
Two-intersection sets with respect to lines on

the Klein quadric

F. De Clerck N. De Feyter∗ N. Durante†

Abstract

We construct new examples of sets of points on the Klein quadric Q+(5, q),
q even, having exactly two intersection sizes 0 and α with lines on Q+(5, q).
By the well-known Plücker correspondence, these examples yield new (0, α)-
geometries embedded in PG(3, q), q even.

1 Preliminaries

A (0, α)-geometry S = (P,L, I ) is a connected partial linear space of order (s, t)
(i.e., every line is incident with s + 1 points, while every point is incident with
t + 1 lines) such that for every anti-flag {p, L} the number of lines through p and
intersecting L is 0 or α. The concept of a (0, α)-geometry, introduced by Debroey,
De Clerck and Thas [5, 20], generalizes a lot of well-studied classes of geometries
such as semipartial geometries [8], partial geometries [2] and generalized quadrangles
[16].

A (0, α)-geometry S = (P,L, I ) is fully embedded in PG(n, q) if L is a set of
lines of PG(n, q) not contained in a proper subspace and P is the set of all points of
PG(n, q) on the lines of S. In [20] the (0, α)-geometries (α > 1) fully embedded in
PG(n, q), n > 3, q > 2, are classified. For α = 1 as well as for the (0, α)-geometries
with q = 2 a classification of the embeddings is out of reach as explained for instance
in [6, 20]. As for PG(3, q), in [5] it is proven that if S is a (0, α)-geometry (α > 1)
fully embedded in PG(3, q), q > 2, then every planar pencil of PG(3, q) (i.e., the

∗This research was supported by a BOF (”Bijzonder Onderzoeksfonds”) grant at Ghent Uni-
versity.

†This author acknowledges support from the project ”Strutture geometriche, Combinatoria e
loro applicazioni” of the Italian M.U.R.S.T.

Bull. Belg. Math. Soc. 12 (2005), 743–750



744 F. De Clerck – N. De Feyter – N. Durante

q + 1 lines through a point in a plane) contains 0 or α lines of S. Conversely one
easily verifies that a set of lines of PG(3, q) which shares 0 or α (α > 1) lines with
every pencil of PG(3, q) yields a (0, α)-geometry fully embedded in PG(3, q).

We can use the well-known Plücker correspondence, in order to see the set of
lines of the (0, α)-geometry as a set of points on the Klein quadric Q+(5, q).

For the remainder of the paper we will always assume that α > 1 and q > 2, and
we may conclude that the following objects are equivalent.

• A (0, α)-geometry fully embedded in PG(3, q).

• A set of lines of PG(3, q) sharing 0 or α lines with every pencil of PG(3, q).

• A set of points on the Klein quadric Q+(5, q) sharing 0 or α points with every
line on Q+(5, q). We call such a set a (0, α)-set on Q+(5, q).

A maximal arc of degree α in PG(2, q) is a set of points such that every line of
PG(2, q) intersects it in 0 or α points. Examples of maximal arcs in PG(2, 2h) were
first constructed by Denniston [10]. Examples of maximal arcs in PG(2, 2h) which
are not of Denniston type were constructed by Thas [18, 19] and by Mathon [15].
Ball, Blokhuis and Mazzocca [1] proved that maximal arcs of degree 1 < α < q in
PG(2, q) do not exist if q is odd.

Let K be a (0, α)-set on Q+(5, q). Clearly every plane on Q+(5, q) is either
disjoint from K or intersects K in a maximal arc of degree α. Consider the (0, α)-
geometry S = (P,L, I ), fully embedded in PG(3, q), which corresponds to K. Then
every plane of PG(3, q) contains either no line of S or qα − q + α lines of S which
constitute a dual maximal arc of degree α. Similarly through every point p of
PG(3, q) there are either 0 lines of S or qα − q + α lines of S which intersect a
plane not containing p in a maximal arc of degree α. Let π be a plane of PG(3, q)
containing qα − q + α lines of S, and let d be such that π contains q2 + q + 1 − d
points of S. Then counting the lines of S by their intersection with π we get that
| L | = | K | = (qα−q+α)(q2+1−d). We call d the deficiency of the (0, α)-geometry
S and of the (0, α)-set K.

In this paper we will give an overview of the known examples so far and we will
give new examples, α being any proper divisor of q, q even.

2 The known examples

It is clear that the design of all points and lines of PG(3, q) is the only (0, q + 1)-
geometry fully embedded in PG(3, q).

On the other hand let S be a (0, q)-geometry fully embedded in PG(3, q) and
let Π be the set of planes containing at least two lines of S. Then for every plane
π ∈ Π, the incidence structure of points and lines of S in π is a dual affine plane,
while the incidence structure with point set the set of lines of S through a fixed point
p of S and with line set the set of planes of Π through p is an affine plane. These
geometries are classified, there are two non-isomorphic examples, see for instance
[9, 13, 14]. Here we summarize the result in the terminology of a (0, q)-set on the
Klein quadric Q+(5, q).
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Theorem 2.1. The points of Q+(5, q) not on a hyperplane U of PG(5, q), q > 2,
are the only (0, q)-sets on Q+(5, q). If U is a tangent hyperplane, then the deficiency
is 1. If U is a secant hyperplane then the deficiency is 0.

Remark

For the (0, q)-set of deficiency 1 the corresponding (0, q)-geometry in PG(3, q) is the
well known dual net denoted by H3

q . For the (0, q)-set of deficiency 0 the correspond-

ing (0, q)-geometry in PG(3, q) is the semipartial geometry denoted by W (3, q). For
a detailed description of both examples as (0, q)-geometries embedded in PG(3, q)
we refer for instance to [6].

In [1] it is proved that in desarguesian planes of order q, q odd, maximal arcs of
degree α, 1 < α < q, do not exist. Hence we can conclude that if q is odd, no other
(0, α)-set, α > 1, on the Klein quadric Q+(5, q) exists. Hence, for other examples
we may restrict ourselves to the case q even, 1 < α < q.

Here is an other example. The points of Q+(5, q), q even, corresponding to the
external lines of a nonsingular hyperbolic quadric in PG(3, q) form a (0, α)-set on
Q+(5, q) with α = q/2 and deficiency q + 1. The corresponding (0, q/2)-geometry is
denoted by NQ+(3, q).

It was conjectured in [5] that H3
q , W (3, q) and NQ+(3, q) are the only (0, α)-

geometries, with α > 1, fully embedded in PG(3, q), q > 2. This conjecture is false
as will be clear from the remainder of the paper.

A first counterexample has been given by Ebert, Metsch and Szőnyi [11]. A k-cap
in PG(n, q) is a set of k points, no three on a line. It is called maximal if it is not
contained in a larger cap. Quite some research has been done on caps in PG(5, q)
that are contained in the Klein quadric Q+(5, q). Since the maximum size of a cap
in PG(2, q) is q+1 if q is odd and q+2 if q is even, a cap in Q+(5, q) has size at most
(q+1)(q2+1) if q is odd and at most (q+2)(q2+1) if q is even. Glynn [12] constructs
a cap of size (q +1)(q2 +1) in Q+(5, q) for any prime power q (see also [17]). Ebert,
Metsch and Szőnyi construct caps of size q3 + 2q2 + 1 = (q + 2)(q2 + 1) − q − 1 in
Q+(5, q) for q even. They show that a cap in Q+(5, q), q even, of size q3 + 2q2 + 1
is either maximal in Q+(5, q) and is then a (0, 2)-set of deficiency 1 together with
one extra point, or it is contained in a cap of size (q + 2)(q2 + 1). One easily verifies
that caps of size (q + 2)(q2 + 1) in Q+(5, q), q even, and (0, 2)-sets of deficiency 0
are equivalent. A cap of size (q + 2)(q2 + 1) is only known to exist for q = 2.

The construction of Ebert, Metsch and Szőnyi is as follows. Let Σ be a 3-space
intersecting Q+(5, q) in a nonsingular elliptic quadric E. Let L = Σβ where β is
the symplectic polarity associated with Q+(5, q). Then the line L is external to
Q+(5, q). Consider an ovoid O in Σ which has the same set of tangent lines as E.
Let K be the intersection of Q+(5, q) with the cone with vertex L and base E ∪ O.
Then K is a cap of size (q + 1) |O \ E | + q2 + 1 which is maximal in Q+(5, q) [11],
and K \ (E ∩ O) is a (0, 2)-set in Q+(5, q) of deficiency |E ∩ O | .

We have the following possibilities for O. The ovoid O can be an elliptic quadric.
Then E and O intersect in either one point or q + 1 points which form a conic
in a plane of Σ (Types 1(i) and 3(g)(ii) in Table 2 of [3]). We will denote the
corresponding (0, 2)-set by E1 if |E ∩ O | = 1 and by Eq+1 if |E ∩ O | = q + 1. On
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the other hand when q is an odd power of 2 the ovoid O can be a Suzuki-Tits ovoid.
Then E and O intersect in q ±√

2q + 1 points and both intersection sizes do occur
[7]. We will denote the corresponding (0, 2)-set by Tq−

√
2q+1 if |E∩O | = q−√

2q+1
and by Tq+

√
2q+1 if |E ∩ O | = q +

√
2q + 1.

3 Unions of elliptic quadrics

Consider a (0, 2)-set K ∈ {E1, Eq+1} in Q+(5, q), q = 2h. Let Π be a hyperplane
containing Σ and let p = Π ∩ L, where L = Σβ . Then Π intersects Q+(5, q) in a
nonsingular parabolic quadric Q(4, q) with nucleus p. Since K is the intersection of
Q+(5, q) with the cone with vertex L and base the symmetric difference E △ O we
find that K ∩ Π is the intersection of Q(4, q) with the cone with vertex p and base
E △ O.

The projection of Q(4, q) from p on Σ yields an isomorphism from the classical
generalized quadrangle Q(4, q) to the classical generalized quadrangle W (q) consist-
ing of the points of Σ and the lines of Σ that are tangent to E. This isomorphism
induces a bijection from the set of ovoids of Q(4, q) to the set of ovoids of W (q).
Since the ovoid O has the same set of tangent lines as E, it is an ovoid of the gen-
eralized quadrangle W (q). Hence O is the projection from p on Σ of an ovoid O
of Q(4, q). So K ∩ Π is the symmetric difference E △ O. Since O is a nonsingular
elliptic quadric in Σ, O is a nonsingular elliptic quadric in a 3-space Σ ⊆ Π. Now Σ
and Σ intersect in a plane π and we may also write K ∩ Π = Q(4, q) ∩ (Σ ∪ Σ) \ π.

From the definition of E1 and Eq+1 it follows that there is exactly one plane π ⊆ Σ
such that π ∩Q(4, q) = E ∩O. Indeed, if K = E1 then E and O intersect in exactly
one point and π is the unique tangent plane in Σ to E at this point. If K = Eq+1 then
E and O intersect in a nondegenerate conic and π is the ambient plane of this conic.
We prove that π = π. Since O is the projection of O from p on Σ, E ∩ O = E ∩ O.
Since O = Σ∩Q(4, q), π ∩Q(4, q) = Σ∩Σ∩Q(4, q) = Σ∩O = E ∩O = E ∩O. So
π is a plane in Σ such that π ∩ Q(4, q) = E ∩ O. This means that π = π.

So K∩Π is the symmetric difference of elliptic quadrics E and O on Q(4, q) with
ambient 3-spaces Σ and Σ intersecting in the plane π. Since this holds for all hyper-
planes Π containing Σ we conclude that there exist 3-spaces Σ0 = Σ, Σ1, . . . , Σq+1

mutually intersecting in the plane π, such that each intersects Q+(5, q) in an elliptic
quadric and such that

K = Q+(5, q) ∩ (Σ0 ∪ Σ1 ∪ . . . ∪ Σq+1) \ π.

What remains to be verified is the position of the 3-spaces Σi. Consider a plane
π′ spanned by L and a point r ∈ O \E. One verifies in the respective cases K = E1

and K = Eq+1 that π ∩ O = π ∩ E = E ∩ O, so r 6∈ π. Hence π′ is skew to π.
We determine the points of intersection of Σi, i = 0, . . . , q + 1, with π′. Clearly
Σ0 ∩π′ = Σ∩π′ = r. Let i ∈ {1, . . . , q +1} and let pi ∈ L be such that Σi ⊆ 〈pi, Σ〉.
Let ri be the unique point of Q+(5, q) on the line 〈pi, r〉. Since r ∈ O\E, ri is a point
of K and hence of Σi. But also ri ∈ π′, so Σi ∩ π′ = ri. Repeating this reasoning
for all points pi on L we see that the 3-spaces Σi, i = 1, . . . , q + 1, intersect π′ in
the points of the nondegenerate conic C ′ = π′ ∩Q+(5, q) and that Σ intersects π′ in
the point r which is the nucleus of the conic C ′. We have now proven the following
theorem which completely determines the structure of the (0, 2)-sets E1 and Eq+1.
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Theorem 3.1. Let K ∈ {E1, Eq+1} and let π be the unique plane in Σ such that
π ∩ Q+(5, q) = E ∩ O. Then

K = (E ∪ O1 ∪ . . . ∪ Oq+1) \ π,

where Oi, 1 ≤ i ≤ q + 1, is a nonsingular 3-dimensional elliptic quadric on Q+(5, q)
such that its ambient space Σi intersects Σ in the plane π. In particular the 3-spaces
Σ1, . . . , Σq+1 intersect each plane π′ = 〈r, L〉 with L = Σβ and r ∈ O \ E in the
points of the nondegenerate conic C ′ = π′ ∩ Q+(5, q), while Σ intersects π′ in the
nucleus r of the conic C ′.

Remark

We can apply the same reasoning to the (0, 2)-sets Tq±
√

2q+1. We find then that
Tq±

√
2q+1 can be written as

(E ∪ O1 ∪ . . . ∪ Oq+1) \ (E ∩ O),

where O1, . . . , Oq+1 are Suzuki-Tits ovoids in the hyperplanes containing Σ, such
that for every pi ∈ L = Σβ, there is exactly one Oi ⊆ 〈pi, Σ〉, and then O is the
projection of Oi from pi on Σ. However this was already known [4].

4 A new construction

The following construction is inspired by Theorem 3.1. Let π be a plane of PG(5, q),
q = 2h, which does not contain any line of Q+(5, q) and let π′ be a plane skew to
π. Let D denote the set of points p ∈ π′ such that 〈p, π〉 intersects Q+(5, q) in a
nonsingular elliptic quadric, and suppose that A is a maximal arc of degree α in π′

such that A ⊆ D. Then we define the set Mα(A) to be the intersection of Q+(5, q)
with the cone with vertex π and base A, minus the points of Q+(5, q) in π.

Theorem 4.1. The set Mα(A) is a (0, α)-set on Q+(5, q).

Proof. Let L be a line on Q+(5, q) which intersects the plane π. Then the
subspace Σ = 〈L, π〉 has dimension 3 and it contains a line of Q+(5, q). Hence
Σ ∩ π′ 6∈ A. So there are no points of Mα(A) in Σ and hence also none on L.

Let L be a line on Q+(5, q) which is skew to π. A point p on L is in Mα(A) if and
only if 〈p, π〉 ∩ π′ ∈ A if and only if the projection of p from π on π′ is a point of A.
So if L′ is the projection of L from π on π′ then |L∩Mα(A) | = |L′∩A | ∈ {0, α}.
So every line on Q+(5, q) intersects Mα(A) in 0 or α points. �

Since the plane π does not contain any line of Q+(5, q), there are two possibilities:
either π ∩ Q+(5, q) is a single point or it is a nondegenerate conic. In the former
case the (0, α)-set has deficiency 1 and it is denoted by Mα

1 (A). In the latter case
the (0, α)-set has deficiency q + 1 and it is denoted by Mα

q+1(A).
In order to prove that there do exist (0, α)-sets of deficiency 1 and q + 1 for

every α ∈ {2, 22, . . . , 2h−1 = q/2} we must show that the set D in the plane π′

contains a maximal arc of degree α for every α ∈ {2, 22, . . . , 2h−1}, and this for both
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the case where π ∩ Q+(5, q) is a single point and the case where π ∩ Q+(5, q) is a
nondegenerate conic.

If π∩Q+(5, q) is a single point p then D is the set of points of π′ which are not on
the line π′ ∩ Tp, where Tp is the tangent hyperplane to Q+(5, q) at p. Clearly in this
case the set D contains a maximal arc of degree α for every α ∈ {2, 22, . . . , 2h−1}.

If π∩Q+(5, q) is a nondegenerate conic then the plane πβ also intersects Q+(5, q)
in a nondegenerate conic C. Furthermore β induces an anti-automorphism be-
tween the projective plane πβ and the projective plane having as points the 3-spaces
through π and as lines the hyperplanes through π. This anti-automorphism is such
that a 3-space containing π intersects Q+(5, q) in a nonsingular elliptic quadric if
and only if the corresponding line of πβ is external to the conic C. Hence the set D
in the plane π′ is the dual of the set of external lines to a nondegenerate conic. It
follows that D is a Denniston type maximal arc [10] of degree q/2, and hence that D
contains a maximal arc of degree α for every α ∈ {2, 22, . . . , 2h−1}. We have proven
the following theorem.

Theorem 4.2. There exist (0, α)-sets on Q+(5, q), q = 2h, of deficiency 1 and q +1
for all α ∈ {2, 22, . . . , 2h−1}.

Corollary 4.3. There exist (0, α)-geometries fully embedded in PG(3, q), q = 2h, of
deficiency 1 and q + 1 for all α ∈ {2, 22, . . . , 2h−1}.

By Theorem 3.1 the (0, 2)-set Ed, d = 1, q + 1, is of the form M2
d(H) with H a

regular hyperoval. Let K be the (0, q/2)-set corresponding to the (0, q/2)-geometry
NQ+(3, q), q even. Then K corresponds to the set of external lines to a nonsingular
hyperbolic quadric Q+(3, q) in PG(3, q). Let C be the set of points of Q+(5, q)
corresponding to one of the two reguli of lines contained in Q+(3, q). Then C is a
nondegenerate conic in a plane π, and K is the set of all points of Q+(5, q) which
are not collinear in Q+(5, q) with any of the points of C. So a point p of Q+(5, q)
is in K if and only if p 6∈ π and 〈p, π〉 intersects Q+(5, q) in a nondegenerate elliptic

quadric. Hence NQ+(3, q) corresponds to the (0, q/2)-set Mq/2

q+1(D).
We conclude this paper with a list of all the known distinct examples of (0, α)-

sets K in Q+(5, q), α > 1, q > 2. In this list d is the deficiency of the (0, α)-set
K.

• α = q + 1, d = 0, and K is the set of all points of Q+(5, q).

• α = q, d = 0, and K corresponds to W (3, q).

• α = q, d = 1, and K corresponds to H3
q .

• q = 2h, α ∈ {2, 22, . . . , 2h−1}, d ∈ {1, q + 1} and K = Mα
d (A).

• q = 22h+1, α = 2, d = q ±√
2q + 1, and K = Tq±

√
2q+1.
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