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1 Introduction

Let M = (mij)i,j∈I be a Coxeter matrix over a set I. A Coxeter system of type
M is a pair (W, S) consisting of a group W and a set S = {si | i ∈ I} ⊆ W such
that (sisj)

mij = 1W for all i, j ∈ I and such that the set of these relations yields a
presentation of W ; hence such that W ∼= 〈S | ((sisj)

mij )i,j∈I〉 for short. The aim of
the present paper is to give a combinatorial proof of the following

Fundamental Fact: Let M be a Coxeter diagram over a set I, let (W, S) be a
Coxeter system of type M where S = {si | i ∈ I}. Then the order of the product
sisj is equal to mij for all i, j ∈ I.

This is well known and obtained by a 2-line argument as a very first observation
about the geometric representation of a Coxeter group. It seems therefore appropri-
ate to explain why we are nevertheless interested in replacing this short geometric
argument by a combinatorial proof which takes about 20 pages. There are in fact
two main reasons.

In [7] Tits solved the word problem for Coxeter groups. In that paper he indicated
how to use his result in order to produce a ‘combinatorial’ proof of the classification
of finite Coxeter groups. In [3] it is shown, how to employ folding techniques in order
to give a short proof of the classification based on Tits’ original idea. This gives hence
a proof which does not rely on classification of the positive definite bilinear forms
associated to Coxeter matrices (which basically corresponds to Coxeter’s original
proof in [1] and [2]). However, this proof still relies on the geometric representation
of a Coxeter group because the fact above is used in [7] for the solution of the
word problem. We also mention that in [6] and [8] the theory of Coxeter groups
is developed to a large extent in a purely combinatorial set-up. As both references
use the geometric representation only to prove the fact above, the question about a
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purely combinatorial theory of Coxeter groups arises naturally. Our paper provides
an affirmative answer to that question.

Whereas our first reason refers to ‘mathematical curiosity’, the second is more
serious and related to current research. The fundamental fact above expresses the
fact that a certain amalgam of dihedral groups does not collapse. We expect that
our techniques can be modified in such a way that they also apply to amalgams of
groups of Lie type of rank 2. A proof of the fact that those amalgams do not collapse
would be most interesting for proving the existence of certain groups of Kac-Moody
type, for which the present existence proofs are quite involved.

The reader may have noticed that we talked about a 20-pages proof, whereas the
present paper has less than 20 pages. This is due to the fact that we do not give
the complete proof here. For instance, we only consider the case of simply laced
diagrams with no triangles. The general case can be dealt by using this result and
the well-known folding techniques for Coxeter groups. We provide more information
about this reduction in the last section. Even for the case of simply laced diagrams
without triangles (which is treated in Section 3) not all details are given. We believe
that the reader will have no problem to reconstruct them. We remark nevertheless
that all details can be found in [4].

The strategy of our proof of the fundamental fact is as follows: it suffices to
produce a group generated by a set of involutions Σ := {σi | i ∈ I} such that the
order of σiσj is mij for all i, j ∈ I. We define M-homotopy classes of words and
M-reduced words in the free monoid as they are defined in Tits’ solution of the
word problem for Coxeter groups. Let X denote the set of M-homotopy classes of
reduced words. We define the set Σ as a subset of Sym(X). In order to define the
involutions σi ∈ Sym(X) we will show that for each M-reduced word f and each
i ∈ I either the word fi is M-reduced or there exists an M-reduced word f ′ such
that f ′i is M-homotopic to f . This will require most of the work. Also, a rank 2
version of this fact is needed in order to show that the orders of the products σiσj

are the desired ones.

Acknowledgement: We thank the anonymous referee for several valuable com-
ments which improved the content and the presentation of the paper.

2 Definitions and notation

The purpose of this section is to fix notation and to give some basic definitions
concerning free monoids and Coxeter matrices.

We denote the set of non-negative integers by N. If X is a subset of N, then the
smallest natural number in X is denoted by min X and the greatest natural number
in X by max X (if it exists).
Given a set M , then | M | denotes its cardinality.

Given a group G and H a subset of G, then the subgroup of G generated by H

is denoted by 〈H〉. Moreover we write H ≤ G if H is a subgroup of G and H E G

if H is a normal subgroup of G. The neutral element of G is denoted by 1G and if
g is an element of G, its order in G is denoted by o(g).
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Free monoids

Let I be a set.

A word over I of length k > 0 ∈ N is a sequence i1 . . . ik with iλ ∈ I for
1 ≤ λ ≤ k. By definition there is a unique word of length 0 over I which is denoted
by ∅ and which is called the empty word. We denote the set of words over I by
F (I).
We define a multiplication on F (I) as follows: let f = i1 . . . ik and g = j1 . . . jl be
words in F (I), then fg = i1 . . . ikj1 . . . jl. This multiplication is associative and its
neutral element is the empty word. The free monoid over I is F (I) endowed with
this multiplication and it is also denoted by F (I).
The length function on F (I) is the mapping l : F (I) −→ N assigning to each
word over I its length. We have in particular l(∅) = 0 and l(fg) = l(f) + l(g) for
f, g ∈ F (I).
A head of a word f ∈ F (I) is a word h ∈ F (I) such that there exists a word
g ∈ F (I) with f = hg. In the same way, a tail of a word f ∈ F (I) is a word
t ∈ F (I) such that there exists a word g ∈ F (I) with f = gt.
The symbol pm(i, j) denotes the word . . . ijij of length m.

Coxeter matrices

Let I be a set.

A Coxeter matrix over I is a symmetric matrix M = (mij)i,j∈I whose entries
are in the set N∪{∞} such that mii = 1 for each i ∈ I and mij ≥ 2 for all i 6= j ∈ I.
With such a matrix one associates a Coxeter diagram Γ(M) as follows: Γ(M) is
a labeled graph with vertex set I and edge set consisting of all unordered pairs of
{i, j} such that mij ≥ 3. Each edge is labeled by the corresponding mij . Since M

and Γ(M) carry the same information, we do not distinguish these two notions.

A system of involutions is a pair (W, S) consisting of a group W and a set
S ⊂ W of involutions. If (W, S) is a system of involutions the matrix (o(st))s,t∈S is
a Coxeter matrix over the set S. It is called the type of (W, S).

In the remainder of this subsection we fix a Coxeter matrix M = (mij)i,j∈I over
a set I and for i, j ∈ I, p(i, j) denotes the word pm(i, j) where m = mij .

Two words f, g ∈ F (I) are elementary M-homotopic if they are of the form
f = f1p(i, j)f2 and g = f1p(j, i)f2 for some f1, f2 ∈ F (I) and some i, j ∈ I such
that mij 6= ∞. We denote that relation by ∼=M .

Two words f, g ∈ F (I) are M-homotopic if there exists a sequence f =
f0, f1, . . . , fk = g such that, for 1 ≤ i ≤ k, fi−1 and fi are elementary M-homotopic.
This relation is an equivalence relation denoted by f ≃M g. The equivalence class
of a word f ∈ F (I) is denoted by [f ]M .

A word is M-reduced if it is not M-homotopic to a word of the form g = g1iig2

where g1, g2 ∈ F (I) and i ∈ I.

We remark some basic facts which often will be used without further reference. If
two words are M-homotopic, then their lengths are equal and they contain the same
letters. In particular, if i1, . . . , ik ∈ I are pairwise distinct, then f = i1 . . . ik ∈ F (I)
is M-reduced. If f ∈ F (I) is M-reduced, its heads and tails are M-reduced too.
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3 Simply laced Coxeter diagrams without triangles

Throughout this section M is a simply laced Coxeter diagram without triangles.
These conditions mean the following:

• mij ∈ {1, 2, 3} for all i, j ∈ I;

• If i, j, k ∈ I are pairwise distinct, then there exists a subset {λ, µ} of {i, j, k}
such that mλµ = 2.

M-reduced words

In the following we denote the relations ”elementary M-homotopic” and ”M-homotopic”
respectively by ∼= and ≃. In the same way, the M-homotopy-class of a word f is
denoted by [f ]. As in the previous section we denote the word pm(i, j) with m = mij

by p(i, j). Moreover, the word pm(i, j) with m = mij −1 is denoted by q(i, j). Hence
p(i, j) = ij and q(i, j) = j if mij = 2 and p(i, j) = jij and q(i, j) = ij if mij = 3.

Proposition 3.1. Let f ∈ F (I) be an M-reduced word. Then:

1. If f ≃ f ′i ≃ g′k, with f ′, g′ ∈ F (I), then there exists a word h ∈ F (I) such
that f ≃ hp(k, i).

2. If f ≃ f1f2 ≃ g1f2, with f1, f2, g1 ∈ F (I), then f1 ≃ g1.

Proof. We apply induction on the length l(f) = n of the word f .
If l(f) = 0 or l(f) = 1, then both assertions of the proposition are trivial.
If l(f) = 2, then f is a word of the form ab where a 6= b ∈ I. We distinguish

two cases: either mab = 2 or mab = 3. In the first case, the equivalence class of
f consists of the two words ab et ba. In the second case, the only element in the
equivalence class of f is the word ab. In both cases the assertions are obvious.

If l(f) = 3, then f is a word of the form abc with a 6= b 6= c ∈ I since f is
M-reduced.
If a = c, the case mab = 2 is impossible because f is supposed to be M-reduced.
Therefore we have mab = 3 if a = c and the equivalence class of f consists of the
two words aba and bab. The assertions follow.
Suppose now that a 6= c. Below we list the M-equivalence classes of abc depending
on the subdiagram induced on the set {a, b, c}. In each case the assertions of the
proposition follow immediately.

• If mab = mac = mbc = 2, we get [f ] = {abc, acb, bac, bca, cba, cab}.

• If mab = mac = 2 and mbc = 3, we get [f ] = {abc, bac, bca}.

• If mab = mbc = 2 and mac = 3, we get [f ] = {abc, bac, acb}.

• If mbc = mac = 2 and mab = 3, we get [f ] = {abc, acb, cab}.

• If mab = mac = 3 and mbc = 2, we get [f ] = {abc, acb}.

• If mbc = mac = 3 and mab = 2, we get [f ] = {abc, bac}.
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• If mab = mbc = 3 and mac = 2, we get [f ] = {abc}.

We consider now the case l(f) = n ≥ 4 and assume that the assertions hold for all
f ′ ∈ F (I) with l(f ′) < n.

We first prove Assertion 1.
Let f ′, g′, i and k be as in Assertion 1, i.e. f ≃ f ′i ≃ g′k. We claim that

there is a ‘direct’ M-homotopy between f ′i and g′k, i.e. a sequence of elementary
M-homotopic words starting with f ′i and ending with g′k such that the sequence
of the ending letters changes at most once.

Suppose first that we are given an M-homotopy from f ′i to g′k such that the
sequence of ending letters changes twice - from i to j and then from j to k.

We first consider the case i = k. An M-homotopy from f ′i to g′i is of the form

f ′i ∼= . . . ∼= f ′′p(j, i) ∼= f ′′p(i, j) ∼= . . . ∼= f ′′′p(i, j) ∼= f ′′′p(j, i) ∼= . . . ∼= g′i

where i is a tail of each word of the first and third indicated sub-homotopy and
where j is a tail of the sub-homotopy in the middle. So there is an M-homotopy
from f ′′p(i, j) to f ′′′p(i, j) consisting of elementary M-homotopic words having j

as last letter. Therefore f ′′q(j, i) ≃ f ′′′q(j, i). Those words, seen as heads of f ,
are M-reduced words of length n − 1. Using the induction hypothesis, we see that
f ′′ ≃ f ′′′. By ‘extending’ an M-homotopy from f ′′ to f ′′′ to an M-homotopy from
f ′′p(j, i) to f ′′′p(j, i) and replacing the sub-homotopy in the middle of the homotopy
above by this homotopy we get a ‘direct’ homotopy as claimed.

We now consider the case i 6= k. There are several possible sub-diagrams induced
on the set {i, j, k} and we treat the different cases separately. As for the case l(f) = 3
above, there are — up to symmetry — seven cases to consider. Here we treat only
two of them. The others can be dealt by analogous arguments (see [4]).

1. mij = mik = mjk = 2 s s s

i j k

We consider an M-homotopy from f ′i to g′k of the form

f ′i ∼= . . . ∼= f ′′ji ∼= f ′′ij ∼= . . . ∼= f ′′′kj ∼= f ′′′jk ∼= . . . ∼= g′k

where i,j and k are respectively tail of each word in the first, the second and
the last sub-homotopy. There is an M-homotopy from f ′′ij to f ′′′kj all whose
words have tail j. Therefore f ′′i ≃ f ′′′k. Those two words, seen as heads of
the M-reduced word f , are themselves M-reduced and of length n − 1. By
induction there exists a word h ∈ F (I) such that f ′′i ≃ hki ∼= hik ≃ f ′′′k.

As f ′′i, hki, hik and f ′′′k are M-reduced words of length n−1 and as f ′′i ≃ hki

and hik ≃ f ′′′k, we get by induction f ′′ ≃ hk and hi ≃ f ′′′.

Let
f ′′ = x0

∼= x1
∼= . . . ∼= xλ = hk

hi = y0
∼= y1

∼= . . . ∼= yµ = f ′′′

be M-homotopies.

We have a direct M-homotopy from f ′i to g′k as follows:

f ′i ≃ f ′′ji = x0ji ∼= . . . ∼= xλji = hkji ∼= hjki ∼= hjik ∼= hijk = y0jk ∼= . . . ∼=
yµjk = f ′′′jk ≃ g′k.
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2. mij = 3 = mjk et mik = 2 s s s

i j k

We consider an M-homotopy from f ′i to g′k of the form

f ′i ∼= . . . ∼= f ′′iji ∼= f ′′jij ∼= . . . ∼= f ′′′jkj ∼= f ′′′kjk ∼= . . . ∼= g′k

where i,j and k are respectively tail of each word in the first, the second
and the last sub-homotopy. There is a M-homotopy from f ′′jij to f ′′′jkj

consisting of words having j as a tail. Therefore f ′′ji ≃ f ′′′jk. Those two
words - seen as heads of the M-reduced word f - are themselves M-reduced
and of length n − 1. By induction there exists a word h ∈ F (I) such that
f ′′ji ≃ hki ∼= hik ≃ f ′′′jk.

As f ′′ji, hki, hik and f ′′′jk are M-reduced words of length n−1 and as f ′′ji ≃
hki and hik ≃ f ′′′jk, we get f ′′j ≃ hk and hi ≃ f ′′′j by induction. Those
words, seen as heads of the M-reduced word f , are themselves M-reduced and
of length n − 2.

By induction, there exist h′, h′′ ∈ F (I) such that f ′′j ≃ h′jkj ∼= h′kjk ≃ hk

and hi ≃ h′′iji ∼= h′′jij ≃ f ′′′j. All these words are M-reduced of length n−2.
By induction we get f ′′ ≃ h′jk, h′kj ≃ h, h ≃ h′′ij and h′′ji ≃ f ′′′. Note that
h′kj ≃ h ≃ h′′ij implies h′kj ≃ h′′ij, which means that in the following we
are able to realize a M-homotopy from f ′i to g′k without using the word h.
Moreover h′kj and h′′ij are M-reduced words (seen as heads of the M-reduced
word f) and of length n − 3. The induction provides h′k ≃ h′′i.

These are M-reduced words (seen as heads of the M-reduced word f) of length
n − 4. By induction there exists a word h′′′ ∈ F (I) such that h′k ≃ h′′′ik ∼=
h′′′ki ≃ h′′i. By induction, we get h′ ≃ h′′′i and h′′′k ≃ h′′

Let
f ′′ = x0

∼= x1
∼= . . . ∼= xα = h′jk

h′ = a0
∼= a1

∼= . . . ∼= aǫ = h′′′i

h′′′k = b0
∼= b1

∼= . . . ∼= bλ = h′′

h′′ji = t0 ∼= t1 ∼= . . . ∼= tδ = f ′′′

be M-homotopies.

We have a direct M-homotopy from f ′i to g′k as follows:

f ′i ≃ f ′′iji = x0iji ∼= . . . ∼= xαiji = h′jkiji = a0jkiji ∼= . . . ∼= aǫjkiji =
h′′′ijkiji ∼= h′′′ijikji ∼= h′′′jijkji ∼= h′′′jikjki ∼= h′′′jkijki ∼= h′′′jkijik ∼=
h′′′jkjijk ∼= h′′′kjkijk = b0jkijk ∼= . . . ∼= bλjkijk = h′′jkijk ∼= h′′jikjk =
t0kjk ∼= . . . ∼= tδkjk = f ′′′kjk ≃ g′k.

This finishes the proof of the claim.
Suppose that f ′i = f0, f1, . . . , fm = g′k is an M-homotopy. If the number of

changes of the last letter in this homotopy is at most 2, then Assertion 1 follows di-
rectly from the claim. If it is at least 3 we apply the claim to find a new M-homotopy
where the number of these changes is strictly smaller and Assertion 1 follows in this
way by an obvious induction.

We come to the proof of Assertion 2.
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Let f ≃ f1f2 ≃ g1f2, where f1, f2, g1 ∈ F (I). We have to prove that f1 ≃ g1. If
l(f2) = 1, then f1 ≃ g1 has been proved in the previous part (case i = k). Suppose
l(f2) > 1.

For some i ∈ I and some f ′

2 ∈ F (I), we have f2 = f ′

2i. So f ≃ f1f
′

2i ≃ g1f
′

2i. By
Assertion 1, there exists a direct M-homotopy from f1f

′

2i to g1f
′

2i. In other words
there exists an M-homotopy consisting of elementary M-homotopic words such that
each one ends with the letter i. We deduce f1f

′

2 ≃ g1f
′

2. By induction, we finally
get f1 ≃ g1. This finishes the proof of Assertion 2. �

Proposition 3.2. Let f ∈ F (I). If f is M-reduced and fi is not, then there exists
an M-reduced word f ′ ∈ F (I) such that f ≃ f ′i.

Proof. The proof uses induction on l(f) = n. For l(f) = 0 and l(f) = 1, the
assertion is trivial. Suppose n ≥ 2.

Suppose - by way of contradiction - that f is M-reduced, that fi is not M-reduced
and that there is no M-reduced f ′ ∈ F (I) such that f ≃ f ′i.

Since fi is not M-reduced, it is M-homotopic to a word of the form g1aag2 with
g1, g2 ∈ F (I) and a ∈ I:

fi = f0i0 ∼= f1i1 ∼= f2i2 ∼= . . . ∼= fkik = g1aag2.

So either fk is not M-reduced (if l(g2) > 0), or it is M-reduced and there exists
f ′

k ∈ F (I) with fk ≃ f ′

kik (which implies a = ik).
We set l := max{0 ≤ j < k | fj is M-reduced and there is no f ′

j ∈ F (I) with
fj ≃ f ′

jij}. The natural number l is well-defined by the hypothesis made on fk.
We consider the word fl+1 and distinguish two cases.

1. The word fl+1 is not M-reduced.

• Suppose milil+1
= 1.

We have il = il+1 and flil ∼= fl+1il+1. We deduce fl
∼= fl+1 and the word

fl is M-reduced by hypothesis. So the word fl+1 is M-reduced and we
obtain a contradiction.

• Suppose milil+1
= 2.

We have il 6= il+1 and flil = hil+1il ∼= hilil+1 = fl+1il+1. Considered as
a head of fl, the word h is M-reduced of length n − 1. Since hil = fl+1

and since fl+1 is supposed not to be M-reduced, we have that hil is not
M-reduced. The induction hypothesis provides the existence of a word
h′ ∈ F (I) such that h ≃ h′il.

So we get fl = hil+1 ≃ h′ilil+1
∼= h′il+1il, which means that fl is

M-homotopic to a word ending with the letter il. Referring to the con-
struction of l, we obtain a contradiction.

• Suppose milil+1
= 3.

We have il 6= il+1 and flil = hilil+1il ∼= hil+1ilil+1 = fl+1il+1. Considered
as a head of fl, the word h is M-reduced of length n−2 and hil+1il = fl+1

is not M-reduced.
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Suppose that hil+1 is not M-reduced. Then the induction provides the
existence of a word h′ ∈ F (I) such that h ≃ h′il+1.
This implies fl = hilil+1 ≃ h′il+1ilil+1

∼= h′ilil+1il and referring to the
construction of l, we obtain a contradiction.

So we have that hil+1 is an M-reduced word of length n − 1 and that
hil+1il is not M-reduced. The induction provides the existence of a word
h′′ ∈ F (I) such that hil+1 ≃ h′′il. By Proposition 3.1, there exists a word
h′′′ ∈ F (I) such that hil+1 ≃ h′′′il+1ilil+1

∼= h′′′ilil+1il ≃ h′′il. Then, still
by Proposition 3.1, there exists a word h′′′ ∈ F (I) such that h ≃ h′′′il+1il.
This implies fl = hilil+1 ≃ h′′′il+1ililil+1. Since fl is M-reduced, we
obtain a contradiction.

2. The word fl+1 is M-reduced: there exists a word f ′

l+1 ∈ F (I) such that fl+1 ≃
f ′

l+1il+1 (by the construction of l).

By construction, we know that flil ∼= fl+1il+1.

• Suppose milil+1
= 1.

We have il = il+1 and flil ∼= fl+1il.
We deduce that fl

∼= fl+1 ≃ f ′

l+1il+1 = f ′

l+1il. Referring to the construc-
tion of l, we obtain a contradiction.

• Suppose milil+1
= 2.

We have il 6= il+1 and flil = hil+1il ∼= hilil+1 = fl+1il+1. Considered as a
head of fl, the word h is M-reduced of length n−1. Since hil = fl+1 and
since fl+1 is supposed to be M-reduced, we get that hil is M-reduced.

By hypothesis we have hil = fl+1 ≃ f ′

l+1il+1, with f ′

l+1 ∈ F (I). By
Proposition 3.1 there exists a word h′ ∈ F (I) such that hil ≃ h′il+1il ∼=
h′ilil+1 ≃ f ′

l+1il+1. Then, still by Proposition 3.1, we have h ≃ h′il+1.
Replacing in the expression of fl, we get fl = hil+1 ≃ h′il+1il+1. This
contradicts the fact that fl is M-reduced.

• Suppose milil+1
= 3.

We have il 6= il+1 and flil = hilil+1il ∼= hil+1ilil+1 = fl+1il+1. Considered
as a head of f , the word h is M-reduced of length n − 2. Since fl+1 =
hil+1il and since fl+1 is M-reduced, the word hil+1il is M-reduced.

By hypothesis we have hil+1il = fl+1 ≃ f ′

l+1il+1, with f ′

l+1 ∈ F (I). By
Proposition 3.1 there exists a word h′′ ∈ F (I) such that
hil+1il ≃ h′′ilil+1il ∼= h′′il+1ilil+1 ≃ f ′

l+1il+1. Then, again by Proposition
3.1, we have h ≃ h′′il. Replacing in the expression of fl, we get fl =
hilil+1 ≃ h′′ililil+1. This contradicts the fact that fl is M-reduced.

�

Lemma 3.1. Let f be an M-reduced word in F (I) and let i 6= j ∈ I such that
fi and fj are M-reduced. Then fp(i, j) is an M-reduced word. In particular, the
words f, fi, fj, fij and fji are M-reduced.
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Proof. The last statement is a consequence of the first in view of the fact that
heads of M-reduced words are M-reduced.

The proof of the first statement is by contradiction.

1. If mij = 2 then fp(i, j) = fij.

Suppose that fij is not M-reduced. By Proposition 3.2, there exists a word f ′

M-reduced in F (I) such that fi ≃ f ′j. Since fi is M-reduced by hypothesis,
the word f ′j is M-reduced. By Proposition 3.1, there exists a word h ∈ F (I)
such that fi ≃ hji ∼= hij ≃ f ′j. Again by Proposition 3.1, there exists a word
h ∈ F (I) such that f ≃ hj. But this yields fj ≃ hjj and contradicts the
hypothesis that fj is M-reduced.

2. If mij = 3 then fp(i, j) = fjij.

Similarly as in the previous case one proves that that fji is M-reduced.
Suppose now that fjij is not M-reduced. By Proposition 3.2, there is an
M-reduced word f ′′ in F (I) such that fji ≃ f ′′j. As we have just proved
that fji is M-reduced, the word f ′′j is M-reduced too. By Proposition 3.1,
there exists a word h′ ∈ F (I) such that fji ≃ h′iji ∼= h′jij ≃ f ′′j. Again by
Proposition 3.1, there exists a word h′ ∈ F (I) such that f ≃ h′i. This leads
to fi ≃ h′ii and contradicts the hypothesis that fi is M-reduced.

�

Proof of the fundamental fact

Lemma 3.2. Let f, g ∈ F (I) be two M-reduced words and let j ∈ I.

• If f ≃ g and if fj is M-reduced, then gj is M-reduced and gj ≃ fj.

• If f ≃ g and if fj is not M-reduced, then gj is not M-reduced. Moreover if
f ′, g′ ∈ F (I) are such that f ≃ f ′j and g ≃ g′j, then f ′ ≃ g′.

Proof. The first assertion is obvious. The second follows from Propositions 3.1
and 3.2. �

We put X := {[f ] | f ∈ F (I) is M-reduced}. and we define the mapping σj

from X to X by,

σj([f ]) :=

{

[fj] if fj M-reduced
[f ′] if fj not M-reduced and if [f ′] ∈ X such that [f ] = [f ′j]

Lemma 3.3. The mapping σj is well defined and it is an involutory permutation of
X.

Proof. The first assertion follows from Lemma 3.2. Using Proposition 3.2 one
verifies that σ2

i is the identity on X. As σi([∅]) = [i] 6= [∅] it follows that σi is an
involution for all i ∈ I. �
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Lemma 3.4. Let f ∈ F (I) be an M-reduced word and let i 6= j ∈ I. Then the
〈σiσj〉-orbit of [f ] has length mij. In particular, the order of σiσj is mij.

Proof. Suppose first that f is such that the words fi and fj are both M-reduced.
Then it is easily verified (using the last statement of Lemma 3.1) that {[f ], [fij]}
(resp. {[f ], [fij], [fji]}) is the 〈σiσj〉-orbit of [f ] if mij = 2 (resp. mij = 3). In
particular, the orbit has length mij .

Suppose now that f is arbitrary. There exists an M-reduced word g such that
gi and gj are both M-reduced and such that [f ] is in the 〈σi, σj〉-orbit of [g]. As
〈σi, σj〉 normalizes 〈σiσj〉, we conclude that the 〈σiσj〉-orbit of [f ] has length mij . �

By the universal property of the Coxeter system (W, S) of type M , there is a
unique homomorphism from W to Sym(X) mapping si onto σi for all i ∈ I. By
the previous lemma this implies that mij divides the order of sisj for all i, j ∈ I.
We conclude that o(sisj) = mij for all i, j ∈ I which completes the proof of the
fundamental fact for the diagram M .

4 The general case

The reduction of the general case to the case of simply laced diagrams without
triangles is quite standard. For instance it has been applied for Artin groups by L.
Paris in [5].

A covering of a graph Γ = (V, E) is a pair (Γ′, ϕ) consisting of a graph Γ′ =
(V ′, E ′) and an epimorphism ϕ from Γ′ such that for each v′ ∈ V ′ the restriction of
ϕ induces a bijection between all neighbours of v′ and all neighbours of ϕ(v′).

Let M be a simply laced Coxeter diagram over a finite set I whose graph is Γ,
let (Γ′, ϕ) be a finite covering of Γ, let M ′ be the simply laced Coxeter diagram
corresponding to Γ′ over the finite set I ′ and let (W ′, {sx | x ∈ I ′}) be a system
of involutions of type M ′. Define for i ∈ I the involution si ∈ W ′ as the product
over all sx where x runs through ϕ−1(i). As all those sx commute, their ordering
in the product does not play any role which shows that si is well defined. It is
straightforward to check that the system (〈si | i ∈ I〉, {si | i ∈ I}) is a system of
type M .

On the other hand, for each finite graph there exists a finite covering without
triangles. Hence systems of involutions of arbitrary simply laced type can be con-
structed combinatorially from those without triangles using the fact described in
the previous paragraph.

Each finite Coxeter diagram can be obtained by a ‘folding’ of a finite simply laced
diagram. This is proved in [3] where ‘foldings’ correspond to ‘admissible partitions’
in loc. cit.. Along with such foldings one can produce systems of involutions of
arbitrary finite Coxeter diagram as ’subsystems’ of finite simply laced ones in a
similar way as above. In order to treat the case where I contains infinitely many
elements, one considers limits.



A combinatorial approach to Coxeter groups 869

References

[1] H.S.M. Coxeter. Finite groups generated by reflections and their subgroups gen-
erated by reflections, volume 30. Proc. Cambridge Phil. Soc., 1934.

[2] H.S.M. Coxeter. The complete enumeration of finite groups of the form R2
i =

(RiRj)
kij = 1, volume 10. J. London Math. Soc., 1935.

[3] B. Mühlherr. Some Contributions to the Theory of Buildings Based on the Gate
Property. Doctoral Thesis, Eberhard-Karls-Universität Tübingen, 1994.
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licence, Université Libre de Bruxelles, 2004.

[5] L. Paris. Actions and irreducible representations of the mapping class group.
Math. Ann., 322(2):301–315, 2002.

[6] M. Ronan. Lectures on buildings. Perspectives in Mathematics. Academic Press,
Boston, 1989.

[7] J. Tits. Le problème des mots dans les groupes de Coxeter. In Symposia Math-
ematica (INDAM, Rome, 1967/68), Vol. 1, pages 175–185. Academic Press,
London, 1968.

[8] R.M. Weiss. The structure of spherical buildings. Princeton University Press,
Princeton, NJ, 2003.
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Département de Mathématique
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