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1 Introduction.

In [2], see [3] as well, I started the classification of the triples (G, Ω, X) such that
G contains a regular subgroup X. There I did not make any assumptions on the
structure of X.

The pairs (G, Ω) such that G contains a cyclic regular subgroup have been clas-
sified by Feit [7] (the insoluble ones), see also [15, Theorem 1.49], and by J. F. Ritt
[19, p. 27] (the soluble ones) – see also G. A. Jones [13]. C. H. Li [15] classified
those (G, Ω) such that G contains an abelian regular subgroup.

The motivation of our project is that such a classification will have many ap-
plications. For instance it will imply a complete list of the primitive graphs which
are Cayley graphs (for an introduction to Cayley graphs see for instance [8] and for
more applications see for instance [6,13]).

Recall the subdivision of the primitive permutation groups into different types,
see for instance [16]. Every primitive permutation group (G, Ω) of affine type, of
diagonal action type or of twisted product action type possesses a regular subgroup,
as well as every primitive permutation group which is the product of primitive
permutation groups of diagonal action type.

Therefore it remains to determine those triples (G, Ω, X) with G almost simple or
(G, Ω) of product action type. In the latter case the socle of G is the direct product
T1 × · · · × Tn of isomorphic to non-abelian simple groups and Ω = Ω1 × · · · × Ωn

such that the normalizer NG(Ti) of Ti in G induces a primitive permutation group
of almost simple type on Ωi. If NG(Ti) contains a subgroup which is regular on Ωi,
then G also has a subgroup which is regular on Ω. It remains to study the difficult
problem that G has a regular subgroup but NG(Ti) does not.
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In this paper here we focus on G being almost simple. The aim of the paper is
to present the results obtained so far and moreover, to finish the case that soc(G) ∼=
Un(q). It is worth noting that we found only two infinite families of examples if G
is a classical group, see Table 1 in Section 2 and Tables 3,4,5 in Section 3. Moreover
it is interesting that in all the examples for soc(G) ∼= Ln(q), except in the examples
in lines 7,11 and 13 of Table 3, the stabilizer Gω of an element ω in Ω contains a
Singer cycle, see Table 3. In this paper we prove the following theorem.

Theorem 1. Let (G, Ω) be a primitive permutation group with T = soc(G) ∼=
Un(q), n ≥ 3 and with Ω the set of non-isotropic 1-spaces of the natural module for
T . Then G has no regular subgroup.

This result, together with [3, Theorem 8] then yields

Theorem 2. Let (G, Ω) be a primitive permutation group with T = soc(G) ∼= Un(q).
Suppose there is a subgroup X of G which acts regularly on the set Ω. Then (T, Ω, X)
are as in Example (a), (b), (c), (d) or (e) of Section 2.

Let us have a closer look at the method of proof used in this paper. Let G be an
almost simple group acting faithfully and primitively on a set Ω and suppose that
G contains a regular subgroup X. Then for every point ω in Ω the subgroup X is
a complement to the stabilizer Gω of ω in G. In the proof of Theorem 1 T already
acts primitively on Ω. Therefore there is a subgroup T ≤ G⋆ ≤ G such that G⋆ has
a maximal subgroup B of G containing X but not containing T , see Corollary 5.5.
Accordingly, we assume G = G⋆ and we can use the results obtained in [17] on
maximal factorizations. We then study closely the obtained factorizations.

An outline of the structure of the paper is as follows. In the next section we
present Examples (a), (b), (c), (d) and (e). Moreover, for (G, Ω) as in these exam-
ples, we determine up to isomorphism all the subgroups of G which act regularly
on Ω. Section 3 contains the results obtained in [2] and [3] and all the examples
(G, Ω, X) which are known to us for G a classical group (see Tables 3,4,5). Section 3
and 4 are preparations to prove Theorem 1. In Section 3 I will recall the definition
of a Zsigmondy prime, which is essential in the proof of Theorem 1. Some simple
facts about factorizations and the existence of G⋆ are discussed in the forth section.
In the last section Theorem 1 is proved.

The author learned from C.E. Praeger that she as well as M.W. Liebeck and
J. Saxl are also working on the classification of the primitive permutation groups
with a regular subgroup.

Acknowledgement. I thank Gernot Stroth for discussions about the unitary
groups and the referee for his helpful comments! I also like to thank Dimitri Pasech-
nik for checking Example (e) on a computer using GAP.

2 Examples with G a unitary group.

Let V be a vector space of dimension n over the finite field GF (q2), and let (, ) be
a nondegenerate sesquilinear form from V × V to GF (q2), that is (, ) is left linear,
the field GF (q2) possesses an involutory automorphism τ and

(v, u) = (u, v)τ = (u, v)q for all u, v ∈ V.
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In this section T ∼= Un(q) will be a group of isometries of (V, (, )) and G a group
with T ≤ G ≤ Aut(T ).

Example (a). (See also [2, Example (a)]) Let (n, q) = (4, 2). Then there is a
subgroup X of T which acts regularly on the set Ω of maximal totally isotropic
subspaces of V . We show the following stronger result:

Lemma 2.1. Let (T, Ω) be as in Example (a). Then a subgroup X of G = Aut(T )
is regular, if and only if X is extraspecial of order 27, that is if X is as in Line a of
Table 1.

Proof. We have |Ω| = 27. Let P be a Sylow 3-subgroup of G and let A be the
stabilizer of a maximal totally isotropic subspace of V . Then P ∼= ZZ 3 ≀ ZZ 3 and if
a ∈ A has order 3, then aG ∩ P is a set of three generators and their inverses in the
unique abelian subgroup of P of order 27, see [5, pp. 26,27]. Therefore the maximal
subgroups of P avoiding aG are precisely the extraspecial ones. �

Example (b). (See also [2, Example (m)]. Let (n, q) = (3, 8) and let H = T : 32 be
a subgroup of index 2 in Aut(T ). We claim that there is a subgroup X in T which
acts regularly on the set Ω of isotropic 1-spaces of V . Let A be the stabilizer of an
isotropic 1-space in H and let X be the normalizer in H of a subgroup of order 19
of T . Then X ∼= Frob(19 : 9)× 3 and it is a supplement to A in H according to [17,
Table 3]. Since |X| = |H : A|, it is a complement to A in H and acts regularly on
Ω as claimed. Immediately from [5, p. 66] we obtain the following.

Lemma 2.2. Let (T, Ω) be as in Example (b). If X is a regular subgroup of Aut(T ),
then G := TX and X are as listed in Line b of Table 1.

Example (c) (See also [2, Example (n)]). Let (n, q) = (3, 8) and let H = T : 32 a
subgroup of index 2 in Aut(T ). Every subgroup A of G isomorphic to 19 : 9 × 3 is
a maximal subgroup of G. So, G acts primitively on the set Ω of cosets of A in G
and by Example (b) the stabilizer of an isotropic 1-space in G acts regularly on Ω.
Using [5, p. 66] we get

Lemma 2.3. Let (T, Ω) be as in Example (c). If X is a regular subgroup of G with
T ≤ G ≤ Aut(T ), then X is the stabilizer in G of an isotropic 1-space, that is,
G := TX and X are as Line c of Table 1.

Example (d). (See also [2, Example (o)]). Let (n, q) = (4, 3) and let T ≤ H ≤
Aut(T ) such that H = T : 2 and |PGU4(3) : H| = 2. Let A be a maximal subgroup
of H such that A ∩ T ∼= L3(4). Then A ∼= PΣL3(4) = (A ∩ T ) : f with f a field
automorphism of A ∩ T , see [5, p. 53]. Let Ω be the set of cosets of A ∩ T in T
and let K be the normalizer of A in Aut(T ). Then [Aut(T ) : K] = [K : H ] = 2.
According to Theorem A of [17] the stabilizer B in H of a totally isotropic line in the
natural T -module is a supplement to A in H , i.e. H = AB, where B ∼= 34 : (2×A6).
Moreover, A∩B ∼= A6, see [17, Lemma p.113]. Hence, X = O3,2(B) is a complement
to A ∩ B in B and therefore X is regular on Ω.

Lemma 2.4. Let (T, Ω) be as in Example (d). If X is a regular subgroup of Aut(T ),
then |O3(X)| = 34 and O2(X) = 1. In particular, X and G := TX are as in Line d
of Table 1.
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Proof. We have |X| = |Ω| = 34 · 2. This implies |O3(X)| = 34. Notice that T has
just one class of involutions. Therefore, X does only contain outer involutions of
Aut(T ) by Lemma 5.1. According to [5, p. 54], those outer involutions which act on
Ω do not centralize a subgroup of order 34. Thus O2(X) = 1 and X is as in Line 4
of Table 1. We derive from [5, p. 52] that G = T : 2 is the group introduced above.

�

Example (e). Let (n, q) = (4, 8) and G = Aut(U4(8)) and let Ω be the set of
maximal totally isotropic subspaces of the natural T -module V . Let A be the
stabilizer of an element of Ω in H . Then according to [30, Theorem A] G = AB
with B ∼= (9∗3·U3(8)).3.3 the stabilizer of a non-isotropic 1-space U of V and A∩B
is a subgroup of index 9 in the stabilizer BW in B of some maximal totally isotropic
subspace W of U⊥. This yields that A ∩ B ∼= 23+6 : ZZ 63 : ZZ 3. Let X be the
normalizer of a subgroup of order 19 in B. Then X ∼= 9·(Frob(19 : 9) × 3). Set
Y = X ∩ Z(B ∩ T ), so Y ∼= ZZ 9. As Y E B, B acts on the set of fixed points of
Y on Ω. This shows that Y acts semiregularly on Ω and that Y ∩ A = 1. As also
X/Y ∩AY/Y = 1 by Example (b), it follows that X is a complement to A in G and
therefore regular on Ω.

Lemma 2.5. Let (T, Ω) be as in Example (e). If X is a regular subgroup of Aut(T ),
then X is the normalizer of an element of order 19 in the stabilizer of a non-isotropic
1-space of V and G := TX and X are as in Line e of Table 1.

Proof. According to [30, Theorem A] X is contained in such a stabilizer. As |X| =
35 · 19, it follows that O19(X) 6= 1 and this yields the assertion. �

Table 1. Examples with T a unitary group.

No T G Tω Ω X

b U3(8) T : 32 P1 iso. pts 19 : 9 × 3

c U3(8) T : 32 19 : 9 × 3 P1

a U4(2) T P2 tot. iso. lns 31+2
+ , 31+2

−

d U4(3) T : 2 L3(4) 34 : 2, O3(X) : 2

e U4(8) Aut(T ) P1 tot. iso. lns 9.(19 : 9 × 3)
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3 The previous results.

In this section we present the results obtained in [2, Chapter 7].

3.1 The alternating and symmetric groups.

Let us recall a special class of strongly 3-transitive groups: Let p be an odd prime and
e = 2m even. Then M(pe + 1) is the following group: Consider K = PGL2(p

e)〈α〉
with α a field automorphism of order 2. Then K/L2(p

e) is elementary abelian of
order 4 and therefore contains three subgroups of order 2. The group M(pe + 1) is
the subgroup of K which is neither L2(p

e)〈α〉 nor PGL2(p
e). Notice that this group

is called M(pe) in [12, p. 163].

Theorem 3. [2, Theorem 8] Let (G, Ω) be a primitive permutation group with
soc(G) = T ∼= An, n ≥ 5 and suppose that there is a subgroup X of G which
acts regularly on Ω. Then one of the following holds, where ω is an element in Ω
and ∆ = {1, . . . , n}. Conversely if (G, Ω) is a primitive permutation group satisfying
one of the listed conditions, then G has a regular subgroup X.

(a) G = An.

(a.a) Ω = ∆ and Gω = An−1.

(a.b) Gω is sharply k-transitive on ∆ and X is the pointwise stabilizer of a
k-subset of ∆, for some k ∈ {3, 4, 5}, and one of the following holds.

(a.b.a) n = p2 + 1, with p a prime congruent to 3 modulo 4, k = 3 and
Gω

∼= M(p2 + 1);

(a.b.b) n = 11, k = 4 and Gω
∼= M11;

(a.b.c) n = 12, k = 5 and Gω
∼= M12.

(a.c) Gω is k-homogeneous, but not k-transitive on ∆, for some k ∈ {2, 3, 4},
and one of the following holds. In the last two items p is a prime con-
gruent to 3 modulo 4, but p 6= 3, 7, 11, 23.

(a.c.a) n = 9, k = 4, Gω
∼= PΓL2(8) and X ∼= S5;

(a.c.b) n = 33, k = 4, Gω
∼= PΓL2(32) and X ∼= (A29 × A3) : 2;

(a.c.c) n = p + 1, k = 3, Gω
∼= L2(p) and X ∼= Sp−2;

(a.c.d) n = p, k = 2, Gω
∼= Frob(p : (p − 1)/2) and X ∼= Sp−2.

(a.d) Ω is the set of k-subsets of ∆, for some k ∈ {2, 3}, and one of the
following holds. In the last item q a is prime power congruent to 3 modulo
4.

(a.d.a) n = 8, k = 3 and X ∼= AGL1(8);

(a.d.b) n = 32, k = 3 and X ∼= AΓL1(32);

(a.d.c) n = q, k = 2 and X ∼= AGL1(q)/〈−1〉 ∼= Frob(q : (q − 1)/2).

(a.e) n = 8, Gω
∼= 23 : L3(2), |Ω| = 15 and X ∼= ZZ 15.

(b) G = Sn.
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(b.a) Gω ∩ An is a subgroup of index 2 in Gω and is as in (a.a), (a.b.a) or as
a group listed in (a.d).

(b.b) Gω is sharply k-transitive on ∆, for some k ∈ {2, 3}, X ∼= Sn−k and one
of the following holds. In both cases p is a prime and p ≥ 5.

(b.b.a) n = p, k = 2 and Gω
∼= Frob(p : (p − 1));

(b.b.b) n = p + 1, k = 3 and Gω
∼= PGL2(p).

(b.c) n = 6, Gω
∼= PGL2(5) is transitive on ∆ and X is a subgroup of G of

order 6;

Remark. If (G, Ω) is as in (b.b.a) or (b.b.b), but p 6= 7, 11, 23 in the latter case,
then (An, Ω) is as in item (a.c.c) or (a.c.d) of the theorem, respectively.

3.2 The sporadic groups.

Theorem 4. [2, Theorem 9] Let (G, Ω) be a primitive permutation group with
soc(G) = T a sporadic simple group. Suppose that there is a subgroup X of G
which acts regularly on Ω. Let A be the stabilizer in G of an element in Ω. Then
(G, A, X) are as follows. Conversely if (G, Ω) is a primitive permutation group
satisfying one of the listed conditions, then G has a regular subgroup.

Table 2. Examples with T a sporadic group.

No T G A ∩ T Ω X

1 M11 T M10 set of points of Steiner system
S = S(4, 5, 11) related to T ZZ 11

2 T M9.2 ∼= set of duads Frob(11 : 5)
32 : SD16 of Steiner system S

3 M12 T M11 set of points of Steiner system
S = S(4, 5, 11) related to T 22 × 3,A4, 2 × S3

4 T L2(11) 32 : SD16

5 M22 Aut(T ) set of points of Steiner system
S(4, 6, 22) related to T Frob(11 : 2)

6 M23 T = M21 set of points of Steiner system
Aut(T ) S = S(4, 7, 23) related to T ZZ 23

7 T M21 : 2 set of duads of S Frob(23 : 11)

8 T Frob(23 : 11) M21 : 2, 24 : A7
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No T G A ∩ T Ω X

9 T 24 : A7 set of blocks of S Frob(23 : 11)

10 M24 T = M23 set of points of Steiner system D8 × 3, (22 × 3) : 2
Aut(T ) S(5, 8, 24) related to T S4,D24, 2 × A4

11 L2(23) 24 : A7,M21 : 2

12 J2 Aut(T ) U3(3) set of points of the rank X 6≤ T,X ∼= 52 : 4
three graph for T each eigenvalue of X/O5(X)

on O5(X)
generates GF (5)∗

13 HS Aut(T ) M22 set of points of the Higman- X 6≤ T,X ∼= 52 : 4
Sims graph related to T the eigenvalues of X/O5(X)

on O5(X) are 1, w;w,w
or w,w−1 with 〈w〉 = GF (5)∗

14 He Aut(T ) Sp4(4) : 2 set of points of the rank 71+2 : ZZ 6

five graph for T

In particular, the rank 3 graphs for J2 and HS, respectively, and the rank 5 graph
for He are Cayley graphs.

3.3 The exceptional groups of Lie type.

If G is an exceptional group of Lie type, then there is no example:

Theorem 5. [2, Theorem 10] Let (G, Ω) be a primitive permutation group with
soc(G) = T an exceptional group of Lie type. Then there is no regular subgroup in
G.

3.4 The classical groups.

Let G be a classical group.
In Tables 1,3,4,5 which are taken from [2], see also [3], we present all the examples

which are known to us. In the second column of the table the socle T of the almost
simple group is given and in the third we present a group G with T ≤ G ≤ Aut(G)
such that G acts primitively on Ω and such that G contains a regular subgroup. In
almost all examples G is the smallest group satisfying these properties. The fourth
column contains the structure of a stabilizer Tω, for an ω ∈ Ω. In all the cases Ω
can be considered as the set of cosets of NG(Tω) in G. If Ω is a nice object, then
we list it in the fith column. By V1 ⊕ V3 we mean the set of antiflags consisting of
a 1 and a 3-dimensional subspace which intersect trivially. In the last column we
present the structure of the regular subgroup of G.
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Table 3. Examples with T a linear group.

No T G Tω Ω X

1 L2(11) T A5 ZZ 11

2 L2(11) PGL2(11) A4 Frob(11 : 5)

3 L2(23) T S4 Frob(23 : 11)

4 L2(29) T A5 Frob(29 : 7)

5 L2(59) T A5 Frob(59 : 29)

6 L3(3) T Frob(13 : 3) 32 : 2·D8

7 L4(2) Aut(T ) L3(2) V1 ⊕ V3 PΓL2(4)

8 L4(3) PGL4(3) (4 × L2(9)) : 2 33 : (13 : 3 × 2)

9 L4(4) T : 2 (5 × L2(16)).2 26 : (7 : 32) : 2

10 L5(2) T Frob(31 : 5) 26 : (S3 × L3(2))

11 L5(2) T 26 : (S3 × L3(2)) lns/pls Frob(31 : 5)

12 L2(q) PGL2(q), q = 7 Dq+1 Frob(q : (q − 1)/2)
q − 1 ≡ 2(4) T, q 6= 7

13 Ln(q) PGLn(q) qn−1 : GLn−1(q)/(n, q − 1) iso. pts ZZ (qn
−1)

(q−1)

, more

Table 4. Examples with T a symplectic group.

No T G Tω Ω X

1 Sp4(2)′ Sp4(2) L2(4) {1, . . . 6} ZZ 6, S3

2 Sp4(4) T : 2 L2(16) : 2 PΓL2(4)

3 Sp6(2) T G2(2) PΓL2(4)

4 Sp6(2) T L2(8) : 3 24.L2(4)

5 PSp6(3) T L2(27) : 3 31+4 : 2.PSp4(3)

6 Sp6(4) T : 2 G2(4) PΓL2(16)

7 Sp8(2) T O−

8 (2) PΓL2(4)

Table 5. Examples with T an orthogonal group.
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No T G Tω Ω X

1 Ω+
8 (2) T Sp6(2) non-sing. pts PΓL2(4)

2 Ω+
8 (2) T A9 26 : ZZ 15, 2

4.L2(4),
3 : (24 : (5 : 4))

3 Ω+
8 (4) T : 2 Sp6(4) non-sing. pts PΓL2(16)

My main result on classical groups is as follows:

Theorem 1. [2, Theorem 13] Let (G, Ω) be a primitive permutation group with
T = soc(G) ∼= PΩ+

8 (q). Suppose there is a subgroup X of G which acts regularly on
Ω. Then (G, Ω, X) is one of the examples in Table 4.

To prove this theorem I also showed the next two theorems.

Theorem 2. [2, Theorem 11] Let (G, Ω) be a primitive permutation group with
T = soc(G) ∼= PΩ7(q), q even or odd. Suppose that Gω ∩ T ∼= G2(q), for ω in Ω.
Then G has a regular subgroup X if and only if q ∈ {2, 4}. If there is a regular
subgroup X in G, then X ∼= PΓL2(q

2).

and

Theorem 3. [2, Theorem 12] Let (G, Ω) be a primitive permutation group with
T = soc(G) ∼= PΩ2n+1(q), q odd. Let V be the natural module for T and assume
that Ω equals the set of totally isotropic subspaces of dimension i of V , for some i
in {1, . . . , n}. Then there is no regular subgroup in G.

4 On certain prime divisors of classical groups.

Recall that Zsigmondy [20] has shown the following.

Lemma 4.1. [20] Let p be a prime and s ∈ IN . Then one of the following holds:

(a) there exists a prime r (called a Zsigmondy prime for ps − 1) which divides
ps − 1, but does not divide pi − 1, for i = 1, . . . , s − 1;

(b) s = 2 and p is a Mersenne prime;

(c) s = 6 and p = 2.

Notice, if r is a Zsigmondy prime for ps − 1, then r ≡ 1 mod s.
Let q = pa for some prime p. If pn is not as in statements (b) or (c) of Lemma 4.1,

then we denote by qn the largest Zsigmondy prime for qn − 1. Notice that there is
a paper by R. M. Guralnick, T. Pentilla, C. E. Praeger, J. Saxl where the authors
determine all the maximal subgroups of the classical groups for which the orders are
divisible by certain Zsigmondy primes [10].

Let t = xpi be a natural number with (x, p) = 1. We denote the p–part pi of t
by tp. Frequently we will use the following fact.
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In order to determine the regular subgroups of a unitary group in its action on
the non-isotropic 1-spaces we show the following lemma. Let G ∼= ΓLm(q2) and let
V be the natural module for E ≤ G where E ∼= GLm(q2).

Lemma 4.2. Let G ∼= ΓLm(q2) and let X be a subgroup of G such that

(1) the order of X divides q2m−1(q2m − 1);

(2) (q2m − 1)/(q + 1) divides |X|.

Then one of the following holds.

(a) m = 2 and SL2(q
2) E X;

(b) m = 3 and q = 2;

(c) X is a subgroup of a subgroup K of G and

(c.a) K ∼= ΓL1(q
2m);

(c.b) K induces semilinear GF (q2m)-mappings on V .

Proof. Let X be a subgroup of G satsifying (1) and (2). Assume that X is not
a subgroup in (a), (b) or (c). Let p be the prime such that q = pa. If m = 1,
then (c) holds with K = G. Therefore, by assumption m > 1 and (m, q) 6= (3, 2).
Notice that the Zsigmondy prime q2m exists by Lemma 4.1. The orders of X and of
Y := X ∩E (recall E ≤ G with E ∼= GLm(q2)) are divisible by this prime. Hence Y
is a group as described by the Main Theorem in [10], that is, Y is one of the groups
listed in the family of examples (2.1) – (2.9). Conditions (1) and (2) and the fact
that q2 is not a prime implies immediately that Y is a group in (2.1) or in (2.6) –
(2.9). Recall the Little Theorem of Fermat stating if r is a prime and u a natural
number, then r divides ur − u. In particular, if r does not divide u, then r divides
ur−1 − 1. As 2m is the smallest natural number i such that q2m divides qi − 1, the
Little Theorem of Fermat implies that r = q2m divides qr−1 − 1 and therefore

2m | q2m − 1.

In particular, q2m = m + 1 is not possible.
If Y is in (2.1), then Y has a normal subgroup isomorphic to SLm(q2), Spm(q2),
SUm(q) or Ωǫ

m(q) with ǫ ∈ {0, +,−}, see [10, p. 170]. If SLm(q2) E Y , then (1)
implies m = 2 and (a) of the statement holds. In all other cases |Y |p > q2m−1 in
contradiction with (1).

Hence Y is a member of the families (2.6) – (2.9). Then Y is nearly simple, that
is, S ≤ Y/(Y ∩Z) ≤ Aut(S) for some non-abelian simple group S where Z = Z(E).
Let Y be of type (2.6). Then we can derive from [10, pp.173-174] that S ∼= An and
n = 5 or 6. If n = 5, then m = 2, q = p, q4 = 5, and p ≡ ±2(5) or p = 2, see [10,
pp.173-174]. If p = 2, then (a) holds, so by assumption p ≡ ±2(5) and p 6= 2. Then,
as |X : Y | ≤ 2 and (p2 + 1, p + 1) = 2, (2) implies

(p2 + 1)/(p2 + 1, 4)
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divides |Aut(S)| = 23 · 3 · 52. This implies p2 + 1 ≤ 25 · 3 · 5, so p ≤ 21 and therefore
p ∈ {7, 13, 17}. If p = 13, 17, then (p2 + 1) is divisible by 17 and 29, respectively,
which yields a contradiction. If p = 7, then by (2) 22 · 3 · 5 | |X|, which is not
possible, as |Y ∩ Z| |(72 − 1) and Y/(Y ∩ Z) is isomorphic to a subgroup of S5.
Suppose n = 6. Then m = 2, q = 3, q4 = 5, see [10, pp.173-174], and (a) holds.
Now let Y be of type (2.7). Then it follows with [10, pp. 175-176] that S ∼= J3,
m = 9, p = 2, q = 4 and q18 = 19. By (2) the divisor 73 of 218 − 1 should divide the
order of X and, as here |Z| = 3 and |X : Y | ≤ 2, it should also divide the order of
Y and S, but it does not, see for instance [5, p. 82].
Assume that Y is of type (2.8). Then it follows that S ∼= G2(q

2), m = 6 and p = 2.
It holds |G2(q

2)| = q12(q12 − 1)(q4 − 1). Thus the latter number has to divide |Y |
and |X|, which is a contradiction to (1).
Finally assume that Y is of type (2.9). Then we derive from [10, p. 175 - 177] that
S ∼= L2(s), s ≥ 7 for a prime s different from p, m = (s − 1)/2, q = p and q2m = s.
The order of Y divides |Aut(S)||Z| = s(s2−1)(p2−1). Hence by (2), as |Y : X| ≤ 2,
it follows that (ps−1 − 1)/[(p − 1, 2)(p + 1)] divides s(s2 − 1)(p2 − 1), which implies
also

⋆ (ps−1 − 1)/[(ps−1 − 1, 2(p+1)(p2 − 1))] ≤ s(s2 − 1).

If s = 7, then (p6−1)/[(p6−1, 2(p+1)(p2−1))] has to divide 7(72−1) = 24·3·7, so p6 =
7 and p3 = 3, which is impossible. If s = 11, then (p10−1)/[(p10−1, 2(p+1)(p2−1))]
has to divide 11(112 − 1) = 11 · 23 · 3 · 5 and therefore p10 = 11 and p5 = 5,
which is not possible. If s = 13, then (p12 − 1)/[(p12 − 1, 2(p + 1)(p2 − 1))] divides
13(132 − 1) = 13 · 23 · 3 · 7. There are not enough prime divisors p12, p6, p4. If
s = 17 we obtain the same contradiction. Therefore s ≥ 19 and ps−5 > s3. But
this contradicts with ⋆, as ps−5 is at most the left side of ⋆. This final contradiction
proves the lemma. �

5 Simple facts about factorizations.

In this section we will present some simple facts about factorizations which we shall
use throughout the text. In order to determine the primitive groups admitting a
regular subgroup we shall quote the classification of the maximal factorizations of
the almost simple groups by Liebeck, Praeger and Saxl [17] many times. In this
section we also analyse for which primitive permutation groups we are able to quote
[17].
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Lemma 5.1. Let G be a group and A and B two subgroups. The following state-
ments are equivalent

(a) G = AB.

(b) G = ABg for all g ∈ G.

(c) G = ABn for all n ∈ NAut(G)(A).

(d) |G : A| = |B : A ∩ B|.

(e) |G : B| = |A : A ∩ B|.

Proof. The equivalence of (a),(c), (d) and (e) is obvious. Assume (a). Then B acts
transitively on the set of cosets of A in G, so Bg acts transitively on these cosets,
as well. Thus (b) holds. Clearly, (b) implies (a). �

The next lemmas, in particular 5.2 will be applied in Section 5.

Lemma 5.2. Let X be a complement to the subgroup A in G and let B be a maximal
subgroup of G containing X. Then G = AB and X is a complement to A ∩ B in
B. In particular, if B1 and B2 are maximal subgroups of B containing B ∩ A and
X respectively, then B = B1B2, moreover |B : B2| divides |B : X| = |B ∩ A| and
|B : B1| divides |B : A ∩ B| = |X|.

Lemma 5.3. Let the group G = U × N be a direct product of two of its subgroups
and suppose that G = AB for two subgroups A and B of G which are not contained
in U and do not contain N . Then N = AB is a non-trivial factorization of N
with A and B homomorphic images of A and B, respectively. In particular, if N is
almost simple and soc(N) 6≤ A, B, then we obtain a core-free factorization of N .

Last we discuss some possible obstacles. Let G be an almost simple group with
socle T . M. W. Liebeck, C. E. Praeger and J. Saxl determined all the factorizations
G = AB of the group G such that A and B are maximal core-free subgroups of
G. Now suppose that G acts primitively on a set Ω and that X is a subgroup of
G which acts regularly on Ω. Then G = AX for A = Gx the stabilizer in G of an
element x ∈ Ω. Let B be a subgroup of G containing X which is maximal with
respect being core-free. Then B is not necessarily a maximal subgroup of G.

For a subgroup A of G, write A max−G to mean that A is maximal among
core-free subgroups of G. And write A max+G to mean that A is both core-free and
maximal in G.

If G = AB with A, B maxǫG with ǫ ∈ {+,−}, call the factorization a maxǫ

factorization of G. This notion was introduced in [18] by Liebeck, Praeger and Saxl.
We also call a max+ factorization of G simply a maximal factorization of G. In [18],
the following has also been proven.

Lemma 5.4. [18, Lemma 2] Suppose that G = AB with core-free subgroups of G.
Let G⋆ = AT ∩ BT, A⋆ = A ∩ G⋆, and B⋆ = B ∩ G⋆. Then

(a) G⋆ = A⋆B⋆ and A⋆T = B⋆T = G⋆;

(b) either A⋆max+G⋆ or A ∩ T is non maximal in T ; similarly for B⋆.
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In [3] we showed:

Corollary 5.5. Suppose that G as well as T act primitively on a set Ω and that
there is a regular subgroup X in G which does not contain T . Let x ∈ Ω, set A = Gx

and let B be a max− subgroup of G which contains X. Then G⋆ = A⋆B⋆ is a max+

factorization, where G⋆ = BT and B = B⋆.

Let (G, Ω) be a primitive permutation group which has a regular subgroup X.
Let A = Gω with ω ∈ Ω and let B be a max− subgroup of G which contains X. If T
acts primitively on Ω, then we may assume that B is maximal in G by Corollary 5.5.

6 Proof of the Main Theorem.

In this section we prove Theorem 1.
Let V be a vector space of dimension n, n ≥ 3 over the finite field GF (q2), and

let (, ) be a non-degenerate sesquilinear form from V × V to GF (q2), that is (, ) is
left linear, the field GF (q2) possesses an involutory automorphism τ and

(v, u) = (u, v)τ = (u, v)q for all u, v ∈ V.

Let T̂ be the group of isometries of (V, (, )) such that T̂ ∼= SUn(q). In this section we
assume that T = T̂ /Z(T̂ ), so T ∼= Un(q), n ≥ 3, and we assume that G is a group
with T ≤ G ≤ Aut(T ) and that Ω is the set of non-isotropic 1-spaces of V . By the
Lemma of Witt T ∼= Un(q) acts transitively on Ω. This action is also primitive, as
one may easily check. Moreover, Aut(T ) acts on Ω.

We first find a subgroup R of Aut(T ) which acts semiregularly on Ω. Suppose
that n = 2m, m ≥ 2, is even. Let B be the stabilizer in Aut(T ) of a maximal
totally isotropic subspace W of V . Then B = Op(B) : L with L ∼= ΓLm(q2)/Z, Z ≤
Z(GL2m(q)) of order q+1, and Op(B) is an irreducible GF (q)E-module of dimension
m2 where E ≤ L and E ∼= SLm(q2)Z/Z, see for instance [9, 3.2]. If (m, q) 6= (3, 2),
then there exists a Zsigmondy prime q2m.

Lemma 6.1. Let (m, q) 6= (3, 2) and let B be the stabilizer in Aut(T ) of a maximal
totally isotropic subspace W of V . If x ∈ B = B/Op(B) is an element whose order
is the Zsigmondy prime q2m, then the centralizer R of x in Op(B) acts semiregularly
on Ω.

Proof. Assume that R does not act semiregularly on the set of non-isotropic 1-
spaces. Then there is r ∈ R with CV (r) > W (remind that Op(B) = CW (B)). This
is not possible as x acts on CV (r), but W and V/W are irreducible modules for x.

�

Notice the following:

Lemma 6.2. Let (n, q) = (6, 2) and let s be an element of order 3 of T . Then s
fixes an element in Ω.

Proof. Let T̂ ∼= SU6(2) be the covering group of T and let x be a preimage of s in T̂ .
Then either x is of order 3 or x3 is a central element of T̂ of order 3. According to the
Atlas [5, p. 118] the latter case can not happen. Thus x is of order 3. By considering
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the Jordan Normal Form of x we see that this element is diagonisable. Clearly x
has at least two different eigenvalues a, b on V . Let Va, Vb be the eigenspaces of x
to the eigenvalues a and b, respectively. We claim that Va is non-degenerate. Let v
and w be non-zero vectors in Va and Vb, respectively. Then

(v, w) = (vx, wx) = (av, bw) = ab2(v, w),

which yields ab2 = 1, and then a = b, or (v, w) = 0. Thus Va is perpendicular to the
other eigenspaces and therefore, Va is non-degenerate.

It follows in particular, that Va contains a non-isotropic vector. This implies the
assertion. �

Proof of Theorem 1. Assume there is a subgroup X of G which acts regularly on
Ω. In particular

|X| = |Ω| = qn−1(qn − 1)/(q + 1).

Assume that (n, q) = (6, 2). Then

|X| = 25 · 3 · 7.

Hence there is an element s of order 3 in X. Then s acts semiregularly on the set Ω
and Lemma 6.2 implies that s is not in T . This and the fact that Aut(T )/T ∼= S3

implies that |X ∩ T | = 24 · 7 or 25 · 7. In particular, by the Theorem of Burnside,
X ∩ T is soluble. As every element of order 7 of T is self-centralizing in T , see [5,
p. 117], it follows that |O2(X ∩ T )| = 8 and O2,7(X ∩ T ) ∼= 23 : 7. This implies that
(X∩T )/O2(X∩T ) ∼= D14 is isomorphic to a subgroup of Aut(O2(X∩T )) ∼= GL3(2).
The latter is not possible as GL3(2) does not contain a subgroup isomorphic to D14.
Thus (n, q) 6= (6, 2). Moreover, according to [3, (10.2)] (n, q) 6= (4, 2).

Let A be the stabilizer of a non-isotropic 1-space 〈v〉 and B be a maximal sub-
group of G containing X. As T as well as Aut(T ) act primitively on Ω, there is a
subgroup T ≤ G⋆ ≤ G which admits a maximal factorization G⋆ = AC such that
X ≤ C and A = G⋆

x for some x ∈ Ω, see Corollary 5.5. Thus we may assume that
T is not a subgroup of B. Then G = AB is a factorization as determined in [17]
and therefore n = 2m is even and B is isomorphic to one of the following groups,
see [17, Theorem A].

(a) the stabilizer of a maximal totally isotropic subspace W of V ;

(b) the stabilizer of a symplectic form on V , B ∩ T ∼= PSp2m(q);

(c) the stabilizer of the direct sum V = V1 ⊕ V2 of V in two maximal totally
isotropic subspaces V1 and V2, q = 2 and n ≥ 8 or q = 4 and G ≥ T.4;

(d) B ∩ T ∼= Suz and q = 2, n = 12

We rule out one case after another.

(a) B is the stabilizer of a maximal totally isotropic subspace W of V . Thus
B = Op(B) : L with

SLm(q2)Z/Z ≤ L ≤ ΓLm(q2)/Z,
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where Z is the subgroup of Z(GL2m(q)) of order q + 1 and Op(B) is an irreducible

GF (q)L′-module of dimension m2, where L′ = [L, L]. Let B = B/Op(B) and let X̂

be a preimage of X in ΓLm(q2). Then X̂ satisfies the assumptions of Lemma 4.2.
Hence X̂ is isomorphic to a subgroup of ΓL1(q

2m) or m = 2 and SL2(q
2) is a normal

subgroup of X̂ by 4.2. In the latter case (q4 − 1)/(q − 1, 2) divides the order of X,
which is not possible. Thus X is isomorphic to a quotient of a subgroup of ΓL1(q

2m).
In particular, |X|p is a divisor of 2m and therefore U := X ∩ Op(B) 6= 1.

Let q2m be a Zsigmondy prime (which exists by Lemma 4.1) and let x ∈ X
be an element of order q2m. As Op(B) is an abelian group, x acts on U and, as
|U | ≤ q2m−1, this action is trivial. Therefore U is a subgroup of the centralizer R of
x in Op(B). By Lemma 6.1 R acts semiregularly on Ω, so in particular the order of
R divides |X| and |R| ≤ q2m−1.

Assume first m = 2 or 4. Then m2 = 4 or 16 and U is a non-trivial p-group of
order at most q3 or q7, respectively. On the other hand Op(B) is an m2-dimensional
GF (q)L-module and every irreducible 〈x〉-submodule is of dimension at least 4 or
8, respectively. If m = 2 it follows R = 1 and if m = 4, then |R| ≤ q7 and therefore
q9 ≤ |Op(B)/R| ≤ q16 and it follows again that R = 1 in contradiction to U ≤ R.
Hence m 6= 2, 4.

As m 6= 2, 4, we get |X|p = (2m)p ≤ pm−2 ≤ qm−2. Hence

|U | ≥ q2m−1−(m−2) = qm+1.

Again we are going to derive a contradiction to the fact that U ≤ R.
As |Op(B)| and |x| are coprime, it follows Op(B) = [Op(B), x] × R, see for

instance [1, (24.6)]. Notice, that the dimension of every non-trivial GF (q)〈x〉-
submodule is divisible by 2m, as the order of x is the Zsigmondy prime q2m. There-
fore, |[Op(B), x]| = qr2m for some natural number r and |R| = qm2−r2m = qm(m−2r).
So m(m − 2r) is at most 2m − 1, which implies m − 2r = 0 or 1. We obtain the
contradiction that R is of order 1 or qm and the subgroup U of R of order at least
qm+1.

(b) B is the stabilizer of a symplectic form on V , so B ∩ T ∼= PSp2m(q). As
B is a maximal subgroup of G, we may assume that G is the normalizer of B ∩ T
in G, so G = T · 〈d〉 : 〈f〉 with d a diagonal automorphism of order (2, q − 1) and
f the Frobeniusautomorphism of order 2a where q = pa, p prime, see for instance
[14, (4.5.6)], and B ∼= 2 × Aut(PSp2m(q)). According to [17, 3.3.7] A ∩ B fixes a
(2m − 2)-dimensional non-degenerate subspace W of the natural GF (q)B-module.
Now Lemma 5.3 yields B = BW X and B/Z(B) = (BW/Z(B))(XZ(B)/Z(B)) is
one of the factorizations listed in Tables 1, 2 or 3 of [17]. It follows that 2m− 2 = 2
and that q = 2, 4. hence m = 2 and our assumption then implies q = 4 and

|X| = 43(44 − 1)/5 = 26 · 3 · 17.

We obtain a contradiction as there is no subgroup of order 26 · 3 · 17 or 25 · 3 · 17 in
ΓL2(16).

(c) B is the stabilizer of the direct sum V = V1 ⊕ V2 of V in two maximal
totally isotropic subspaces V1 and V2, q = 2 and m ≥ 3 or q = 4 and G ≥ T.4.
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As NT = Aut(T ) with N the normalizer of T ∩ B in Aut(T ), we may assume
G = Aut(T ). Then

B ∼= (q − 1).PΓLm(q2).2,

(this can be derived from [14, (4.2.4)], for instance). Let B1 ≤ B be such that
B1

∼= (q − 1).PΓLm(q2) and let X1 = X ∩ B1. Then |X : X1| ≤ 2. Let X̂1 be the
preimage of X1 in ΓLm(q2), then, as |Z(ΓLm(q2)) : Z(B1)| = (q2−1)/(q−1) = q+1,
it follows that the order of X̂1 divides |X1|(q+1) = q2m−1(q2m−1). Now Lemma 4.2
gives m = 2 and q = 4 (we know (m, q) 6= (2, 2)) or X induces semilinear mappings
on V . Similiar as in (b) we see that the latter case is not possible. Hence m = 2
and q = 4, B ∼= 3.L2(16).4.2, so that B/Z(B) ∼= Aut(L2(16)) and |X| = 26 · 3 · 17.
Let L be a maximal subgroup of L2(16).4 which is divisible by 17 and 2 but not by
5. Then L ∼= 17 : 8 and there is no subroup X1 in B1 of order 26 · 3 · 17 or 25 · 3 · 17.
This contradiction shows that (c) is not possible.

(d) B ∩ T ∼= Suz and q = 2, 2m = 12. Then, as B acts irreducibly on V ,
Z(B) = 1 and B ≤ Aut(Suz). According to Theorem 4 Aut(Suz) does not admit
an exact factorization. This final contradiction proves the theorem. �
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