operations on Grothendieck rings make k ®z Rg, after tensoring with
k, into a functor in the category Fr. Another example of object of Fj is k ®z B,
where B is Mackey functor which assigns to an abelian p-group G its Burnside ring
B(G). For more details we refer to [1]. The type of functors considered in the whole
paper are objects of Fy.

Let Cyn be a cyclic group of order p™. We consider the subfunctor I,, of k ®z B
defined, for an object P of Cy by :

I,(P) = Homg, (Cyn, P) X, &n s
where &, = Cpn/1 — Cpn /C, with C' is the unique subgroup of order p of Cyn.
Lemma 1 : Forn > 2, we have 1,41 C I,,.
Proof. We have
Eur = Ind?" 6, € L(Cpn).
If P is an object of Ci, then

Homck(Can, P) chn-H €n+1 - Homck(Cpn+1, P) ch HOka (Cpn, Cpn+l> chn fn s

n+1

and
Home, (Cpnt1, P) X, Home, (Cpn, Cpnir) € Home, (Cpn, P) .

Thus 1,41 C I,,. ]
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Lemma 2. Forn > 2, we have Ende, (Cyn) Xc &, s a trivial Ende, (Cpn)-
module one-dimensional. Moreover, if K is an abelian p-group such that | K| < p"
and K % Cpn, and if L is a subgroup of K x Cpn, then (K X Cpn [ L) X¢,. &, is
zero.

Proof. Let K be an abelian p-group such that | K| < p", and L be a subgroup of
K x Cyn, we will prove that
(K x Cpn/L) Xy &n C K&y

The use of the Mackey formula for the (K x Cpyn)-biset K x Cpn/L and the (Cpn X 1)-
biset &,, implies that the result is a (K x 1)-biset, that is simply a K-set :

(KX Cpn [ L)X 0y =| Cpn [p2(L) | - K/ ka (L) = [ Cpn [ (p2(L) - C) | - K/p1 (LN(K % CY)).

If po(L) # Cpn, then
(K X Cpn /L) X¢p & =0,

since |po(L)| < p™ and |po(L)-C'| < p™.
Hence we can suppose that ps(L) = Cyn, so

(K x Cpn/L) X Gy &= K/ki (L) — K/p1(LN (K x C)).
There are two cases to consider.

Case 1. If ko(L) = 1, then pi(L)/ki(L) =~ Cpn, thus K ~ Cpn if | K| < p". We have
ki(L) =1,s0 ki (LN (Cpn x C)) =1, and as

Pa(L1 (Cpr % ©)) oL (€ % ) 2 pi(L 01 (G X ©)) [l (L0 (Cp % C)).

it follows that |p;(L N (Cpn x C))| < p. In other words
(K X Opn/L) chn én - Cpn/l — Op"/pl(L N (Cpn X C)) ;
with [p1 (LN (Cpn x C)) | < p.
Case 2. If ko(L) # 1, then C C ko(L); let ¢ be a generator of the subgroup C.
If (z,¢) € L then (z,1) € L, because (z,c) = (z,1)-(1,¢), so we obtain k(L) =
pi(LN (K x C)). Hence
(K X Cpn/L) chn gn - 0
Thus we have the following easy consequences :
Endck (Op") XCpn gn - k:gn?
and if K is an abelian p-group such that | K| < p™, then

(K x Cpn/L) X¢pn §n =10,

since ko(L) # 1 if po(L) = Cpn, and we can be reduced to the second case. ]
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Proposition 1 : Let J, and Jy be subfunctors of k ®z B defined, for an object
P of Ci. by :

Jo(P) =A{u € I,(P) | Yy € Home, (P,Cpn) : ¢ xpu = 0},

and
Ji(P)={u € k®z B(P) | V¢ € Hom¢, (P,1): ¢ xpu = 0},

1.€.

J1(P) ={X € k®z B(P) | VU subgroup of P, |[U\X| =0}.

Then J, is the unique maximal subfunctor of I,,, and Jy is the unique mazximal
subfunctor of k ®z B.

Proof. First we prove that J, is a subfunctor of I, :
Let P and P’ be two objects of Cg, let ¢ € Home, (P’, P), we prove

Y Xpr Jo(P') C Jo(P).
Indeed we have
Vu € J,(P), V' € Home, (P, Cpn), ¥ xp (1 xpru) = (Y xp1h) xpru.
However by the definition of .J,,(P’) :
Home, (P, Cyn) xpru =0,

and (¢ xp 1) € Home, (P, Cpn), then (¢ xpth) Xpru =0, 80 ' Xp (¢ Xpru) =0,
and J,, is a subfunctor of I,,. Moreover J,, # I,,, because for example J,(Cyn) = {0}
while [,,(Cyn) = Ende, (Cpn) X, §n which is one-dimensional (see Lemma 2).

Now we prove that J, is the unique maximal subfunctor of I,. Let L be a
subfunctor of I,,, in particular we have

L(Cpn) C In(Cpn) = Endck(Cpn) XCpn Sn .

As Ende, (Cpr) X, & is one-dimensional, there are two cases :
Case 1 : if L(Cyn) = 0, then for an abelian finite p-group P we have

Vu e L(P),V¢ € Home, (P,Cpn) : (p Xpu ) € L(Cpn),

thus L C J,.
Case 2 : if L(Cypn) = Ende, (Cypn) X, &n, then for an abelian finite p-group P we
have

In<P> == Homck(cpn7P) chn é-n
== Homck<0pn, P) XCpn L(Cpn) .

Since L is a functor, we have
Homck(cpn, P) chn L(Opn> C L(P),

then L(P) = I,(P). It follows that L = I,,.
Similarly, we prove that .J; is the unique maximal subfunctor of k ®; B. |
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Proposition 2 : Let P be an object of Cy, for n > 2 we have
I,(P) D J,(P) & < P/R— P/Z, where Z D R are subgroups of P with
P/R >~ Cyn and |Z/R| =p >,
and
k ®z B(P) 2 J1(P) & <P/P,P/M — P/P with M a maximal subgroup of P> .
Proof. First we have

I,(P) 2O < P/R— P/Z, where Z D R are subgroups of P with
P/R~Cp and |Z/R| =p >,

because for any subgroup R such that P/R ~ Cyn and |Z/R| = p, we have
P/R — P/Z = Inff, 150 & € Home, (Cpn, P) Xy &5 -
On the other hand

J.(P) N < P/R— P/Z, where Z D R are subgroups of P with
P/R~ Cyn and | Z/R| =p > = {0}.

Indeed, let x be the following element
x = Z Me(P/R—P/Z) € J,(P).
P/Rgcpn

Fixing a subgroup R of P such that P/R ~ Cyn, we now prove Agp =0 :
Applying the functor Def,];/R to x, we obtain Deff;/R(x) € J,(P/R). By Proposition
1, we have J,,(P/R) = {0}. In other words

0= An|(P/R)/(R/R) — (P/R)/(Z-R/R)| +

S Aw|(P/R)/(RRIR) ~ (P/R)/(Z"-R/R)].
P/R>Cyn
IZI{/ZII%—p

In this equality (P/R)/(R/R) is unique, so Ag = 0. Since R is arbitrary, we obtain
x =0, it follows that

J.(P) N < P/R— P/Z, where Z D R are subgroups of P with
P/R~ Cyn and | Z/R| =p > = {0}.

Similarly, we have

Ji(P) N <P/P,P/M — P/P with M a maximal subgroup of P> = {0} .
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Let x be the following element

( t=ApP/P+ Y /\MP/M> e J.(P),

|P/M|=p
so, by the Mackey formula, for any subgroup K of P we have

Ap |[E\P/P|+ > v |K\P/M[=0 ().
|P/]\]\2[|:p
In particular for K = 1, the equality (&) becomes Ap | I\P/P | = 0, so \p = 0.
Hence
|P/1]\\44|=p

For the subgroup K = P, the equality (&) becomes

> =0 (#).

M
|P/M|=p

We fix a subgroup M of P such that | P/My| = p, and we apply (&) to the subgroup

K = M,, we obtain
S Au=0  (#).
M#My
|P/M|=p
From (#;— #2), we deduce that Ay, = 0. Since M, is arbitrary, we obtain = = 0.
Hence in k ®7 B(P) we have

Ji(P) N <P/P,P/M — P/P with M a maximal subgroup of P> = {0} .

3 Aunique maximal filtration of £ ®z Rg

An important result of Ritter [3] and Segal [4] states that if P is a p-group, then
the natural morphism s from the Burnside ring B(P) of P to the Grothendieck ring
Rg(P) of rational representations of P, mapping a finite P-set X to the permutation
module QX is surjective. We shall denote s(X) by X.

Remark 1 : Let P be a finite p-group, dimg(k ®z Rg(P)) is equal to the number
of conjugacy classes of cyclic subgroups of P (see [5], Chapitre 13, Théoreme 29,
Corollaire 1). Thus, if P is a cyclic group of order p”, then k®z B(P) and k®z Rg(P)
are isomorphic. In particular, we have &, is non-zero.

Theorem 1 : The restriction of the functor of rational representations k @z Rg to
abelian finite p-groups, has a unique mazimal filtration
k®@zRo=15 21,2132 -

Proof. By Lemma 1, for any integer n we have I,,.1 C I,,. Let P be an object of Cy
and Cy» be a cyclic group of order p", we will prove that J,(P) = I,,41(P) :
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Indeed J,, # I,,, because for example J,,(Cpn) = {0} while I,,(Cpn) = &, is non-zero
(see Remark 1). Therefore

[o(P)/Jn(P) 22 Io(P) [ J.(P).
By Proposition 2, in k ®z B(P) we have
I,(P) 2 J,(P) ® < P/R— P/Z where Z O R are subgroups of P with
P/R~Cyn and | Z/R| =p >,
then in k ®z Ro(P) we have
I,(P) 2 J,(P) @ < P/R — P/Z where Z D R are subgroups of P with
P/R~Cyn and |Z/R| =p > .

Similarly, we find

k ®z Ro(P) 2 Ji(P) ® <P/P,P/M — P/P with M a maximal subgroup of P> .

Thus, the following set

L ={P/P,P/M — P/P where M is a maximal subgroup of P, P/R — P/Z

where Z D R are subgroups of P with P/R is non-trivial cyclic and | Z/R| = p}

is linearly independent in the space k ®z Rg(P). As P is abelian, by duality | £ |
is the number of (conjugacy classes of) cyclic subgroups of P, which is exactly
dimy,(k ®z Ro(P)). Hence L is a basis of k @z Rg(P), and J,(P) = I,,1(P) for
n>1.

We now show that, in the abelian case, the functors (7,,),>2 are the unique non-
zero proper subfunctors of k ®z Ry :
Let F be a proper subfunctor of k ®z Rg. The restriction of the functor of rational
representations k ®z Rg to abelian finite p-groups, has a unique maximal subfunctor
Ji (see Proposition 1), then F' C J;. Moreover J; = I, so F C I,.
Each functor I,, admits a unique maximal (proper) subfunctor .J,, (see Proposition 1),
let ng be the maximal integer such that F' C T,,,. Since I,,, admits a unique maximal
subfunctor J,,, and since I,,, 41 = J,,, it follows that

F=1T,0rFCl,.

By the hypothesis about the integer ng, we must have F' = I,,,. Hence, in the abelian

case, the functors (I,),>2 are the unique non-zero proper subfunctors of k ® Rg.
To complete the proof of this theorem, let us now show that

I= T, ={0}.

n>2

Assume that the proper subfunctor I is non-zero, then by the previous result I must
be equal to I, for a suitable integer ng. In particular, we would have I,,,(Cyno) C
Iy+1(Cpro). By Remark 1 I, (Cyno) is non-zero, while by Lemma 2

]n0+1 (CP"O) - Homck(cp"()“? CP"O) XCpn0+1 5n0+1

= {0},
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and consequently I, +1(Cpno) = {0}. This contradiction shows that

I=T.={0}.

n>2
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