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Abstract

The set of translation planes with spreads in PG(3, q) admitting cyclic
affine homology groups of order q + 1 is shown to be equivalent to the set
of flocks of quadratic cones in PG(3, q). The analysis is general and con-
siders analogous homology groups in PG(3,K), for K an arbitrary field and
corresponding partial flocks of quadratic cones in PG(3,K).

1 Introduction.

There is tremendous interest in what might be called the geometry of flocks of
quadratic cones in PG(3, q). This geometry includes certain translation planes
whose corresponding spreads are unions of q reguli sharing a common line (see
Gevaert, Johnson, Thas [3]), certain generalized quadrangles of type (q2, q) (see
Thas [12]), and translation planes with spreads in PG(3, q) admitting Baer groups
of order q (see Johnson [7] and Payne and Thas [10]). In the last situation, there
is a deficiency one partial flock of a quadratic cone due to the work of Johnson [7].
Furthermore, partial flocks of deficiency one may be extended uniquely to flocks
by Payne and Thas [10]. There are also connections to sets of ovals, called ‘herds’
(see, e.g., [9]), the existence of which provides a more general extension theory when
q is even (see Thas and Storme [11]). The reader interested in these and other
connections is referred to the survey article by Johnson and Payne [9].

Recently, another sort of miraculous connection has emerged due to the work of
Baker, Ebert and Penttila [1]. This is, that flocks of quadratic cones in PG(3, q) are
equivalent to the so-called ‘regular hyperbolic fibrations with constant back half.’
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A ‘hyperbolic fibration’ is a set Q of q − 1 hyperbolic quadrics and two carrying
lines L and M such that the union L ∪ M ∪ Q is a cover of the points of PG(3, q).
(More generally, one could consider a hyperbolic fibration of PG(3, K), for K an
arbitrary field, as a disjoint covering of the points by a set of hyperbolic quadrics
union two carrying lines.) The term ‘regular hyperbolic fibration’ is used to describe
a hyperbolic fibration such that for each of its q − 1 quadrics, the induced polar-
ity interchanges L and M . When this occurs, and (x1, x2, y1, y2) represent points
homogeneously, the hyperbolic quadrics have the form

V (x2
1ai + x1x2bi + x2

2ci + y2
1ei + y1y2fi + y2

2gi)

for i = 1, 2, . . . , q − 1 (the variety defined by the fibration). When (ei, fi, gi) =
(e, f, g) for all i = 1, 2, . . . , q − 1, the regular hyperbolic quadric is said to have
‘constant back half’.

The main theorem of Baker, Ebert and Penttila [1] is equivalent to the following.

Theorem 1. (Baker, Ebert, Penttila [1])
(1) Let H : V (x2

1ai + x1x2bi + x2
2ci + y2

1e + y1y2f + y2
2g) for i = 1, 2, . . . , q − 1 be

a regular hyperbolic fibration with constant back half.
Consider PG(3, q) as (x1, x2, x3, x4) and let C denote the quadratic cone with

equation x1x2 = x2
3.

Define

π0 : x4 = 0, πi : x1ai + x2ci + x3bi + x4 = 0 for 1, 2, . . . , q − 1.

Then
{πj , j = 0, 1, 2, . . . , q − 1}

is a flock of the quadratic cone C.
(2) Conversely, if F is a flock of a quadratic cone, choose a representation

{πj , j = 0, 1, 2, . . . , q − 1} as above. Choose any convenient constant back half (e, f, g),
and define H as V (x2

1ai + x1x2bi + x2
2ci + y2

1e + y1y2f + y2
2g) for i = 1, 2, . . . , q − 1.

Then H is a regular hyperbolic fibration with constant back half.

Now for each of the q − 1 reguli, choose one of the two reguli of totally isotropic
lines. Such a choice will produce a spread and a translation plane. Hence, there are
potentially 2q−1 possible translation planes obtained in this way.

In this article, we intend to connect flocks of quadratic cones with the translation
planes obtained from regular hyperbolic quadrics with constant back halves in a more
direct manner.

In particular, we prove:

Theorem 2. Translation planes with spreads in PG(3, q) admitting cyclic affine
homology groups of order q + 1 are equivalent to flocks of quadratic cones.

In this setting, it is possible to prove that the component orbits of the cyclic
homology group H form reguli.

More generally, we consider translation planes with spreads in PG(3, K), for K
an arbitrary field, that admit homology groups, one component orbit of which is a
regulus in PG(3, K). When this occurs, we obtain:
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Theorem 3. Let π be a translation plane with spread in PG(3, K), for K a field.
Assume that π admits an affine homology group H, so that some orbit of components
is a regulus in PG(3, K).

(1) Then π produces a regular hyperbolic fibration with constant back half.

(2) Conversely, each translation plane obtained from a regular hyperbolic fibration
with constant back half admits an affine homology group H, one orbit of which is a
regulus in PG(3, K).

The group H is isomorphic to a subgroup of the collineation group of a Pappian
spread Σ, coordinatized by a quadratic extension field K+, H ≃ 〈hσ+1; h ∈ K+ − {0}〉,
where σ is the unique involution in GalKK+.

(3) Let H be a regular hyperbolic fibration with constant back half of PG(3, K).
The subgroup of ΓL(4, K) that fixes each hyperbolic quadric of H and acts trivially
on the front half is isomorphic to 〈ρ, 〈hσ+1; h ∈ K+ − {0}〉〉, where ρ is defined as

follows: If e2 = ef + g, f, g in K and 〈e, 1〉K = K+, then ρ is

[

I 0
0 P

]

, where

P =

[

1 0
g −1

]

.

In particular, 〈hσ+1; h ∈ K+ − {0}〉 fixes each regulus and opposite regulus of
each hyperbolic quadric of H and ρ inverts each regulus and opposite regulus of each
hyperbolic quadric.

When K is a finite field, the associated homology group is cyclic of order q + 1
and there is an associated flock of a quadratic cone by the work of Baker, Ebert and
Penttila [1]. However, when K is an infinite field, this may no longer be true. The
relevant theorem is as follows:

Theorem 4. (1) A regular hyperbolic fibration with constant back half in PG(3, K),
K a field, with carrier lines x = 0, y = 0 may be represented as follows:

V

(

x

[

δ G(δ)
0 −F(δ)

]

xt − y

[

1 g
0 −f

]

yt

)

for all δ in det K+ =







[

u t
ft u + gt

]σ+1

; u, t ∈ K, (u, t) 6= (0, 0)







,

where






[

δ G(δ)
0 −F(δ)

]

; δ ∈







[

u t
ft u + gt

]σ+1

; u, t ∈ K, (u, t) 6= (0, 0)













∪

{[

0 0
0 0

]}

corresponds to a partial flock of a quadratic cone in PG(3, K), for F and G functions
on det K+.

(2) The correspondence between any spread π corresponding to the hyperbolic
fibration and the partial flock is as follows:

If π is

x = 0, y = 0, y = x

[

u t
F (u, t) G(u, t)

]

,
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then the partial flock is given by

[

δu,t G(δu,t)
0 −F(δu,t)

]

, with

δu,t = det

[

u t
ft u + gt

]

,

G(δu,t) = (uG(u, t) + tF (u, t)) · g + 2(uF (u, t)− tfG(u, t)),

−F(δu,t) = δF (u,t),G(u,t),

where

δF (u,t),G(u,t) = det

[

F (u, t) G(u, t)
fG(u, t) F (u, t) + gG(u, t)

]

∈ det K+.

(3) The corresponding functions

φs(t) = s2t + sG(t) − F(t)

are injective for all s in K and for all t ∈ det K+.
Indeed, the functions restricted to det K+ are surjective on det K+.
(4) Conversely, any partial flock of a quadratic cone in PG(3, K), with defining

set λ (i.e., so t ranges over λ and planes of the partial flock are defined via functions
in t) equal to det K+, whose associated functions on det K+, as above, are surjec-
tive on det K+ (K+ some quadratic extension of K), produces a regular hyperbolic
fibration in PG(3, K) with constant back half.

So, the question at least for finite translation planes is to find cyclic homology
groups of order q +1 in translation planes with spreads in PG(3, q). It is, of course,
possible to find homology groups of order q+1 without these being cyclic. However,
for certain orders, we may avoid this assumption. We are able to prove:

Theorem 5. Let π be a translation plane with spread in PG(3, q) that admits an
affine homology group H of order q + 1 in the translation complement. If any of the
following conditions hold, π defines a regular hyperbolic fibration with constant back
half and hence a corresponding flock of a quadratic cone:

(1) q is even,
(2) q is odd and q ≡ 1 mod 4,
(3) H is Abelian,
(4) H is cyclic.

2 Homology Groups and Regular Hyperbolic Fibrations.

Lemma 1. (1) Let H be a hyperbolic fibration of PG(3, K), for K a field (a covering
of the points by a set λ of mutually disjoint hyperbolic quadrics union two disjoint
lines having an empty intersection with any of the quadrics). For each quadric in
λ, choose one of the two reguli (a regulus or its opposite). The union of these reguli
and the “carrying lines” form a spread in PG(3, q).

(2) Conversely, any spread in PG(3, K) that is a union of hyperbolic quadrics
union two disjoint carrying lines (i.e. two lines not contained in any of the reguli)
produces a hyperbolic fibration.
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Lemma 2. Let π be a translation plane with spread in PG(3, K), for K a field,
that admits a homology group H, such that some orbit of components is a regulus in
PG(3, K). Let Γ be any H-orbit of components.

Then there is a unique Pappian spread Σ containing Γ and the axis and coaxis
of H.

Proof. Note that any regulus net and any component disjoint from the elements
of that regulus may be embedded into a unique Pappian spread. Such a Pappian
spread Σ may be coordinatized by a field extension of K, say K+. Then there is a
representation of that regulus within Σ as follows:

y = xm; mσ+1 = 1, for m ∈ K+.

Let the homology group H have coaxis x = 0 and axis y = 0 in the associated
4-dimensional vector space. Thus, we may represent the group H by

〈[

I 0
0 T

]

; T q+1 = I, T ∈ K+

〉

.

Let y = xM be any component, where M is a non-singular matrix. We claim that
there is unique associated Pappian spread containing

{

x = 0, y = 0, y = xMT ; T σ+1 = I
}

.

To see this, change bases by

[

M−1 0
0 I

]

to obtain Σ as

x = 0, y = xm; m ∈ K+,

then change bases back to obtain the field MK+M−1 and the associated Pappian

spread

[

M 0
0 I

]

Σ containing the indicated set. Note that this is a regulus with

x = 0, y = 0 adjoined in that Pappian spread. Since this Pappian spread may be
coordinatized by an extension field of the kernel K, it follows that any such regulus
(image under H) is a regulus in PG(3, K). �

Lemma 3. Under the assumptions of the previous lemma, we may represent the
coaxis, axis and Γ as follows:

x = 0, y = 0, y = xm; mσ+1 = 1; m ∈ K+,

where m is in the field K+, a 2-dimensional quadratic extension of K, and σ is the
unique involution in GalKK+.

A basis may be chosen so that Σ may be coordinatized by K+ as

[

u t
ft u + gt

]

for all u, t in K, for suitable constants f and g.

Proof. This follows directly from the previous lemma and the fact that the field
coordinatizing a Pappian spread in PG(3, K) may be defined by an irreducible
quadratic over K. �
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Lemma 4. Under the previous assumptions, if {1, e} is a basis for K+ over K then
e2 = eg + f , and eσ = −e + g, eσ+1 = −f . Furthermore, (et + u)σ+1 = 1 if and only

if in matrix form et + u =

[

u t
ft u + gt

]

, such that u(u + gt) − ft2 = 1.

The opposite regulus
y = xσm; mσ+1 = 1

may be written in the form

y = x

[

1 0
g −1

] [

u t
ft u + gt

]

; u(u + gt) − ft2 = 1.

Proof. Choose a basis for the Pappian spread containing x = 0, y = 0, y = x, with
the following form:

x = 0, y = 0, y = x

[

u t
tf u + gt

]

; u, t ∈ K,

g, f appropriate constants, f non-zero.

In this context, we have a basis {1, e} such that e2 = eg + f . Notice that et + u as

a matrix is

[

u t
tf u + gt

]

, in the basis set {{1, e}, {1, e}}.

Since eσ+1 ∈ K, let eσ+1 = α, and eσ + e = ρ, for α, ρ in K, then α + e2 = eρ,
implying that ρ = g and α = −f .

Thus, eσ = −e + g and eσ+1 = −f .

We note that (ex2 + x1)
σ = (x1, x2)

[

1 0
g −1

]

.

If et + u is such that (et + u)σ+1 = 1 then

(et + u)σ+1 = 1 = (eσt + u)(et + u)

= eσ+1t2 + eσut + eut + u2

= −ft2 + (−e + g)ut + eut + u2

= u2 + utg − ft2 = det

[

u t
tf u + gt

]

.

Since y = xσm = x

[

1 0
g −1

]

m, it follows that the opposite regulus may be written

as stated in the lemma. �

Lemma 5. If π is a translation plane of order q2 with spread in PG(3, K) admit-
ting a homology group H such that one component is a regulus in PG(3, K), then,
choosing the axis of H as y = 0 and the coaxis as x = 0, we have the following form
for the elements of H

[

I 0
0 T

]

; T σ+1 = I.

Furthermore, we may realize the matrices T in the form

[

u t
tf u + gt

]

such that

u(u + gt) − t2f = 1.

Proof. This follows directly from the previous lemmas. �
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We then obtain the following representation of the regulus corresponding to the
orbit of y = x under H .

Lemma 6. The associated hyperbolic quadric corresponding to (y = x)H : has the
following form:

V [1, g,−f,−1,−g, f ].

Using this homology group, we obtain:

Lemma 7. It is possible to represent the spread as follows:

x = 0, y = 0, y = xMiT for i ∈ ρ, T σ+1 = I,

where i ∈ ρ, some index set. We thus have a set of ρ reguli that have the property
that x = 0 and y = 0 are interchanged by the polarity induced by the associated
hyperbolic quadric.

Proof. Since GL(2, K+), where K+ is the quadratic extension field of K coordina-
tizing Σ, is triply transitive on the components of Σ, this implies that any regulus
(orbit Γ of π) may be chosen to have the form y = xm; mσ+1 = 1. However, what
we have not yet shown is that what we have called x = 0, y = 0 are the coaxis and
axis of the homology group when it acts in π. In other words, when we choose Γ to
the have the required form, do the axis and coaxis of the group H have the form
x = 0, y = 0? We do have a homology group HA that acts transitively on Γ when it
sits in Σ.

So, we consider this from a different perspective. Suppose we have chosen the
coaxis and axis as x = 0, y = 0 in Σ and then ask if Γ is one of the ‘André’ reguli;
y = xm; mσ+1 = α for some α in K. We will show that this is, in fact, the case.
But in order to do this, we require that we know the form of the Baer subplanes of
any regulus of Σ.

We claim that if πo is a Baer subplane of Σ that is disjoint from x = 0 and y = 0
then there is a unique pair m, n of elements of K+ such that πo is y = xσm + xn.

To see this, we note that since the group fixing x = 0, y = 0 is transitive on
the remaining components of Σ and the kernel homology group of Σ is transitive
on the points of components of Σ, we may choose πo to contain (1, 1), without
loss of generality. Let πo also contain the point (a, b) so that πo is the set of points
α(1, 1)+β(a, b), for α, β ∈ K. Since πo is not a component, then a 6= b (as otherwise,
πo would be y = x). Hence, a and b are both in K+ − K since otherwise πo would
non-trivially intersect x = 0 or y = 0. We now want to solve the following system
of equations uniquely for m 6= 0 and n:

m + n = 1,

aσm + an = b.

Since the determinant of the coefficient matrix is aσ−a 6= 0, there is a unique solution
for m and n. Note that if m = 0 then a = b, since n is not 0, a contradiction. Since
y = xqm + xn is a 2-dimensional K-subspace sharing the basis for πo, these two
subspaces are equal. Hence, we may represent subplanes in the manner in question.
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What this means is that we may choose the coaxis, axis and Γ as

x = 0, y = 0, y = xm; mσ+1 = 1,

without loss of generality.
The quadratic form for Γ is

V

(

x

[

1 g
0 −f

]

xt − y

[

1 g
0 −f

]

yt

)

, where x = (x1, x2), y = (y1, y2)

and (x1, x2, y1, y2) is the representation in {{1, e}, {1, e}} on x = 0, y = 0.

Recall that now Γ is y = x

[

u t
ft u + gt

]

; u(u + gt) − ft2 = 1. Now directly check

that

x

[

1 g
0 −f

]

xt − x

[

u t
ft u + gt

] [

1 g
0 −f

] [

u t
ft u + gt

]t

xt = 0.

Also, note that

x

[

1 g
0 −f

]

xt − x

[

1 g
0 −1

] [

1 g
0 −f

] [

1 g
0 −1

]t

xt

= x

[

1 g
0 −f

]

xt − x

[

1 g
0 −f

]t

xt

and since x

[

1 g
0 −f

]t

xt = x

[

1 g
0 −f

]

xt, we have y = xσ

[

u t
ft u + gt

]

=

x

[

1 0
g −1

] [

u t
ft u + gt

]

, where u(u + gt) − ft2 = 1, is the set of opposite lines

and these are also isotropic under the indicated quadratic form. This proves the
lemma. �

Lemma 8. (1) The spread for π has the following form:

x = 0, y = 0, y = xMi

[

u t
ft u + gt

]

; u(u + gt) − ft2 = 1

and Mi a set of 2 × 2 matrices over K, where i ∈ ρ, some index set. Let

Ri =
{

y = xMiT ; T σ+1 = 1
}

for i ∈ ρ, where M1 = I.

(b) Then Ri is a regulus in PG(3, K).
(c)

R∗

i =

{

y = xMi

[

1 0
g −1

]

T ; T σ+1 = I

}

represents the opposite regulus to Ri.
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Proof. It remains to prove (c). We know that the opposite regulus to R1 = {y = xT ;

T σ+1 = 1} is

{

y = xσT = x

[

1 0
g −1

]

T ; T σ+1 = 1

}

. Consider Ri = {y = xMiT ;

T σ+1 = 1} and change bases by τMi
: (x, y) 7−→ (x, yM−1

i ) to change Ri into R1.
Then R∗

1 maps to R∗

i under τ−1
Mi

. This implies that

R∗

i =

{

y = xMi

[

1 0
g −1

]

T ; T σ+1 = 1

}

.

�

We now determine the associated quadratic forms.

Lemma 9. The quadratic form for Ri is

V

(

xMi

[

1 g
0 −f

]

M t
i x

t − y

[

1 g
0 −f

]

yt

)

.

Proof.

xMi

[

1 g
0 −f

]

M t
i x

t − xMiT

[

1 g
0 −f

]

T tM t
i x

t

= xMi

[

1 g
0 −f

]

M t
i x

t − xMi

[

1 g
0 −f

]

M t
i x

t.

This shows that the components of Ri are isotropic subspaces. Now note that the
opposite regulus R∗

i to Ri has components

y = xMi

[

1 0
g −1

]

T ; T σ+1 = 1.

Then

xMi

[

1 g
0 −f

]

M t
i x

t − xMi

[

1 0
g −1

]

T

[

1 g
0 −f

]

T t

[

1 0
g −1

]t

M t
i x

t

= xMi

[

1 g
0 −f

]

M t
i x

t − xMi

[

1 0
g −1

] [

1 g
0 −f

] [

1 0
g −1

]t

M t
i x

t

= xMi

[

1 g
0 −f

]

M t
i x

t − xMi

[

1 g
0 −f

]t

M t
i x

t.

Note that

xMi

[

1 g
0 −f

]t

M t
i x

t is self-transpose and

thus equal to xMi

[

1 g
0 −f

]t

M t
i x

t.

This proves the lemma. �
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Lemma 10. The regulus

Ri =
{

y = xMiT ; T σ+1 = 1
}

for i ∈ ρ, where M1 = I

and its opposite regulus

R∗

i =

{

y = xMi

[

1 0
g −1

]

T ; T σ+1 = 1

}

are interchanged by the mapping

ρ =

[

I 0
0 P

]

, where P =

[

1 0
g −1

]

; (x, y) 7−→ (x, yσ).

Proof. y = xMiT maps to y = xMiTP = xMiP (P−1TP ), and notice that P−1TP =
T σ, if σ is an automorpism of K+ and T ∈ K. Since T σ(σ+1) = T σ2+σ = T σ+1 = 1,
we have the proof. �

We may now state and prove our main theorem.

Theorem 6. Let π be a translation plane with spread in PG(3, K), for K a field.
Assume that π admits an affine homology group H so that some orbit of components
is a regulus in PG(3, K).

(1) Then π produces a regular hyperbolic fibration with constant back half.
(2) Conversely, each translation plane obtained from a regular hyperbolic fibration

with constant back half admits an affine homology group H, one orbit of which is a
regulus in PG(3, K).

H is isomorphic to a subgroup of the collineation group of a Pappian spread Σ,
coordinatized by a quadratic extension field K+, H ≃ 〈hσ+1; h ∈ K+ − {0}〉, where
σ is the unique involution in GalKK+.

(3) Let H be a regular hyperbolic fibration with constant back half of PG(3, K),
for K a field. The subgroup of ΓL(4, K) that fixes each hyperbolic quadric of the
regular hyperbolic fibration H and acts trivially on the front half is isomorphic to
〈ρ, 〈hσ+1; h ∈ K+ − {0}〉〉, where ρ is defined as follows: If e2 = ef + g, f, g in K

and 〈e, 1〉K = K+ then ρ is

[

I 0
0 P

]

, where P =

[

1 0
g −1

]

.

In particular, 〈hσ+1; h ∈ K+ − {0}〉 fixes each regulus and opposite regulus of
each hyperbolic quadric of H and ρ inverts each regulus and opposite regulus of each
hyperbolic quadric.

Proof. It remains to prove (3). Choose x = 0, y = 0 as the two lines (components)
interchanged by the associated polarity of each hyperbolic quadric of H, a regular
hyperbolic quadric with constant back half. Fix a quadric and choose either regulus
of this quadric. We have seen above that there is a unique Pappian spread containing
the regulus and x = 0, y = 0. Choose the quadratic extension field of K with basis
{e, 1}, where e2 = ef + g. Then the quadric has the following form:

V

(

x

[

1 g
0 −f

]

xt − y

[

1 g
0 −f

]

yt

)

.
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As any quadric of H has constant back half, we note that

[

u t
ft u + gt

] [

1 g
0 −f

] [

u t
ft u + gt

]t

=

[

1 g
0 −f

]

where u(u + gt) − ft2 = 1. Furthermore,

y

[

1 0
g −1

] [

1 g
0 −f

] [

1 o
g −1

]t

yt = y

[

1 g
0 −f

]t

yt

= y

[

1 g
0 −f

]

yt.

Since the quadric has constant back half, we see that the mappings by elements
of K+ of determinant 1 of the first type occur as homology groups of each translation
plane obtained from the hyperbolic fibration, each of whose orbits define reguli. If
y = xNi for i ∈ τ is a regulus of some hyperbolic fibration in some spread, then
since we now have a homology group acting on the spread, it follows that

{y = xNi for i ∈ τ} =

{

y = xMi

[

u t
ft u + gt

]

; u(u + gt) − ft2 = 1

}

,

for i ∈ ρ, where ρ is an appropriate index set.
We have noted previously that

{

y = xMi

[

1 0
g −1

] [

u t
ft u + gt

]

; u(u + gt) − ft2 = 1

}

is the associated opposite regulus and that the mapping ρ will interchange the
regulus and the opposite regulus. Note that ρ is just the matrix version of xσ.

Now let k be an element of ΓL(4, K) that fixes each hyperbolic quadric of H
and acts trivially on the front half of each quadric. Thus, we may represent k in the
form

k : (x, y) → (x, yτQ),

where τ is an automorphism of the field K+ coordinatizing Σ and Q is a non-zero
element of K+. We will see that if Qσ+1 = 1 or τ = σ, the unique involution in
GalKK+, then k certainly satisfies the conditions. However, we see that we must
have

yτQ

[

1 g
0 −f

]

Qtyτt = y

[

1 g
0 −f

]

yt ∀ y ∈ K+.

Now we note that k will fix each hyperbolic quadric of H. We also know that the
mapping (x, y) → (x, yσ) interchanges the regulus with its opposite regulus in each
such quadric. Suppose that k fixes all reguli of the hyperbolic quadrics. Then k
will be a collineation of each spread corresponding. This means that since y = 0 is
fixed pointwise, the element k is an affine homology of any of the spreads. But this
means that k is in GL(4, K), when acting on the spread. This, in turn, implies that
τ is 1 or σ. But, if τ = σ, k does not act on a spread as a collineation. But then

Q

[

1 g
0 −f

]

Qt =

[

a b
c d

]

. If τ = 1, an easy calculation shows that a = 1, d = −f
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and b + c = g. Working out the form of Q

[

1 g
0 −f

]

Qt shows that the element a

is the determinant of Q. Hence, if τ = 1, we obtain the det 1 group; i.e., Qσ+1 = 1.
So, we may assume that k does not fix all reguli of each quadric. If k fixes

one regulus of a quadric, then g is a collineation group of an associated Pappian
spread defined by the regulus and x = 0 and y = 0. The above remarks show
that τ is still one in this setting. Thus, we may assume that k interchanges each
regulus and opposite regulus of each hyperbolic quadric. If we follow the mapping
(x, y) → (x, yσ) by k, it follows that Qσ+1 = 1. But, then it also now is immediate
that τ = σ or 1. This proves the theorem. �

In the finite case, we may improve this as follows:

Theorem 7. Let π be a translation plane with spread in PG(3, q). Assume that π
admits a cyclic affine homology group of order q + 1.

Then π produces a regular hyperbolic fibration with constant back half.

Proof. By Jha and Johnson [6], any orbit of components Γ is a derivable net sitting in
a Desarguesian spread Σ also containing x = 0, y = 0. This is a unique Desarguesian
spread so the group H acts as a group of the Desarguesian spread. Let K∗ denote
the kernel homology group of π. Then, K∗ fixes each component of the derivable
net and x = 0, y = 0. It follows easily that K∗ is a collineation group of Σ that
fixes at least q + 3 components. Clearly, this means that K∗ fixes all components of
Σ, as Σ is Desarguesian and K∗ then sits in ΓL(2, q2). So K∗ is a kernel homology
group of Σ. But this means that Σ is coordinatized by a field extension of the kernel
K isomorphic to GF (q). Hence, Γ is a regulus in PG(3, K) and our more general
result applies. �

Now since a regular hyperbolic fibration with constant back half produces trans-
lation planes with spreads in PG(3, q) admitting cyclic affine homology groups of
order q + 1, we obtain the following corollary.

Corollary 1. Finite regular hyperbolic fibrations with constant back half are equiva-
lent to translation planes with spreads in PG(3, q) that admit cyclic homology groups
of order q + 1.

3 Det K+-Partial Flocks of Quadratic Cones.

We now consider more completely the forms of the quadrics associated with trans-
lation planes admitting a homology group as above.

3.1 The Forms:

Let π be a translation plane with spread in PG(3, K) that produces a hyperbolic
fibration with carriers x = 0, y = 0. Represent the spread of π as follows:

x = 0, y = 0, y = x

[

u t
F (u, t) G(u, t)

]

; u, t ∈ K,
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for functions F and G on K × K to K.

Let δu,t = det

[

u t
F (u, t) G(u, t)

]

. We may assume that when u(u+gt)−ft2 = 1

then F (u, t) = ft and G(u, t) = u + gt. We now compute

V

(

xMi

[

1 g
0 −f

]

M t
i x

t − y

[

1 g
0 −f

]

yt

)

.

The operand

xMi

[

1 g
0 −f

]

M t
i x

t − y

[

1 g
0 −f

]

yt

for Mi =

[

u t
F (u, t) G(u, t)

]

is easily calculated as follows:

x

[

u2 + (ug − tf)t = δu,t uF (u, t) + (ug − tf)G(u, t)
F (u, t)u + (gF (u, t)− fG(u, t))t F (u, t)2 + (gF (u, t) − fG(u, t))G(u, t)

]

xt

− y

[

1 g
0 −f

]

yt.

We first show that the (2, 2)-entry in the front half of the quadric is a function
of δu,t. If not, consider y = xMi, corresponding to δu,t, and y = xMj , corresponding
to δu∗,t∗ , and assume that the corresponding (2, 2)-elements are equal in both front
halves. Then let x = (0, x2), and realize that then (0, x2, (0, x2)Mi) is on the δu,t-
quadric and (0, x2, (0, x2)Mj) is on the δu∗,t∗-quadric. This implies that

((0, x2)Mi)

[

1 g
0 −f

]

((0, x2)Mi)
t = ((0, x2)Mj)

[

1 g
0 −f

]

((0, x2)Mj)
t.

But this means that (0, x2, (0, x2)Mi) is on both quadrics, a contradiction. Hence,
this says that δu,t is a function of the (2, 2)-entry, and since the argument is es-
sentially symmetric, we have that the (2, 2)-entry is a function of the (1, 1)-entry,
say F(δu,t). Similarly, if the sum of the (1, 2)- and the (2, 1)-entries of the front
half is not a function of δu,t then there would be two distinct sums for a given
δu,t. But this again would say that (x1, 0, (x1, 0)Mi) would be in two quadrics.
Hence, the sum of the (1, 2)- and (2, 1)-elements is a function of δu,t, say G(δu,t).
Consider a corresponding translation plane with components y = xM and y =
xN . Notice that the (2, 2)-element of the previous matrix for the front half is

det

[

F (u, t) G(u, t)
fG(u, t) F (u, t) + gG(u, t)

]

.

Hence, we obtain the next result, noting that the mapping from K+ to K,
mapping k in K+ to det k in K may not be onto.

We now prove the results on associated partial flocks of quadratic cones, the
union of which is stated in the introduction.
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Theorem 8. A regular hyperbolic fibration with constant back half in PG(3, K), K
a field, with carrier lines x = 0, y = 0, may be represented as follows:

V

(

x

[

δ G(δ)
0 −F(δ)

]

xt − y

[

1 g
0 −f

]

yt

)

for all δ in det K+ =







[

u t
ft u + gt

]σ+1

; u, t ∈ K, (u, t) 6= (0, 0)







,

where






[

δ G(δ)
0 −F(δ)

]

; δ ∈







[

u t
ft u + gt

]σ+1

; u, t ∈ K, (u, t) 6= (0, 0)













∪

{[

0 0
0 0

]}

corresponds to a partial flock of a quadratic cone in PG(3, K), and where F and G
are functions on det K+.

Proof. Let λ be a subset of K such that for each t in K −{0}, the function φs(t) =
s2t+sG(t)−F(t) is injective for each element s in K. Then there is a corresponding
partial flock of a quadratic cone in PG(3, K). (See, e.g., Johnson and Lin [8]). The
partial flock is a flock if and only φs(t) is bijective for all s in K. For λ = {det K+},
assume that φs(t) is not injective for some element s, so assume that φs(t) = φs(t

∗),
for t 6= t∗. Then, consider (s, 1, y1, y2), where y = (y1, y2) and this point is on the
hyperbolic quadric corresponding to t. It is easy to check that this point would also
be on the hyperbolic quadric corresponding to t∗, a contradiction.

This, combined with our previous comments, proves everything in part (1), with
the exception of the surjectivity of the functions φs on det K+. We note that

y

[

1 g
0 −f

]

yt maps y = (y1, y2) onto det

[

y1 y2

fy2 y1 + gy2

]

. Hence, the functions

listed must be surjective on det K+ in order that the hyperbolic fibration cover
PG(3, K). �

Our preliminary remarks prove the following theorem:

Theorem 9. The correspondence between any spread π in PG(3, K) corresponding
to the hyperbolic fibration and the partial flock of a quadratic cone in PG(3, K) is
as follows:

If π is

x = 0, y = 0, y = x

[

u t
F (u, t) G(u, t)

]

then the partial flock is given by

[

δu,t G(δu,t)
0 −F(δu,t)

]

with

δu,t = det

[

u t
ft u + gt

]

,

G(δu,t) = g(uG(u, t) + tF (u, t)) + 2(uF (u, t)− tfG(u, t)),

−F(δu,t) = δF (u,t),G(u,t),
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where

δF (u,t),G(u,t) = det

[

F (u, t) G(u, t)
fG(u, t) F (u, t) + gG(u, t)

]

∈ det K+.

Theorem 10. If we have a hyperbolic fibration in PG(3, K), there are corresponding
functions given in the previous theorem such that the corresponding functions

φs(t) = s2t + sG(t) − F(t)

are injective for all s in K and for all t ∈ det K+.
Indeed, the functions restricted to det K+ are surjective on det K+.

We now consider the converse.

Theorem 11. Any partial flock of a quadratic cone in PG(3, K), with defining set λ
(i.e., so t ranges over λ and planes of the partial flock are defined via functions in t)
equal to det K+, whose associated functions on det K+, as above, are surjective on
det K+ (K+ some quadratic extension of K), produces a regular hyperbolic fibration
in PG(3, K) with constant back half.

Proof. We have a partial flock of a quadratic cone, indexed by det K+, for some
quadratic extension of K, where the functions φs are injective and surjective on
det K+. Use K+ to define the elements f and g as above. For any given function
y = xMi, disjoint from x = 0, y = 0, we know that

xMi

[

1 g
0 −f

]

M t
i x

t = x

[

δu,t G(δu,t)
0 −F(δu,t)

]

xt,

where F and G and the functions defined in the previous theorem, for some elements
u, t. Construct a partial spread from y = xMi by applying the mappings (x, y) →
(x, yQ), where Qσ+1 = 1, Q in K+. It will then follow that this is a regulus and
its opposite regulus defines a hyperbolic quadric, whose polarity interchanges x = 0
and y = 0.

We claim that, in this way, we obtain a spread and hence a hyperbolic fibration.
Consider any point not on x = 0, y = 0. We may always start with the Pappian
spread Σ coordinatized by K+ and choose x = 0, y = 0, y = x in Σ to begin the
process.

Each element t ∈ det K+, defines a hyperbolic quadric of the form

Vt = V (x2
1t + x1x2G(t) − x2

2F(t) − (y2
1 + y1y2g − fy2

2)),

where F(1) = f and G(1) = g.

and one regulus R1 together with x = 0, y = 0 define a unique Pappian spread Σ
admitting K+, as above, as a coordinatizing field. Suppose that a point (xo, yo)
lies in Vt and Vt∗ , for xo and yo both non-zero vectors. Then clearly t = t∗, as we
have a partial flock of a quadratic cone. It remains to show that we have a cover
of PG(3, K). Choosing any regulus for each quadric certainly produces a partial
spread. Furthermore, the partial spread admits the ‘homology’ group (x, y) →
(x, yQ), such that Qσ+1 = 1. If there is a 2-dimensional subspace disjoint from
this partial spread, we may write the subspace in the form y = xM , where M is a
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non-singular 2 × 2 matrix over K. We may then use this subspace to construct an
extension to the partial flock, also admitting the homology group but still indexed
by det K+, a contradiction. Hence, we have a maximal partial spread. Choose any
point (x1, x2, y1, y2) such that x2 6= 0. Note that y2

1 + y1y1g − fy2
2 = c is in det K+,

as is x2
2. Since the mappings φs are onto functions, there exists a unique t in det K+

such that (x1/x2)
2t + (x1/x2)G(t) − F(t) = c/x2

2. This means that, if x2 6= 0 then
(x1, x2, y1, y2) is covered by the det K+-set of hyperbolic quadrics. Now assume that
x2 = 0. Then x2

1t = c has a unique solution in det K+. Hence, this completes the
proof of the theorem. �

4 Homology Groups in GL(4, q).

Suppose that H is a homology group of order q+1 of a translation plane with spread
in PG(3, q). Let K∗ denote the kernel homology group of the plane. Then HK∗

fixes the axis and coaxis of the plane.

Lemma 11. If q is even then H is cyclic.

Proof. Under the stated condition, H ∩K∗ is trivial on a coaxis L, so HK∗ | L has
order q2−1 and induces a subgroup of PGL(2, q) by HK∗/K∗, which is isomorphic to
H . This subgroup contains no p-elements so must be a subgroup of a dihedral group
of order 2(q + 1) or isomorphic to A4, S4 or A5 (see, e.g., Huppert [5]). However,
since the order is odd, H must be cyclic of order q + 1. �

Lemma 12. Assume that q is odd and q ≡ 1 mod 4. Then H is cyclic.

Proof. Under the stated conditions, H ∩ K∗ | L, the coaxis of H , has order 2. So
(q+1)/2 is odd and > 2. Hence, HK∗/K∗ | L, has order (q+1)/2 and is a subgroup
of a dihedral group of order 2(q + 1) or isomorphic to A4, S4, A5. Since this is an
odd order subgroup, then HK∗/K∗ | L is cyclic of order (q + 1)/2. The Sylow
u-subgroups Su of odd order of H are cyclic and SuK

∗/K∗ and SvK
∗/K∗ are in a

unique cyclic subgroup. Hence, SuK
∗SvK

∗ = SuSvK
∗ is a subgroup of HK∗. But

this means that SuSvK
∗/K∗ ≃ SuSv is a cyclic subgroup of H . Hence, there is a

cyclic subgroup of H of odd order (q + 1)/2. Then there is a cyclic subgroup O(H)
of index two in H . There is a unique involution in H , which is normalized and hence
centralized by O(H), so H is cyclic. �

Lemma 13. Let π be a translation plane of order q2 admitting an Abelian homology
group H. Then H is cyclic.

Proof. The Sylow v-subgroups, for v odd, are cyclic (see p. 525 of Foundations [2]),
and for v even, are cyclic or generalized quaternion. Since H is Abelian, it is a direct
sum of its Sylow v-subgroups. Hence, H is cyclic. �
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Combining the above three lemmas with our main results, we have:

Corollary 2. Let π be a translation plane with spread in PG(3, q) that admits an
affine homology group H of order q + 1 in the translation complement. If any of the
following conditions hold, π constructs a regular hyperbolic fibration with constant
back half and hence a corresponding flock of a quadratic cone.

(1) q is even,
(2) q is odd and q ≡ 1 mod 4,
(3) H is Abelian,
(4) H is cyclic.

Remark 1. There are translation planes of order q2 = 72 with spread in PG(3, 7)
that admit quaternion homology groups of order q + 1 = 8, due to Heimbeck [4].

5 Final Remarks.

We have shown that it is possible to construct partial flocks of quadratic cones from
regular hyperbolic fibrations in PG(3, K), where K is an arbitrary field. Further-
more, we have shown that translation planes with spreads in PG(3, K), admitting
‘regulus-inducing’ homology groups produce regular hyperbolic fibrations. Given
two functions on K, f(t), g(t), form the functions φs : φs(t) = s2t + sg(t)− f(t). A
flock of a quadratic cone in PG(3, K) is obtained if and only if the function φs is
bijective for each s in K. Let K+ be a quadratic extension of K (required for the
construction of a flock) and let det K+ denote the set of determinants of elements
of K+, K+ written as a 2 × 2 matrix field over K. We have seen that there is a
corresponding regular hyperbolic fibration if and only if φs | det K+ is surjective on
det K+. Of course, this is trivially true in the finite case. We list this as an open
problem, in the general case.

Problem 1. Does every flock of a quadratic cone in PG(3, K), for K an infinite
field, produce a regular hyperbolic fibration?

We have not considered the collineation group of the translation planes corre-
sponding to regular hyperbolic fibrations. In particular, for finite translation planes,
we have a variety of open problems.

Problem 2. Let π be a translation plane with spread in PG(3, q) that admits a
cyclic affine homology group H of order q + 1.

(1) Is H normal in the full collineation group of π?
(2) Is the full collineation group of π a subgroup of the group of the corresponding

hyperbolic fibration?

We notice that there are Heimbeck planes of order 72 = q2 that admit quaternion
homology groups H of order 8 = q+1, where H is not normal in the full collineation
group of the plane. Hence, we may generalize the previous problem as follows

Problem 3. Let π be a translation plane with spread in PG(3, q) that admits at
least three affine homology groups of order q + 1. Completely classify the possible
planes.
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