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Abstract

In this note we solve the Müntz problem for the space C(K) whenever
K ⊂ [0,∞) is a countable compact set which satisfies certain additional as-
sumptions and we propose the general case as an open question.

Every introductory course in Approximation Theory should contain at least one
proof of the following classical result, which is a nice generalization of the Weierstrass
approximation theorem:

Theorem 1 (Müntz, 1914). Let Λ = {λk}∞k=0 be a strictly increasing sequence of
real numbers with λ0 = 0 and let us denote by

Π(Λ) = span{xλi}∞i=0,

the space of polynomials with exponents in Λ. Then the following claims are equiva-
lent:
i) Π(Λ) is a dense subset of C[0, 1];
ii)

∑∞
i=1

1
λi

= ∞.

The result was conjectured by Bernstein in 1912 and proved by Müntz in 1914.
In 1916, Szász extended the Müntz Theorem in the sense that he was able to prove
it also for certain special sequences of complex numbers {λi}∞i=0 as exponents (see
[6]). Furthermore, he simplified the final step of the proof, where it is shown that the
result in L2(0, 1) implies the same result in C[0, 1]. Since then, many extensions and
generalizations have appeared. In particular, for compact intervals [a, b] ⊂ (0,∞)
the following result that we call the Full Müntz Theorem for compact intervals away
from the origin, is classic (see [2],[1]):
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Theorem 2 (Schwartz, Clarkson, Erdös). Let us assume that 0 < a < b < ∞
and Λ = {λk}∞k=0 ⊂ R. Then the following claims are equivalent:
i) Π(Λ) is dense in C[a, b];
ii)

∑
k∈{j:λj 6=0}

1
|λk|

= ∞.

On the other hand, in 1996 Borwein and Erdelyi published the following result
(see [3, Theor. 2.1]),

Theorem 3 (Full Müntz theorem for C(0, 1) ). Let Λ = {0} ∪ {λk}∞k=0, where
λk > 0 for all k. Then the following claims are equivalent:
i) Π(Λ) is dense in C[0, 1];
ii)

∑∞
k=0

λk

λ2
k
+1

= ∞.

Later, Borwein and Erdelyi (see [4]) extended their results to the spaces Lp(A)
and C(A) for sets A which are Lebesgue measurable with positive measure |A| > 0.
It is quite surprising that the problem is still open for countable compact sets and
also for uncountable sets with Lebesgue measure equal to zero. In this note we are
interested in a full Müntz theorem for countable compact sets. We prove that in
many cases the Müntz condition can be weakened in a sensible way. More precisely,
we obtain the following result.

Theorem 4. Let K ⊂ [0,∞) be a countable compact set and let Λ = {λk}∞k=0 ⊂ R
be a fixed sequence of exponents, satisfying λ0 = 0. Then the following holds:
i) If Λ ⊂ [0,∞) is an infinite bounded sequence and K \ {0} is compact then Π(Λ)
is dense in C(K).
ii) If Λ ⊂ [0,∞) and K does not contain strictly increasing sequences then Π(Λ)
is dense in C(K) if and only if #Λ = ∞. Moreover, if Λ ⊂ (−∞, 0] and K does
not contain strictly decreasing sequences then Π(Λ) is dense in C(K) if and only if
#Λ = ∞.

Proof. The main idea in the proof of this result is to use the Riesz representation
theorem. Clearly, the unique measures that exist for countable compact sets are
atomic. Thus, if K = {0} ∪ {ti}∞i=1 then L ∈ C(K)′ if and only if L(f) = α0f(0) +∑∞

i=1 αif(ti) for a certain sequence {αi}∞i=0 such that
∑∞

i=0 |αi| < ∞. Thus, as a
consequence of the Hahn-Banach Theorem, span{xλk}∞k=0 is dense in C(K) if and
only if the following holds true: if

∞∑
i=0

αi = 0;
∞∑
i=1

αit
λk
i = 0, k = 1, 2, · · · ; and

∞∑
i=0

|αi| < ∞

then αi = 0 for all i ≥ 0.
Thus, let us assume that

∑∞
i=0 αi = 0,

∑∞
i=1 αit

λk
i = 0, k = 1, · · · ; and

∑∞
i=0 |αi| <

∞. Then we set Γ = {ti : αi 6= 0} and we take γ = sup Γ. Clearly, γ ∈ K since
K is compact. If Γ = ∅ then L(f) = α0f(0) and L(1) = 0 implies α0 = 0, which
ends the proof. If Γ 6= ∅ then γ > 0 and there exists ts ∈ K such that γ = ts. Then
we take ta ∈ K such that ta < ts and we set zλ = (ta/ts)

λ. Clearly, the equation

z
pj

λ = (tj/ts)
λ is uniquely solved by pj = ln(tj/ts)

ln(ta/ts)
, which is a positive real number

for all j 6= s . Hence L(xλk) = 0, k = 0, 1, 2, · · · can be written in the following
equivalent way:
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0 =
∞∑
i=0

αi and 0 = (ts)
λk

∑
ti∈Γ

αi (ti/ts)
λk , k = 1, 2, · · ·

Hence ϕ(zλk
) = 0 for all k ≥ 1, where

ϕ(z) =
∑
ti∈Γ

αiz
pi

We decompose the proof in several steps, according to the boundedness properties
of the set of exponents Λ.
Step 1. Λ ⊂ [0,∞) and limk→∞ λk = ∞ and K does not contain strictly increasing
sequences.

Under these conditions it is clear that ts ∈ Γ and limk→∞ zλk
= 0. Thus ϕ(0) =

limk→∞ ϕ(zλk
) = 0 since ϕ(z) is continuous at the origin. On the other hand, ts ∈ Γ

implies that αs 6= 0. Hence we can use that ϕ(z) =
∑

ti∈Γ\{ts} αiz
pi + αs (since

ps = ln 1
ln(ta/ts)

= 0) to claim that ϕ(0) = αs 6= 0, a contradiction.

Step 2. Λ = {λk}∞k=0 ⊂ [0,∞) is bounded and K \ {0} is compact.
Clearly, we can assume without loss of generality that Λ is itself a convergent

sequence. We note that ϕ(z) =
∑

ti∈Γ αiz
pi is analytic in the open set Ω = {z : |z| <

1, |1 − z| < 1}. If limk→∞ λk = λ∗ 6= 0 then limk→∞ zλk
= zλ∗ ∈ (0, 1) ⊂ Ω. Hence

ϕ(z) vanishes on a set with accumulation points inside Ω, so that ϕ(z) vanishes
identically on Ω and αi = 0 for all i > 0. If 0 6∈ K the proof ends. On the other
hand, if 0 ∈ K then 0 = L(1) =

∑
ti∈Γ αi + α0 = α0 and the proof also ends. What

happens if limk→∞ λk = 0? Then we can use the following trick: the equations

0 =
∑
ti∈Γ

αit
λk
i ; k = 1, · · ·

can be rewritten as

0 =
∑
ti∈Γ

βit
λ∗k
i ; k = 1, · · · ,

where βi = αi/ti for all i and λ∗k = λk+1 for all k (take into account that
∑

ti∈Γ |βi| <
∞ since K \ {0} is compact). Thus limk→∞ λ∗k = 1 and we conclude that αj/tj = 0
for all j. The proof follows.
Step 3. Λ ⊂ R and K \ {0} is compact.

Clearly, if Λ is an infinite set then it contains either infinitely many positive
elements or infinitely many negative elements. Thus, we may assume that either
Λ ⊂ [0,∞) or Λ ⊂ (−∞, 0]. The first case has been already studied in Steps 1
and 2. Thus, let us assume that Λ ⊂ (−∞, 0] and L(f) = α0f(0) +

∑∞
j=1 αjf(tj),

L ∈ C(K)′. Then the equations L(xλk) = 0, k = 0, 1, · · · can be rewritten as

∞∑
i=0

αi = 0 and
∞∑
i=1

αi

(
1

ti

)−λk

= 0, k = 1, 2, · · · .

This means that the functional defined by

S(f) = α0f(0) +
∞∑

j=1

αjf(
1

tj
),
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which belongs to C(E)′, where E = {0} ∪ { 1
tj
}∞j=1, which is a countable compact

subset of [0,∞) since K \ {0} is compact; satisfies S(x−λk) = 0 for all k ≥ 0.
Moreover, if K does not contain decreasing sequences then E does not contain
increasing sequences. Now, we use the results proved in Steps 1 and 2 to conclude
that αi = 0 for all i. This ends the proof. �

Remark. Another proof of step 2: Taking into consideration that tλk
i = exp(λk log ti)

for all i, we have that the relations∑
ti∈Γ

αit
λk
i = 0; k = 1, 2, · · ·

are equivalent to the relations

Ψ(λk) = 0; k = 1, 2, · · · ;

where
Ψ(z) =

∑
ti∈Γ

αi exp((log ti)z)

is an entire function of exponential type. This means, in particular, that Λ cannot
be an infinite bounded sequence (otherwise, Ψ should vanish everywhere). This ends
the proof. �

Remark. Clearly, if Λ is bounded then |λk|−1 ≥ 1/ sup Λ for all λk 6= 0. Hence∑∞
k=1 |λk|−1 = ∞ and case i) of Theorem 3 follows from the theorem by Clarckson,

Erdös and Schwartz (Theorem 1) whenever 0 6∈ K. Now, this proof uses a very
difficult result in order to prove a simpler one. This is the reason we give our own
elementary proof of this fact.

Remark. There are many countable compact sets with the property that they do
not have (strictly) increasing sequences. An interesting example is given by:

K = {0} ∪ {1/n}∞n=1 ∪ {1/n + 1/m}∞n,m=1

Obviously, this compact set has infinitely many accumulation points but has no
increasing sequence! These cases are covered by Theorem 3 above.

Open question. We have already shown that in order to give a full Müntz
theorem for the general case (i.e., for arbitrary countable compact sets K ⊂ [0,∞)),
it is a good idea to study the zero sets of the Müntz type series:

ϕ(z) =
∞∑
i=1

αjz
pj ; where {pj}∞j=1 decreases to zero and

∞∑
j=1

|αj| < ∞.

and, in the case that K \ {0} = {ti}∞i=1 is compact, the zero sets of the integral
functions of exponential type given by

Ψ(z) =
∑
ti∈Γ

αi exp((log ti)z) where
∞∑

j=1

|αj| < ∞.

Is it possible to find a series ϕ(z) with a sequence of infinitely many zeros {zk}∞k=0

which converges to zero? What about a function Ψ(z) with infinitely many zeros?.
These questions seem to be still open and not easy.
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