Two-intersection sets with respect to lines on the Klein quadric

F. De Clerck N. De Feyter* N. Durante ${ }^{\dagger}$

Abstract

We construct new examples of sets of points on the Klein quadric $Q^{+}(5, q)$, q even, having exactly two intersection sizes 0 and α with lines on $Q^{+}(5, q)$. By the well-known Plücker correspondence, these examples yield new $(0, \alpha)$ geometries embedded in $\mathrm{PG}(3, q), q$ even.

1 Preliminaries

A $(0, \alpha)$-geometry $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a connected partial linear space of order (s, t) (i.e., every line is incident with $s+1$ points, while every point is incident with $t+1$ lines) such that for every anti-flag $\{p, L\}$ the number of lines through p and intersecting L is 0 or α. The concept of a ($0, \alpha$)-geometry, introduced by Debroey, De Clerck and Thas [5, 20], generalizes a lot of well-studied classes of geometries such as semipartial geometries [8], partial geometries [2] and generalized quadrangles [16].

A $(0, \alpha)$-geometry $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is fully embedded in $\operatorname{PG}(n, q)$ if \mathcal{L} is a set of lines of $\mathrm{PG}(n, q)$ not contained in a proper subspace and \mathcal{P} is the set of all points of $\mathrm{PG}(n, q)$ on the lines of \mathcal{S}. In [20] the $(0, \alpha)$-geometries ($\alpha>1$) fully embedded in $\operatorname{PG}(n, q), n>3, q>2$, are classified. For $\alpha=1$ as well as for the $(0, \alpha)$-geometries with $q=2$ a classification of the embeddings is out of reach as explained for instance in $[6,20]$. As for $\mathrm{PG}(3, q)$, in [5] it is proven that if \mathcal{S} is a $(0, \alpha)$-geometry $(\alpha>1)$ fully embedded in $\mathrm{PG}(3, q), q>2$, then every planar pencil of $\mathrm{PG}(3, q)$ (i.e., the

[^0]$q+1$ lines through a point in a plane) contains 0 or α lines of \mathcal{S}. Conversely one easily verifies that a set of lines of $\mathrm{PG}(3, q)$ which shares 0 or $\alpha(\alpha>1)$ lines with every pencil of $\mathrm{PG}(3, q)$ yields a $(0, \alpha)$-geometry fully embedded in $\mathrm{PG}(3, q)$.

We can use the well-known Plücker correspondence, in order to see the set of lines of the $(0, \alpha)$-geometry as a set of points on the Klein quadric $Q^{+}(5, q)$.

For the remainder of the paper we will always assume that $\alpha>1$ and $q>2$, and we may conclude that the following objects are equivalent.

- A $(0, \alpha)$-geometry fully embedded in $\operatorname{PG}(3, q)$.
- A set of lines of $\operatorname{PG}(3, q)$ sharing 0 or α lines with every pencil of $\operatorname{PG}(3, q)$.
- A set of points on the Klein quadric $Q^{+}(5, q)$ sharing 0 or α points with every line on $Q^{+}(5, q)$. We call such a set a $(0, \alpha)$-set on $Q^{+}(5, q)$.

A maximal arc of degree α in $\operatorname{PG}(2, q)$ is a set of points such that every line of $\mathrm{PG}(2, q)$ intersects it in 0 or α points. Examples of maximal arcs in $\operatorname{PG}\left(2,2^{h}\right)$ were first constructed by Denniston [10]. Examples of maximal arcs in PG $\left(2,2^{h}\right)$ which are not of Denniston type were constructed by Thas $[18,19]$ and by Mathon [15]. Ball, Blokhuis and Mazzocca [1] proved that maximal arcs of degree $1<\alpha<q$ in $\operatorname{PG}(2, q)$ do not exist if q is odd.

Let \mathcal{K} be a $(0, \alpha)$-set on $Q^{+}(5, q)$. Clearly every plane on $Q^{+}(5, q)$ is either disjoint from \mathcal{K} or intersects \mathcal{K} in a maximal arc of degree α. Consider the $(0, \alpha)$ geometry $\mathcal{S}=(\mathcal{P}, \mathcal{L}$, I $)$, fully embedded in $\mathrm{PG}(3, q)$, which corresponds to \mathcal{K}. Then every plane of $\operatorname{PG}(3, q)$ contains either no line of \mathcal{S} or $q \alpha-q+\alpha$ lines of \mathcal{S} which constitute a dual maximal arc of degree α. Similarly through every point p of $\mathrm{PG}(3, q)$ there are either 0 lines of \mathcal{S} or $q \alpha-q+\alpha$ lines of \mathcal{S} which intersect a plane not containing p in a maximal arc of degree α. Let π be a plane of $\operatorname{PG}(3, q)$ containing $q \alpha-q+\alpha$ lines of \mathcal{S}, and let d be such that π contains $q^{2}+q+1-d$ points of \mathcal{S}. Then counting the lines of \mathcal{S} by their intersection with π we get that $|\mathcal{L}|=|\mathcal{K}|=(q \alpha-q+\alpha)\left(q^{2}+1-d\right)$. We call d the deficiency of the $(0, \alpha)$-geometry \mathcal{S} and of the $(0, \alpha)$-set \mathcal{K}.

In this paper we will give an overview of the known examples so far and we will give new examples, α being any proper divisor of q, q even.

2 The known examples

It is clear that the design of all points and lines of $\operatorname{PG}(3, q)$ is the only $(0, q+1)$ geometry fully embedded in $\operatorname{PG}(3, q)$.

On the other hand let \mathcal{S} be a $(0, q)$-geometry fully embedded in $\mathrm{PG}(3, q)$ and let Π be the set of planes containing at least two lines of \mathcal{S}. Then for every plane $\pi \in \Pi$, the incidence structure of points and lines of \mathcal{S} in π is a dual affine plane, while the incidence structure with point set the set of lines of \mathcal{S} through a fixed point p of \mathcal{S} and with line set the set of planes of Π through p is an affine plane. These geometries are classified, there are two non-isomorphic examples, see for instance $[9,13,14]$. Here we summarize the result in the terminology of a $(0, q)$-set on the Klein quadric $Q^{+}(5, q)$.

Theorem 2.1. The points of $Q^{+}(5, q)$ not on a hyperplane U of $\operatorname{PG}(5, q), q>2$, are the only $(0, q)$-sets on $Q^{+}(5, q)$. If U is a tangent hyperplane, then the deficiency is 1 . If U is a secant hyperplane then the deficiency is 0 .

Remark

For the $(0, q)$-set of deficiency 1 the corresponding $(0, q)$-geometry in $\operatorname{PG}(3, q)$ is the well known dual net denoted by H_{q}^{3}. For the $(0, q)$-set of deficiency 0 the corresponding $(0, q)$-geometry in $\mathrm{PG}(3, q)$ is the semipartial geometry denoted by $W(3, q)$. For a detailed description of both examples as $(0, q)$-geometries embedded in $\operatorname{PG}(3, q)$ we refer for instance to [6].

In [1] it is proved that in desarguesian planes of order q, q odd, maximal arcs of degree $\alpha, 1<\alpha<q$, do not exist. Hence we can conclude that if q is odd, no other $(0, \alpha)$-set, $\alpha>1$, on the Klein quadric $Q^{+}(5, q)$ exists. Hence, for other examples we may restrict ourselves to the case q even, $1<\alpha<q$.

Here is an other example. The points of $Q^{+}(5, q), q$ even, corresponding to the external lines of a nonsingular hyperbolic quadric in $\mathrm{PG}(3, q)$ form a $(0, \alpha)$-set on $Q^{+}(5, q)$ with $\alpha=q / 2$ and deficiency $q+1$. The corresponding $(0, q / 2)$-geometry is denoted by $\mathrm{NQ}^{+}(3, q)$.

It was conjectured in [5] that $H_{q}^{3}, \overline{W(3, q)}$ and $\mathrm{NQ}^{+}(3, q)$ are the only $(0, \alpha)$ geometries, with $\alpha>1$, fully embedded in $\mathrm{PG}(3, q), q>2$. This conjecture is false as will be clear from the remainder of the paper.

A first counterexample has been given by Ebert, Metsch and Szőnyi [11]. A k-cap in $\operatorname{PG}(n, q)$ is a set of k points, no three on a line. It is called maximal if it is not contained in a larger cap. Quite some research has been done on caps in $\operatorname{PG}(5, q)$ that are contained in the Klein quadric $Q^{+}(5, q)$. Since the maximum size of a cap in $\operatorname{PG}(2, q)$ is $q+1$ if q is odd and $q+2$ if q is even, a cap in $Q^{+}(5, q)$ has size at most $(q+1)\left(q^{2}+1\right)$ if q is odd and at most $(q+2)\left(q^{2}+1\right)$ if q is even. Glynn [12] constructs a cap of size $(q+1)\left(q^{2}+1\right)$ in $Q^{+}(5, q)$ for any prime power q (see also [17]). Ebert, Metsch and Szőnyi construct caps of size $q^{3}+2 q^{2}+1=(q+2)\left(q^{2}+1\right)-q-1$ in $Q^{+}(5, q)$ for q even. They show that a cap in $Q^{+}(5, q), q$ even, of size $q^{3}+2 q^{2}+1$ is either maximal in $Q^{+}(5, q)$ and is then a $(0,2)$-set of deficiency 1 together with one extra point, or it is contained in a cap of size $(q+2)\left(q^{2}+1\right)$. One easily verifies that caps of size $(q+2)\left(q^{2}+1\right)$ in $Q^{+}(5, q), q$ even, and (0,2)-sets of deficiency 0 are equivalent. A cap of size $(q+2)\left(q^{2}+1\right)$ is only known to exist for $q=2$.

The construction of Ebert, Metsch and Szőnyi is as follows. Let Σ be a 3 -space intersecting $Q^{+}(5, q)$ in a nonsingular elliptic quadric E. Let $L=\Sigma^{\beta}$ where β is the symplectic polarity associated with $Q^{+}(5, q)$. Then the line L is external to $Q^{+}(5, q)$. Consider an ovoid O in Σ which has the same set of tangent lines as E. Let \mathcal{K} be the intersection of $Q^{+}(5, q)$ with the cone with vertex L and base $E \cup O$. Then \mathcal{K} is a cap of size $(q+1)|O \backslash E|+q^{2}+1$ which is maximal in $Q^{+}(5, q)$ [11], and $\mathcal{K} \backslash(E \cap O)$ is a $(0,2)$-set in $Q^{+}(5, q)$ of deficiency $|E \cap O|$.

We have the following possibilities for O. The ovoid O can be an elliptic quadric. Then E and O intersect in either one point or $q+1$ points which form a conic in a plane of Σ (Types $1(\mathrm{i})$ and $3(\mathrm{~g})(\mathrm{ii})$ in Table 2 of [3]). We will denote the corresponding $(0,2)$-set by \mathcal{E}_{1} if $|E \cap O|=1$ and by \mathcal{E}_{q+1} if $|E \cap O|=q+1$. On
the other hand when q is an odd power of 2 the ovoid O can be a Suzuki-Tits ovoid. Then E and O intersect in $q \pm \sqrt{2 q}+1$ points and both intersection sizes do occur [7]. We will denote the corresponding $(0,2)$-set by $\mathcal{T}_{q-\sqrt{2 q}+1}$ if $|E \cap O|=q-\sqrt{2 q}+1$ and by $\mathcal{T}_{q+\sqrt{2 q}+1}$ if $|E \cap O|=q+\sqrt{2 q}+1$.

3 Unions of elliptic quadrics

Consider a $(0,2)$-set $\mathcal{K} \in\left\{\mathcal{E}_{1}, \mathcal{E}_{q+1}\right\}$ in $Q^{+}(5, q), q=2^{h}$. Let Π be a hyperplane containing Σ and let $p=\Pi \cap L$, where $L=\Sigma^{\beta}$. Then Π intersects $Q^{+}(5, q)$ in a nonsingular parabolic quadric $Q(4, q)$ with nucleus p. Since \mathcal{K} is the intersection of $Q^{+}(5, q)$ with the cone with vertex L and base the symmetric difference $E \triangle O$ we find that $\mathcal{K} \cap \Pi$ is the intersection of $Q(4, q)$ with the cone with vertex p and base $E \triangle O$.

The projection of $Q(4, q)$ from p on Σ yields an isomorphism from the classical generalized quadrangle $Q(4, q)$ to the classical generalized quadrangle $W(q)$ consisting of the points of Σ and the lines of Σ that are tangent to E. This isomorphism induces a bijection from the set of ovoids of $Q(4, q)$ to the set of ovoids of $W(q)$. Since the ovoid O has the same set of tangent lines as E, it is an ovoid of the generalized quadrangle $W(q)$. Hence O is the projection from p on Σ of an ovoid \bar{O} of $Q(4, q)$. So $\mathcal{K} \cap \Pi$ is the symmetric difference $E \triangle \bar{O}$. Since O is a nonsingular elliptic quadric in Σ, \bar{O} is a nonsingular elliptic quadric in a 3 -space $\bar{\Sigma} \subseteq \Pi$. Now Σ and $\bar{\Sigma}$ intersect in a plane $\bar{\pi}$ and we may also write $\mathcal{K} \cap \Pi=Q(4, q) \cap(\Sigma \cup \bar{\Sigma}) \backslash \bar{\pi}$.

From the definition of \mathcal{E}_{1} and \mathcal{E}_{q+1} it follows that there is exactly one plane $\pi \subseteq \Sigma$ such that $\pi \cap Q(4, q)=E \cap O$. Indeed, if $\mathcal{K}=\mathcal{E}_{1}$ then E and O intersect in exactly one point and π is the unique tangent plane in Σ to E at this point. If $\mathcal{K}=\mathcal{E}_{q+1}$ then E and O intersect in a nondegenerate conic and π is the ambient plane of this conic. We prove that $\bar{\pi}=\pi$. Since O is the projection of \bar{O} from p on $\Sigma, E \cap \bar{O}=E \cap O$. Since $\bar{O}=\bar{\Sigma} \cap Q(4, q), \bar{\pi} \cap Q(4, q)=\Sigma \cap \bar{\Sigma} \cap Q(4, q)=\Sigma \cap \bar{O}=E \cap \bar{O}=E \cap O$. So $\bar{\pi}$ is a plane in Σ such that $\bar{\pi} \cap Q(4, q)=E \cap O$. This means that $\bar{\pi}=\pi$.

So $\mathcal{K} \cap \Pi$ is the symmetric difference of elliptic quadrics E and \bar{O} on $Q(4, q)$ with ambient 3 -spaces Σ and $\bar{\Sigma}$ intersecting in the plane π. Since this holds for all hyperplanes Π containing Σ we conclude that there exist 3 -spaces $\Sigma_{0}=\Sigma, \Sigma_{1}, \ldots, \Sigma_{q+1}$ mutually intersecting in the plane π, such that each intersects $Q^{+}(5, q)$ in an elliptic quadric and such that

$$
\mathcal{K}=Q^{+}(5, q) \cap\left(\Sigma_{0} \cup \Sigma_{1} \cup \ldots \cup \Sigma_{q+1}\right) \backslash \pi .
$$

What remains to be verified is the position of the 3 -spaces Σ_{i}. Consider a plane π^{\prime} spanned by L and a point $r \in O \backslash E$. One verifies in the respective cases $\mathcal{K}=\mathcal{E}_{1}$ and $\mathcal{K}=\mathcal{E}_{q+1}$ that $\pi \cap O=\pi \cap E=E \cap O$, so $r \notin \pi$. Hence π^{\prime} is skew to π. We determine the points of intersection of $\Sigma_{i}, i=0, \ldots, q+1$, with π^{\prime}. Clearly $\Sigma_{0} \cap \pi^{\prime}=\Sigma \cap \pi^{\prime}=r$. Let $i \in\{1, \ldots, q+1\}$ and let $p_{i} \in L$ be such that $\Sigma_{i} \subseteq\left\langle p_{i}, \Sigma\right\rangle$. Let r_{i} be the unique point of $Q^{+}(5, q)$ on the line $\left\langle p_{i}, r\right\rangle$. Since $r \in O \backslash E, r_{i}$ is a point of \mathcal{K} and hence of Σ_{i}. But also $r_{i} \in \pi^{\prime}$, so $\Sigma_{i} \cap \pi^{\prime}=r_{i}$. Repeating this reasoning for all points p_{i} on L we see that the 3 -spaces $\Sigma_{i}, i=1, \ldots, q+1$, intersect π^{\prime} in the points of the nondegenerate conic $C^{\prime}=\pi^{\prime} \cap Q^{+}(5, q)$ and that Σ intersects π^{\prime} in the point r which is the nucleus of the conic C^{\prime}. We have now proven the following theorem which completely determines the structure of the $(0,2)$-sets \mathcal{E}_{1} and \mathcal{E}_{q+1}.

Theorem 3.1. Let $\mathcal{K} \in\left\{\mathcal{E}_{1}, \mathcal{E}_{q+1}\right\}$ and let π be the unique plane in Σ such that $\pi \cap Q^{+}(5, q)=E \cap O$. Then

$$
\mathcal{K}=\left(E \cup O_{1} \cup \ldots \cup O_{q+1}\right) \backslash \pi,
$$

where $O_{i}, 1 \leq i \leq q+1$, is a nonsingular 3-dimensional elliptic quadric on $Q^{+}(5, q)$ such that its ambient space Σ_{i} intersects Σ in the plane π. In particular the 3-spaces $\Sigma_{1}, \ldots, \Sigma_{q+1}$ intersect each plane $\pi^{\prime}=\langle r, L\rangle$ with $L=\Sigma^{\beta}$ and $r \in O \backslash E$ in the points of the nondegenerate conic $C^{\prime}=\pi^{\prime} \cap Q^{+}(5, q)$, while Σ intersects π^{\prime} in the nucleus r of the conic C^{\prime}.

Remark

We can apply the same reasoning to the (0,2)-sets $\mathcal{T}_{q \pm \sqrt{2 q}+1}$. We find then that $\mathcal{T}_{q \pm \sqrt{2 q}+1}$ can be written as

$$
\left(E \cup O_{1} \cup \ldots \cup O_{q+1}\right) \backslash(E \cap O)
$$

where O_{1}, \ldots, O_{q+1} are Suzuki-Tits ovoids in the hyperplanes containing Σ, such that for every $p_{i} \in L=\Sigma^{\beta}$, there is exactly one $O_{i} \subseteq\left\langle p_{i}, \Sigma\right\rangle$, and then O is the projection of O_{i} from p_{i} on Σ. However this was already known [4].

4 A new construction

The following construction is inspired by Theorem 3.1. Let π be a plane of $\operatorname{PG}(5, q)$, $q=2^{h}$, which does not contain any line of $Q^{+}(5, q)$ and let π^{\prime} be a plane skew to π. Let \mathcal{D} denote the set of points $p \in \pi^{\prime}$ such that $\langle p, \pi\rangle$ intersects $Q^{+}(5, q)$ in a nonsingular elliptic quadric, and suppose that A is a maximal arc of degree α in π^{\prime} such that $A \subseteq \mathcal{D}$. Then we define the set $\mathcal{M}^{\alpha}(A)$ to be the intersection of $Q^{+}(5, q)$ with the cone with vertex π and base A, minus the points of $Q^{+}(5, q)$ in π.

Theorem 4.1. The set $\mathcal{M}^{\alpha}(A)$ is a $(0, \alpha)$-set on $Q^{+}(5, q)$.
Proof. Let L be a line on $Q^{+}(5, q)$ which intersects the plane π. Then the subspace $\Sigma=\langle L, \pi\rangle$ has dimension 3 and it contains a line of $Q^{+}(5, q)$. Hence $\Sigma \cap \pi^{\prime} \notin A$. So there are no points of $\mathcal{M}^{\alpha}(A)$ in Σ and hence also none on L.

Let L be a line on $Q^{+}(5, q)$ which is skew to π. A point p on L is in $\mathcal{M}^{\alpha}(A)$ if and only if $\langle p, \pi\rangle \cap \pi^{\prime} \in A$ if and only if the projection of p from π on π^{\prime} is a point of A. So if L^{\prime} is the projection of L from π on π^{\prime} then $\left|L \cap \mathcal{M}^{\alpha}(A)\right|=\left|L^{\prime} \cap A\right| \in\{0, \alpha\}$. So every line on $Q^{+}(5, q)$ intersects $\mathcal{M}^{\alpha}(A)$ in 0 or α points.

Since the plane π does not contain any line of $Q^{+}(5, q)$, there are two possibilities: either $\pi \cap Q^{+}(5, q)$ is a single point or it is a nondegenerate conic. In the former case the $(0, \alpha)$-set has deficiency 1 and it is denoted by $\mathcal{M}_{1}^{\alpha}(A)$. In the latter case the $(0, \alpha)$-set has deficiency $q+1$ and it is denoted by $\mathcal{M}_{q+1}^{\alpha}(A)$.

In order to prove that there do exist $(0, \alpha)$-sets of deficiency 1 and $q+1$ for every $\alpha \in\left\{2,2^{2}, \ldots, 2^{h-1}=q / 2\right\}$ we must show that the set \mathcal{D} in the plane π^{\prime} contains a maximal arc of degree α for every $\alpha \in\left\{2,2^{2}, \ldots, 2^{h-1}\right\}$, and this for both
the case where $\pi \cap Q^{+}(5, q)$ is a single point and the case where $\pi \cap Q^{+}(5, q)$ is a nondegenerate conic.

If $\pi \cap Q^{+}(5, q)$ is a single point p then \mathcal{D} is the set of points of π^{\prime} which are not on the line $\pi^{\prime} \cap T_{p}$, where T_{p} is the tangent hyperplane to $Q^{+}(5, q)$ at p. Clearly in this case the set \mathcal{D} contains a maximal arc of degree α for every $\alpha \in\left\{2,2^{2}, \ldots, 2^{h-1}\right\}$.

If $\pi \cap Q^{+}(5, q)$ is a nondegenerate conic then the plane π^{β} also intersects $Q^{+}(5, q)$ in a nondegenerate conic C. Furthermore β induces an anti-automorphism between the projective plane π^{β} and the projective plane having as points the 3 -spaces through π and as lines the hyperplanes through π. This anti-automorphism is such that a 3 -space containing π intersects $Q^{+}(5, q)$ in a nonsingular elliptic quadric if and only if the corresponding line of π^{β} is external to the conic C. Hence the set \mathcal{D} in the plane π^{\prime} is the dual of the set of external lines to a nondegenerate conic. It follows that \mathcal{D} is a Denniston type maximal arc [10] of degree $q / 2$, and hence that \mathcal{D} contains a maximal arc of degree α for every $\alpha \in\left\{2,2^{2}, \ldots, 2^{h-1}\right\}$. We have proven the following theorem.

Theorem 4.2. There exist $(0, \alpha)$-sets on $Q^{+}(5, q), q=2^{h}$, of deficiency 1 and $q+1$ for all $\alpha \in\left\{2,2^{2}, \ldots, 2^{h-1}\right\}$.

Corollary 4.3. There exist $(0, \alpha)$-geometries fully embedded in $\operatorname{PG}(3, q), q=2^{h}$, of deficiency 1 and $q+1$ for all $\alpha \in\left\{2,2^{2}, \ldots, 2^{h-1}\right\}$.

By Theorem 3.1 the $(0,2)$-set $\mathcal{E}_{d}, d=1, q+1$, is of the form $\mathcal{M}_{d}^{2}(H)$ with H a regular hyperoval. Let \mathcal{K} be the $(0, q / 2)$-set corresponding to the $(0, q / 2)$-geometry $\mathrm{NQ}^{+}(3, q), q$ even. Then \mathcal{K} corresponds to the set of external lines to a nonsingular hyperbolic quadric $Q^{+}(3, q)$ in $\operatorname{PG}(3, q)$. Let C be the set of points of $Q^{+}(5, q)$ corresponding to one of the two reguli of lines contained in $Q^{+}(3, q)$. Then C is a nondegenerate conic in a plane π, and \mathcal{K} is the set of all points of $Q^{+}(5, q)$ which are not collinear in $Q^{+}(5, q)$ with any of the points of C. So a point p of $Q^{+}(5, q)$ is in \mathcal{K} if and only if $p \notin \pi$ and $\langle p, \pi\rangle$ intersects $Q^{+}(5, q)$ in a nondegenerate elliptic quadric. Hence $\mathrm{NQ}^{+}(3, q)$ corresponds to the $(0, q / 2)$-set $\mathcal{M}_{q+1}^{q / 2}(\mathcal{D})$.

We conclude this paper with a list of all the known distinct examples of $(0, \alpha)$ sets \mathcal{K} in $Q^{+}(5, q), \alpha>1, q>2$. In this list d is the deficiency of the $(0, \alpha)$-set \mathcal{K}.

- $\alpha=q+1, d=0$, and \mathcal{K} is the set of all points of $Q^{+}(5, q)$.
- $\alpha=q, d=0$, and \mathcal{K} corresponds to $\overline{W(3, q)}$.
- $\alpha=q, d=1$, and \mathcal{K} corresponds to H_{q}^{3}.
- $q=2^{h}, \alpha \in\left\{2,2^{2}, \ldots, 2^{h-1}\right\}, d \in\{1, q+1\}$ and $\mathcal{K}=\mathcal{M}_{d}^{\alpha}(A)$.
- $q=2^{2 h+1}, \alpha=2, d=q \pm \sqrt{2 q}+1$, and $\mathcal{K}=\mathcal{T}_{q \pm \sqrt{2 q}+1}$.

References

[1] S. Ball, A. Blokhuis, and F. Mazzocca. Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica, 17(1):31-41, 1997.
[2] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math., 13:389-419, 1963.
[3] A. A. Bruen and J. W. P. Hirschfeld. Intersections in projective space. II. Pencils of quadrics. European J. Combin., 9(3):255-270, 1988.
[4] A. Cossidente. Caps embedded in the Klein quadric. Bull. Belg. Math. Soc. Simon Stevin, 7(1):13-19, 2000.
[5] F. De Clerck and J. A. Thas. The embedding of $(0, \alpha)$-geometries in $\operatorname{PG}(n, q)$. I. In Combinatorics ' 81 (Rome, 1981), volume 78 of North-Holland Math. Stud., pages 229-240. North-Holland, Amsterdam, 1983.
[6] F. De Clerck and H. Van Maldeghem. Some classes of rank 2 geometries. In Handbook of Incidence Geometry, pages 433-475. North-Holland, Amsterdam, 1995.
[7] V. De Smet and H. Van Maldeghem. Intersections of Hermitian and Ree ovoids in the generalized hexagon $H(q)$. J. Combin. Des., 4(1):71-81, 1996.
[8] I. Debroey and J. A. Thas. On semipartial geometries. J. Combin. Theory Ser. A, 25(3):242-250, 1978.
[9] A. Del Fra and D. Ghinelli. $A f^{*} . A f$ geometries, the Klein quadric and \mathcal{H}_{q}^{n}. Discrete Math., 129(1-3):53-74, 1994. Linear spaces (Capri, 1991).
[10] R. H. F. Denniston. Some maximal arcs in finite projective planes. J. Combinatorial Theory, 6:317-319, 1969.
[11] G. L. Ebert, K. Metsch, and T. Szőnyi. Caps embedded in Grassmannians. Geom. Dedicata, 70(2):181-196, 1998.
[12] D. G. Glynn. On a set of lines of $\mathrm{PG}(3, q)$ corresponding to a maximal cap contained in the Klein quadric of $\operatorname{PG}(5, q)$. Geom. Dedicata, 26(3):273-280, 1988.
[13] M. P. Hale, Jr. Finite geometries which contain dual affine planes. J. Combin. Theory Ser. A, 22(1):83-91, 1977.
[14] J. I. Hall. Classifying copolar spaces and graphs. Quart. J. Math. Oxford Ser. (2), 33(132):421-449, 1982.
[15] R. Mathon. New maximal arcs in Desarguesian planes. J. Combin. Theory Ser. A, 97(2):353-368, 2002.
[16] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.
[17] L. Storme. On the largest caps contained in the Klein quadric of $\operatorname{PG}(5, q), q$ odd. J. Combin. Theory Ser. A, 87(2):357-378, 1999.
[18] J. A. Thas. Construction of maximal arcs and partial geometries. Geometriae Dedicata, 3:61-64, 1974.
[19] J. A. Thas. Construction of maximal arcs and dual ovals in translation planes. European J. Combin., 1(2):189-192, 1980.
[20] J. A. Thas, I. Debroey, and F. De Clerck. The embedding of ($0, \alpha$)-geometries in PG(n, q). II. Discrete Math., 51(3):283-292, 1984.

Frank De Clerck; Nikias De Feyter
Department of Pure Mathematics and Computer Algebra
Ghent University
Krijgslaan 281-S22
B-9000 Gent
Belgium
E-mail: fdc@cage.UGent.be; ndfeyter@cage.UGent.be
Nicola Durante
Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Università di Napoli "Federico II"
Complesso M. S. Angelo, Ed.T
Via Cintia
I-80126 Napoli
Italy
E-mail: ndurante@unina.it

[^0]: *This research was supported by a BOF ("Bijzonder Onderzoeksfonds") grant at Ghent University.
 ${ }^{\dagger}$ This author acknowledges support from the project "Strutture geometriche, Combinatoria e loro applicazioni" of the Italian M.U.R.S.T.

