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Abstract

The paper presents new approximation and Leray-Schauder type results
for multimaps in the class S-KKM.

1 Introduction

In 1969, Ky Fan [6] established the following result:

Let C be a nonempty, compact, convex subset of a normed space E. Then for
any continuous mapping f from C to E, there exists an x0 ∈ C with

||x0 − f(x0)|| = inf
y∈C

||f(x0)− y||.

Since then, various analogues of this result have been obtained for other sets C and
other types of maps; see, for instance, [2, 9, 10, 12, 18, 19]. Recently, Lin and Park
[11] obtained a Fan type approximation result for α-condensing Aκ

c maps defined on
a closed ball in a Banach space. Their results have been extended to other classes
of maps by O’Regan and Shahzad [13, 14]. More recently, Shahzad [20] obtained
some Fan type approximation results for a Φ-condensing closed s-KKM multimap
F with an additional assumption that the composition f ◦ F is closed whenever f
is continuous. The aim of this paper is to establish Fan type approximation result
for s-KKM multimaps in the general setting. As an application, we also obtain the
Leray-Schauder type result.
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2 Preliminaries

Let E be a Hausdorff locally convex space. For a nonempty set Y ⊆ E, 2Y denotes
the family of nonempty subsets of Y . If L is a lattice with a minimal element 0,
a mapping Φ : 2E → L is called a generalized measure of noncompactness provided
that the following conditions hold:

(a). Φ(A) = 0 if and only if A is compact.

(b). Φ(co(A)) = Φ(A); here co(A) denotes the closed convex hull of A.

(c). Φ(A ∪B) = max{Φ(A), Φ(B)}.
It follows that if A ⊆ B, then Φ(A) ≤ Φ(B). The Kuratowskii measure and

Hausdorff measure of noncompactness are examples of the generalized measure of
noncompactness (see [17]).

Let C be a nonempty subset of a Hausdorff locally convex space E and F :
C → 2E. Then F is called Φ-condensing provided that Φ(A) = 0 for any A ⊆ C
with Φ(F (A)) ≥ Φ(A).

Suppose X and Y are Hausdorff topological spaces. Given a class X of maps,
X (X, Y ) denotes the set of maps F : X → 2Y belonging to X , and Xc the set
of finite compositions of maps in X . A class A of maps [15, 16] is defined by the
following properties:

(i). A contains the class C of single valued continuous functions;

(ii). each F ∈ Ac is upper semicontinuous and compact valued; and

(iii). for any polytope P , F ∈ Ac(P, P ) has a fixed point, where the intermediate
spaces of composites are suitably chosen for each A.

Definition 2.1. F ∈ Aκ
c (X, Y ) if for any compact subset K of X, there is a

G ∈ Ac(K, Y ) with G(x) ⊆ F (x) for each x ∈ K.

Definition 2.2. Let X be a convex subset of a Hausdorff topological vector space
and Y a topological space. If S, T : X → 2Y are two set-valued maps such that
T (co(A)) ⊆ S(A) for each finite subset A of X , then we say that S is a generalized
KKM map w.r.t. T . The map T : X → 2Y is said to have the KKM property if
for any generalized KKM w.r.t. T map S , the family

{S(x) : x ∈ X}

has the finite intersection property. We let

KKM(X, Y ) = {T : X → 2Y : T has the KKM property } .

Remark 2.1. If X is a convex space, then Aκ
c (X, Y ) ⊂ KKM(X, Y ) (see [5]).

Definition 2.3. Let X be a nonempty set, Y a nonempty convex subset of a
Hausdorff topological vector space and Z a topological space. If S : X → 2Y ,
T : Y → 2Z , F : X → 2Z are three set-valued maps such that T (co(S(A))) ⊆ F (A)
for each nonempty finite subset A of X , then F is called a generalized S-KKM
map w.r.t. T . If the map T : X → 2Z is such that for any generalized S-KKM
w.r.t. T map F , the family

{F (x) : x ∈ X}
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has the finite intersection property, then F is said to have the S-KKM property.
The class

S-KKM(X, Y, Z) = {T : Y → 2Z : T has the S-KKM property } .

Remark 2.2. Note that S-KKM(X, Y, Z) = KKM(X, Z) whenever X = Y and S is
the identity mapping 1X . Also KKM(Y, Z) is a proper subset of S-KKM(X, Y, Z)
for any S : X → 2Y (see [3, 4] for examples).

Remark 2.3. Let X be a convex space, Y a convex subset of a Hausdorff locally
convex space, and Z a normal space. Suppose s : Y → Y is surjective, F ∈
s-KKM(Y, Y, Z) is closed, and f ∈ C(X, Y ). Then F ◦f ∈ 1X −KKM(X, X, Z) (see
[4]).

Let C be a subset of a Hausdorff topological space X . We let C (respectively,
∂(C) , int(C) ) denote the closure (respectively, boundary, interior) of C .

Let C be a subset of a Hausdorff topological vector space E and x ∈ X . Then
the inward set IC(x) is defined by

IC(x) = {x + r(y − x) : y ∈ C, r ≥ 0}.

Let C be a convex subset of a Hausdorff locally convex space E with 0 ∈
int(C) . The Minkowski functional p of C , defined by

p(x) = inf{r > 0 : x ∈ rC} ,

has the following properties:

(i). p is continuous on E ;

(ii). p(x + y) ≤ p(x) + p(y), x, y ∈ E ;

(iii). p(λx) = λp(x) , λ ≥ 0 , x ∈ E ;

(iv). 0 ≤ p(x) < 1 if x ∈ int(C) ;

(v). p(x) > 1 , if x 6∈ C ;

(vi). p(x) = 1 , if x ∈ ∂C .

For x ∈ E , let

dp(x, C) = inf{p(x− y) : y ∈ C} .

The following result [1] will be needed in the sequel.

Lemma 2.1. Let Ω be a closed, convex subset of a Hausdorff locally convex
topological vector space E with x0 ∈ Ω. Suppose s : Ω → Ω is surjective and
F ∈ s−KKM(Ω, Ω, Ω) is closed with the following property holding:

(2.1) A ⊆ Ω, A = co ({x0} ∪ F (A)) implies A is compact.

Then F has a fixed point in Ω.
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3 Main Results

Theorem 3.1. Let C be a closed, convex subset of a Hausdorff locally convex space
E with 0 ∈ C and U a convex open neighborhood of 0. Suppose C is a normal
space, s : U ∩ C → U ∩ C is surjective and F ∈ s-KKM(U ∩ C, U ∩ C, C) is a
closed map satisfying the following condition:

(3.1) A ⊆ C, A ⊆ co ({0} ∪ F (co ({0} ∪ A))) implies A is compact.

Then there exist x0 ∈ U ∩ C and y0 ∈ F (x0) with

p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU(x0) ∩ C) ;

here p is the Minkowski functional of U . More precisely, either (i). F has a fixed
point x0 ∈ U ∩ C , or (ii). there exist x0 ∈ ∂C(U) and y0 ∈ F (x0) with

0 < p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU(x0) ∩ C);

here ∂C(U) denotes the boundary of U relative to C.

Proof: Let r : E → U be defined by

r(x) =
x

max{1, p(x)}
for x ∈ E.

Since 0 ∈ U = int(U), it follows that r is continuous. Let f be the restriction of r
to C. Since C is convex and 0 ∈ C, f(C) ⊆ U ∩ C. Furthermore f ∈ C(C, U ∩ C).
By Remark 2.3, F ◦ f ∈ 1C − KKM(C, C,C) . Let G = F ◦ f . Then G is closed.
Next we claim

(3.2) if A ⊆ C and A ⊆ co ({0} ∪G(A)), then A is compact.

To see this notice if A ⊆ C and A ⊆ co ({0}∪F f(A)) then since f(A) ⊆ co ({0}∪
A) we have

A ⊆ co ({0} ∪ F (co ({0} ∪ A))).

Now (3.1) implies A is compact, so (3.2) holds. Now Lemma 2.1 guarantees that
there exists z0 ∈ C with z0 ∈ (F ◦ f)(z0). If we let x0 = f(z0) ∈ U ∩ C then
x0 ∈ (f ◦ F )(x0). Thus x0 = f(y0) for some y0 ∈ F (x0). We now consider two
cases: (i) y0 ∈ U ∩ C or (ii) y0 ∈ C \ U .
Suppose y0 ∈ U ∩ C . Then x0 = f(y0) = y0 . As a result

p(y0 − x0) = 0 = dp(y0, U ∩ C)

and x0 is a fixed point of F . On the other hand, if y0 ∈ C \ U , then

x0 = f(y0) =
y0

p(y0)
.

Now, for any x ∈ U ∩ C,

p(y0 − x0) = p

(
y0 −

y0

p(y0)

)
=

(
p(y0)− 1

p(y0)

)
p(y0)

= p(y0)− 1 ≤ p(y0)− p(x) = p((y0 − x) + x)− p(x)

≤ p(y0 − x).
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Thus
p(y0 − x0) = inf{p(y0 − z) : z ∈ U ∩ C} = dp(y0, U ∩ C) .

Also p(y0 − x0) > 0 since p(y0 − x0) = p(y0)− 1 .
Let z ∈ IU(x0) ∩ C \ (U ∩ C). Then there exists y ∈ U and c ≥ 1 with z =
x0 + c(y − x0). Assume that

p(y0 − z) < p(y0 − x0).

Since C is convex, 1
c
z + (1− 1

c
)x0 ∈ C. Since 1

c
z + (1− 1

c
)x0 = y ∈ U , we have

p(y0 − y) = p[
1

c
(y0 − z) + (1− 1

c
)(y0 − x0)]

≤ 1

c
p(y0 − z) + (1− 1

c
)p(y0 − x0)

< p(y0 − x0).

This contradicts the choice of y0. Therefore,

p(y0 − x0) ≤ p(y0 − z) for all z ∈ IU(x0) ∩ C .

The continuity of p gives that

p(y0 − x0) ≤ p(y0 − z) for all z ∈ IU(x0) ∩ C .

Consequently

0 < p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU(x0) ∩ C) .

If x0 ∈ U , then IU(x0) = E . This implies that dp(y0, IU(x0) ∩ C) = 0 . Hence
x0 ∈ ∂C(U) . �

Remark 3.1. Every Φ-condensing mapping F on C satisfies (3.1). To see this, let
A ⊆ C and A ⊆ co ({0} ∪ F (co ({0} ∪ A))). Then Φ(co ({0} ∪ A)) = Φ(A) ≤
Φ(F (co({0}∪A))). Since F is Φ-condensing, co ({0}∪A) is compact. Consequently,
A is compact.

Corollary 3.2. Let E be a normed space. Suppose s : BR → BR is surjective and
F ∈ s-KKM(BR, BR, E) is a closed map satisfying

(3.3) A ⊆ BR, A ⊆ co ({0} ∪ F (co ({0} ∪ A))) implies A is compact.

Then there exist x0 ∈ BR and y0 ∈ F (x0) with

||y0 − x0|| = d(y0, BR) = d(y0, IBR
(x0)) .

More precisely, either (i). F has a fixed point x0 ∈ BR , or (ii). there exist
x0 ∈ ∂(BR) and y0 ∈ F (x0) with

0 < ||y0 − x0|| = d(y0, BR) = d(y0, IBR
(x0)).

Proof: Since p(x) = ||x||
R

is the Minkowski functional on BR, the result follows from
Theorem 3.1. �
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Remark 3.2. Clearly every Φ-condensing mapping F on BR satisfies (3.3). Thus
Corollary 3.2 contains Corollary 3.4 of Shahzad [20]. It also extends Theorem 1 of
Lin and Park [11] to the class s-KKM.

As an application of our approximation result, we have the following result.

Theorem 3.3. Let C be a closed, convex subset of a Hausdorff locally convex space
E with 0 ∈ C and U a convex open neighborhood of 0. Suppose C is a normal
space, s : U ∩ C → U ∩ C is surjective and F ∈ s-KKM(U ∩ C, U ∩ C, C) is a
closed map satisfying (3.1). If F satisfies any one of the following conditions for
any x ∈ ∂C(U) \ F (x) :
(i). For each y ∈ F (x) , p(y − z) < p(y − x) for some z ∈ IU(x) ∩ C;
(ii). For each y ∈ F (x) , there exists λ with |λ| < 1 such that λx + (1 − λ)y ∈
IU(x) ∩ C;
(iii). F (x) ⊆ IU(x) ∩ C ;
(iv). F (x) ∩ {λx : λ > 1} = ∅ ;
(v). For each y ∈ F (x) , p(y − x) 6= p(y)− 1 ;
(vi). For each y ∈ F (x) , there exists α ∈ (1,∞) such that pα(y)− 1 ≤ pα(y − x);
(vii). For each y ∈ F (x) , there exists β ∈ (0, 1) such that pβ(y)− 1 ≥ pβ(y − x) ,
then F has a fixed point.

Proof: Theorem 3.1 guarantees that either
(1). F has a fixed point in U ∩ C
or
(2). there exists x0 ∈ ∂C(U) and y0 ∈ F (x0) with x0 = f(y0) such that

0 < p(y0)− 1 = p(y0 − x0) = dp(y0, U ∩ C) = dp(y0, IU(x0) ∩ C),

where p is the Minkowski functional of U and f is the restriction of the continuous
retraction r to C.

Suppose F satisfies condition (i). Assume (2) holds (with x0 and y0 as de-
scribed above) and x0 6∈ F (x0) . Then condition (i) implies that p(y0 − z) <
p(y0 − x0) for some z ∈ IU(x0) ∩ C . This contradicts the choice of x0 . Hence F
has a fixed point in U ∩ C .

Suppose F satisfies condition (ii). Assume (2) holds (with x0 and y0 as de-
scribed above) and x0 6∈ F (x0) . Then, by condition (ii), there exists λ with |λ| < 1
such that λx0 + (1− λ)y0 ∈ IU(x0) ∩ C . Therefore

p(y0 − x0) ≤ p(y0 − (λx0 + (1− λ)y0)) = p(λ(y0 − x0))

= |λ|p(y0 − x0) < p(y0 − x0).

This is impossible. Hence F has a fixed point in U ∩ C .

The proof for condition (iii) is clear.

Suppose F satisfies condition (iv). Assume (2) holds (with x0 and y0 as de-
scribed above) and x0 6∈ F (x0) . Then, by condition (iv), λx0 6= y0 for each λ > 1 .
But we have x0 = f(y0) = y0

p(y0)
and so y0 = λ0x0 with λ0 = p(y0) > 1 . Hence F

has a fixed point in U ∩ C .

Suppose F satisfies condition (v). Assume (2) holds (with x0 and y0 as de-
scribed above) and x0 6∈ F (x0) . Then, by condition (v), p(y0 − x0) 6= p(y0) − 1 .
But p(y0 − x0) = p(y0)− 1 . Hence F has a fixed point in U ∩ C .
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Suppose F satisfies condition (vi). Assume (2) holds (with x0 and y0 as de-
scribed above) and x0 6∈ F (x0) . Then, by condition (vi), there exists α ∈ (1,∞)
with pα(y0)− 1 ≤ pα(y0 − x0) . Let µ0 = 1

p(y0)
. Then µ0 ∈ (0, 1) and

(p(y0)− 1)α

pα(y0)
< 1− µα

0

≤ pα(y0)− 1

pα(y0)

≤ pα(y0 − x0)

pα(y0)
.

Thus p(y0 − x0) > p(y0) − 1 . But p(y0 − x0) = p(y0) − 1 . Hence F has a fixed
point in U ∩ C .

Finally suppose F satisfies condition (vii). Then, as above (see the proof of
(vi)), it can be verified that F has a fixed point in U ∩ C . �

Remark 3.3. We have obtained a Leray-Schauder type result (see Theorem 3.3(iv))
as an application of Theorem 3.1.

Corollary 3.4. Let E be a normed space. Suppose s : BR → BR is surjective and
F ∈ s-KKM(BR, BR, E) is a closed map satisfying (3.3). If F satisfies any one of
the following conditions for any x ∈ ∂(BR) \ F (x) :
(i). For each y ∈ F (x) ||y − z|| < ||y − x|| for some z ∈ IBR

(x);
(ii). For each y ∈ F (x) , there exists λ with |λ| < 1 such that λx + (1 − λ)y ∈
IBR

(x);
(iii). F (x) ⊆ IBR

(x);
(iv). F (x) ∩ {λx : λ > 1} = ∅;
(v). For each y ∈ F (x) , ||y − x|| 6= ||y|| −R ;
(vi). For each y ∈ F (x) , there exists α ∈ (1,∞) such that ||y||α −R ≤ ||y − x||α;
(vii). For each y ∈ F (x) , there exists β ∈ (0, 1) such that ||y||β −R ≥ ||y − x||β ,
then F has a fixed point.

Remark 3.4. Corollary 3.4 extends Theorem 2 of Lin and Park [11] and Corollary
3.10 of Shahzad [20].

Remark 3.5. Let C be a nonempty subset of a Hausdorff locally convex space E
and c ≥ 1. A mapping F : C → 2E is called pseudocondensing in the sense of Hahn
[7] (see also [8]) provided that if A is any subset of C such that Φ(A) ≤ cΦ(F (A)),
then A is relatively compact in C; here Φ is the c-measure of noncompactness [7].
We note that every pseudocondensing map satisfies conditions (3.1) and (3.3).

Acknowledgement. The author is grateful to the referee for his suggestions.
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