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Abstract

Let k be a field of positive characteristic p. First we describe some specific
subfunctors of the Burnside functor k⊗ZB. We prove next that the restriction
of the functor of rational representations k ⊗Z RQ to abelian finite p-groups,
has a unique maximal filtration

k ⊗Z RQ = I1 ⊇ I2 ⊇ I3 ⊇ . . .

1 Introduction

The theory of Mackey functors for a finite group G over a ring k looks like an ex-
tension of the notion of kG-modules. So the usual notions of induction, restriction,
inflation and deflation for modules, have their analogues for Mackey functors. This
leads to the formalism of bisets, which gives a single natural framework involving
restriction, inflation, induction and deflation. The classical properties of those con-
structions, such as the Mackey formula, become a single simple composition formula.

There are two kinds of Mackey functors, one kind defined only on the subgroups
of a fixed group G, called by P. Webb ordinary Mackey functors (see [6]). The
second kind defined on all finite groups, called globally-defined Mackey functors, or
sometimes a subclass of finite groups. For example it could consist of all finite groups
(see [1]), or just the identity group, or all nilpotent groups (see [2]) ore one of many
other possibilities. In this work we consider the class of all abelian finite p-groups,
over it some specific subfunctors of the Burnside functor will be described.
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The consequence of this description is the following :

Theorem : The restriction of the functor of rational representations k ⊗Z RQ to
abelian finite p-groups, has a unique maximal filtration

k ⊗Z RQ = I1 ⊇ I2 ⊇ I3 ⊇ . . .

2 Specific subfunctors of k ⊗Z B

Let Q and P be groups. An P -set-Q is a set X with a left P -action and a right
Q-action, which commute, i.e. if g ∈ Q, h ∈ P and x ∈ X

h . (x . g) = (h .x) . g .

If X is an P -set-Q, and if Q and P are clear from context, we will also say that X
is a biset.

As in [1], let k be a field of positive characteristic p, and Ck be the category
whose objects are abelian finite p-groups, and morphisms are k-virtual bisets, i.e.
linear combinations of bisets with coefficients in k.

If G and H are two objects of Ck, then HomCk
(H,G) is the tensor product by k of

the Grothendieck group of the category of G-sets-H, the product of two morphisms
is defined by k-linearity in the following way :
If L is a subgroup of G×H we denote by (G×H)/L, the biset formed by the classes
(g, h)L for (g, h) ∈ G×H, considered as G-set-H for the action

x . (g, h)L . y = (xg, y−1h)L .

Let G′ be another object of Ck, E be a G-set-H and F be a H-set-G′, we denote
by E ×H F the set of orbits of H by its action over the product E × F given by
h . (x, y) = (xh−1, hy). It is a G-set-G′: if g ∈ G and g′ ∈ G′, then by definition

g . (x, y) . g′ = (gx, yg′) ,

where (x, y) is the image of (x, y) in E ×H F .
Let H be a subgroup of G, the operation associated to the set U = G, viewed as

a G-set-H, is called induction, and denoted by IndG
H :

IndG
H = (G×H)/{(g, g) | g ∈ H} .

Similarly, if G/N is a factor group of G, then the set U = G/N , viewed as a G-set-
G/N , corresponds to inflation

InfG
G/N = (G× (G/N))/{(g, gN) | g ∈ G} .

When U is viewed as G/N -set-G, the associated operation is called deflation, and
denoted by DefG

G/N :

DefG
G/N = ((G/N)×G)/{(gN, g) | g ∈ G} .
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Let ϕ be an isomorphism between an object G of Ck and another object G′ of Ck, the
obvious associated operation of change of group is denoted by IsoG

G′ , and corresponds
to the set U = G′, viewed as a G′-set-G :

IsoG
G′ = (G′ ×G)/4ϕ (G), with 4ϕ (G) = {(ϕ(g), g) | g ∈ G} .

Let G and G′ be two objects of Ck and L be a subgroup of G×G′, we denote by
p1(L) (resp. p2(L)) the projection on L to G (resp. to G′).
Let k1(L) and k2(L) denote

k1(L) = {g ∈ G | (g, 1) ∈ L} and k2(L) = {h ∈ G′ | (1, h) ∈ L} .

For every element y of p2(L), there exists xy element of G such that (xy, y) ∈ L.
We associate to yk2(L) the element xyk1(L), so we obtain a canonical isomorphism
between p2(L)/k2(L) and p1(L)/k1(L).
If G′′ is another object of Ck, and M is a subgroup of G′ ×G′′, let L ∗M denote

L ∗M = {(g, g′′) ∈ G×G′′ | ∃ g′ ∈ G′, (g, g′) ∈ L, (g′, g′′) ∈M} .

It is a subgroup of G×G′′.
Thus, we obtain the Mackey formula relating to bisets : (cf.[1], 3.2)

(G×G′/L)×G′ (G′ ×G′′/M) =
∑

g∈p2(L)\G′/p1(M)

(G×G′′)/(L ∗(g,1)M) .

In the abelian case, this formula becomes

(G×G′/L)×G′ (G′ ×G′′/M) = |G′/(p2(L) . p1(M)) | . (G×G′′)/(L ∗M) .

We denote by Fk the abelian category whose objects are the k-linear functors
from Ck to the category of k-modules. Let k be a field of positive characteristic p,
the standard operations on Grothendieck rings make k ⊗Z RQ, after tensoring with
k, into a functor in the category Fk. Another example of object of Fk is k ⊗Z B,
where B is Mackey functor which assigns to an abelian p-group G its Burnside ring
B(G). For more details we refer to [1]. The type of functors considered in the whole
paper are objects of Fk.

Let Cpn be a cyclic group of order pn. We consider the subfunctor In of k ⊗Z B
defined, for an object P of Ck by :

In(P ) = HomCk
(Cpn , P )×Cpn ξn ,

where ξn = Cpn/1− Cpn/C, with C is the unique subgroup of order p of Cpn .

Lemma 1 : For n ≥ 2, we have In+1 ⊆ In.

Proof. We have

ξn+1 = Ind
Cpn+1

Cpn ξn ∈ In(Cpn+1) .

If P is an object of Ck, then

HomCk
(Cpn+1 , P )×Cpn+1 ξn+1 ⊆ HomCk

(Cpn+1 , P )×Cpn+1 HomCk
(Cpn , Cpn+1)×Cpn ξn ,

and
HomCk

(Cpn+1 , P )×Cpn+1 HomCk
(Cpn , Cpn+1) ⊆ HomCk

(Cpn , P ) .

Thus In+1 ⊆ In. �
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Lemma 2. For n ≥ 2, we have EndCk
(Cpn) ×Cpn ξn is a trivial EndCk

(Cpn)-
module one-dimensional. Moreover, if K is an abelian p-group such that |K | ≤ pn

and K 6' Cpn, and if L is a subgroup of K ×Cpn, then (K × Cpn / L) ×Cpn ξn is
zero.

Proof. Let K be an abelian p-group such that |K | ≤ pn, and L be a subgroup of
K × Cpn , we will prove that

(K × Cpn/L)×Cpn ξn ⊆ kξn .

The use of the Mackey formula for the (K×Cpn)-biset K×Cpn/L and the (Cpn×1)-
biset ξn, implies that the result is a (K × 1)-biset, that is simply a K-set :

(K×Cpn/L)×Cpnξn =|Cpn/p2(L) | .K/k1(L)− |Cpn/(p2(L) .C) | .K/p1(L∩(K×C)) .

If p2(L) 6= Cpn , then

(K × Cpn/L)×Cpn ξn = 0 ,

since |p2(L) |< pn and |p2(L) .C |< pn.
Hence we can suppose that p2(L) = Cpn , so

(K × Cpn/L)×Cpn ξn = K/k1(L)−K/p1(L ∩ (K × C)) .

There are two cases to consider.
Case 1. If k2(L) = 1, then p1(L)/k1(L) ' Cpn , thus K ' Cpn if |K | ≤ pn. We have
k1(L) = 1, so k1(L ∩ (Cpn × C)) = 1, and as

p2(L ∩ (Cpn × C))
/
k2(L ∩ (Cpn × C)) ∼= p1(L ∩ (Cpn × C))

/
k1(L ∩ (Cpn × C)) ,

it follows that |p1(L ∩ (Cpn × C)) | ≤ p. In other words

(K × Cpn/L)×Cpn ξn = Cpn/1− Cpn/p1(L ∩ (Cpn × C)) ,

with |p1(L ∩ (Cpn × C)) | ≤ p.
Case 2. If k2(L) 6= 1, then C ⊆ k2(L); let c be a generator of the subgroup C.
If (x, c) ∈ L then (x, 1) ∈ L, because (x, c) = (x, 1) . (1, c), so we obtain k1(L) =
p1(L ∩ (K × C)). Hence

(K × Cpn/L)×Cpn ξn = 0 .

Thus we have the following easy consequences :

EndCk
(Cpn)×Cpn ξn = kξn ,

and if K is an abelian p-group such that |K | < pn, then

(K × Cpn/L)×Cpn ξn = 0 ,

since k2(L) 6= 1 if p2(L) = Cpn , and we can be reduced to the second case. �
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Proposition 1 : Let Jn and J1 be subfunctors of k ⊗Z B defined, for an object
P of Ck by :

Jn(P ) = {u ∈ In(P ) | ∀ϕ ∈ HomCk
(P,Cpn) : ϕ×P u = 0} ,

and
J1(P ) = {u ∈ k ⊗Z B(P ) | ∀ϕ ∈ HomCk

(P, 1) : ϕ×P u = 0} ,
i.e.

J1(P ) = {X ∈ k ⊗Z B(P ) | ∀U subgroup of P, |U\X | = 0} .
Then Jn is the unique maximal subfunctor of In, and J1 is the unique maximal
subfunctor of k ⊗Z B.

Proof. First we prove that Jn is a subfunctor of In :
Let P and P ′ be two objects of Ck, let ψ ∈ HomCk

(P ′, P ), we prove

ψ ×P ′ Jn(P ′) ⊂ Jn(P ) .

Indeed we have

∀u ∈ Jn(P ′),∀ψ′ ∈ HomCk
(P,Cpn), ψ′ ×P (ψ ×P ′ u) = (ψ′ ×P ψ)×P ′ u .

However by the definition of Jn(P ′) :

HomCk
(P ′, Cpn)×P ′ u = 0 ,

and (ψ′ ×P ψ) ∈ HomCk
(P ′, Cpn), then (ψ′ ×P ψ)×P ′ u = 0, so ψ′ ×P (ψ ×P ′ u) = 0,

and Jn is a subfunctor of In. Moreover Jn 6= In, because for example Jn(Cpn) = {0}
while In(Cpn) = EndCk

(Cpn)×Cpn ξn which is one-dimensional (see Lemma 2).
Now we prove that Jn is the unique maximal subfunctor of In. Let L be a

subfunctor of In, in particular we have

L(Cpn) ⊂ In(Cpn) = EndCk
(Cpn)×Cpn ξn .

As EndCk
(Cpn)×Cpn ξn is one-dimensional, there are two cases :

Case 1 : if L(Cpn) = 0, then for an abelian finite p-group P we have

∀u ∈ L(P ),∀ϕ ∈ HomCk
(P,Cpn) : (ϕ×P u ) ∈ L(Cpn) ,

thus L ⊂ Jn.
Case 2 : if L(Cpn) = EndCk

(Cpn) ×Cpn ξn, then for an abelian finite p-group P we
have

In(P ) = HomCk
(Cpn , P )×Cpn ξn

= HomCk
(Cpn , P )×Cpn L(Cpn) .

Since L is a functor, we have

HomCk
(Cpn , P )×Cpn L(Cpn) ⊂ L(P ) ,

then L(P ) = In(P ). It follows that L = In.
Similarly, we prove that J1 is the unique maximal subfunctor of k ⊗Z B. �
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Proposition 2 : Let P be an object of Ck, for n ≥ 2 we have

In(P ) ⊇ Jn(P ) ⊕ < P/R− P/Z, where Z ⊃ R are subgroups of P with

P/R ' Cpn and |Z/R | = p > ,

and

k ⊗Z B(P ) ⊇ J1(P ) ⊕ <P/P, P/M − P/P with M a maximal subgroup of P> .

Proof. First we have

In(P ) ⊇ < P/R− P/Z, where Z ⊃ R are subgroups of P with

P/R ' Cpn and |Z/R | = p > ,

because for any subgroup R such that P/R ' Cpn and |Z/R | = p, we have

P/R− P/Z = InfP
P/R Iso

Cpn

P/R ξn ∈ HomCk
(Cpn , P )×Cpn ξn .

On the other hand

Jn(P ) ∩ < P/R− P/Z, where Z ⊃ R are subgroups of P with

P/R ' Cpn and |Z/R | = p > = {0} .

Indeed, let x be the following element

x =
∑
R

P/R'Cpn

λR(P/R− P/Z) ∈ Jn(P ) .

Fixing a subgroup R of P such that P/R ' Cpn , we now prove λR = 0 :
Applying the functor DefP

P/R to x, we obtain DefP
P/R(x) ∈ Jn(P/R). By Proposition

1, we have Jn(P/R) = {0}. In other words

0 = λR

[
(P/R)/(R/R)− (P/R)/(Z .R/R)

]
+

∑
P/R′'Cpn

|Z′/R′|=p
R′ 6=R

λR′

[
(P/R)/(R′.R/R)− (P/R)/(Z ′.R/R)

]
.

In this equality (P/R)/(R/R) is unique, so λR = 0. Since R is arbitrary, we obtain
x = 0, it follows that

Jn(P ) ∩ < P/R− P/Z, where Z ⊃ R are subgroups of P with

P/R ' Cpn and |Z/R | = p > = {0} .

Similarly, we have

J1(P ) ∩ <P/P, P/M − P/P with M a maximal subgroup of P> = {0} .
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Let x be the following element(
x = λPP/P +

∑
M

|P/M |=p

λMP/M
)
∈ J1(P ) ,

so, by the Mackey formula, for any subgroup K of P we have

λP |K\P/P | +
∑
M

|P/M |=p

λM |K\P/M | = 0 (♣) .

In particular for K = 1, the equality (♣) becomes λP | 1\P/P | = 0, so λP = 0.
Hence

x =
∑
M

|P/M |=p

λM
.P/M ∈ J1(P ) .

For the subgroup K = P , the equality (♣) becomes∑
M

|P/M |=p

λM = 0 (♠1) .

We fix a subgroup M0 of P such that |P/M0 | = p, and we apply (♣) to the subgroup
K = M0, we obtain ∑

M 6=M0

|P/M |=p

λM = 0 (♠2) .

From (♠1− ♠2), we deduce that λM0 = 0. Since M0 is arbitrary, we obtain x = 0.
Hence in k ⊗Z B(P ) we have

J1(P ) ∩ <P/P, P/M − P/P with M a maximal subgroup of P> = {0} .

�

3 A unique maximal filtration of k ⊗Z RQ

An important result of Ritter [3] and Segal [4] states that if P is a p-group, then
the natural morphism s from the Burnside ring B(P ) of P to the Grothendieck ring
RQ(P ) of rational representations of P , mapping a finite P -set X to the permutation
module QX, is surjective. We shall denote s(X) by X.

Remark 1 : Let P be a finite p-group, dimk(k ⊗Z RQ(P )) is equal to the number
of conjugacy classes of cyclic subgroups of P (see [5], Chapitre 13, Théorème 29,
Corollaire 1). Thus, if P is a cyclic group of order pn, then k⊗ZB(P ) and k⊗ZRQ(P )
are isomorphic. In particular, we have ξn is non-zero.

Theorem 1 : The restriction of the functor of rational representations k ⊗Z RQ to
abelian finite p-groups, has a unique maximal filtration

k ⊗Z RQ = I1 ⊇ I2 ⊇ I3 ⊇ . . .

Proof. By Lemma 1, for any integer n we have In+1 ⊆ In. Let P be an object of Ck

and Cpn be a cyclic group of order pn, we will prove that Jn(P ) = In+1(P ) :
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Indeed Jn 6= In, because for example Jn(Cpn) = {0} while In(Cpn) = ξn is non-zero
(see Remark 1). Therefore

In(P )/Jn(P ) ' In(P )/Jn(P ) .

By Proposition 2, in k ⊗Z B(P ) we have

In(P ) ⊇ Jn(P ) ⊕ < P/R− P/Z where Z ⊃ R are subgroups of P with

P/R ' Cpn and |Z/R | = p > ,

then in k ⊗Z RQ(P ) we have

In(P ) ⊇ Jn(P ) ⊕ < P/R− P/Z where Z ⊃ R are subgroups of P with

P/R ' Cpn and |Z/R | = p > .

Similarly, we find

k ⊗Z RQ(P ) ⊇ J1(P ) ⊕ <P/P , P/M − P/P with M a maximal subgroup of P> .

Thus, the following set

L = {P/P , P/M − P/P where M is a maximal subgroup of P, P/R− P/Z

where Z ⊃ R are subgroups of P with P/R is non-trivial cyclic and |Z/R | = p}
is linearly independent in the space k ⊗Z RQ(P ). As P is abelian, by duality | L |
is the number of (conjugacy classes of) cyclic subgroups of P , which is exactly
dimk(k ⊗Z RQ(P )). Hence L is a basis of k ⊗Z RQ(P ), and Jn(P ) = In+1(P ) for
n ≥ 1.

We now show that, in the abelian case, the functors (In)n≥2 are the unique non-
zero proper subfunctors of k ⊗Z RQ :
Let F be a proper subfunctor of k ⊗Z RQ. The restriction of the functor of rational
representations k⊗ZRQ to abelian finite p-groups, has a unique maximal subfunctor
J1 (see Proposition 1), then F ⊆ J1. Moreover J1 = I2, so F ⊆ I2.
Each functor In admits a unique maximal (proper) subfunctor Jn (see Proposition 1),
let n0 be the maximal integer such that F ⊆ In0 . Since In0 admits a unique maximal
subfunctor Jn0 , and since In0+1 = Jn0 , it follows that

F = In0 or F ⊆ In0+1 .

By the hypothesis about the integer n0, we must have F = In0 . Hence, in the abelian
case, the functors (In)n≥2 are the unique non-zero proper subfunctors of k ⊗Z RQ.

To complete the proof of this theorem, let us now show that

I =
⋂
n≥2

In = {0} .

Assume that the proper subfunctor I is non-zero, then by the previous result I must
be equal to In0 , for a suitable integer n0. In particular, we would have In0(Cpn0 ) ⊆
In0+1(Cpn0 ). By Remark 1 In0(Cpn0 ) is non-zero, while by Lemma 2

In0+1(Cpn0 ) = HomCk
(Cpn0+1 , Cpn0 )×C

pn0+1 ξn0+1

= {0} ,
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and consequently In0+1(Cpn0 ) = {0}. This contradiction shows that

I =
⋂
n≥2

In = {0} .

�
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seconde édition, 1971.

[6] P. Webb, Weight Theory in the Context of Arbitrary Finite Groups . Fields
Institute Communications 40, 277–289, 2004.

Mandil, Parc du Peterbos, 18A/611
1070 Bruxelles, Belgique
e-mail: bourizk@ccr.jussieu.fr


