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Abstract

In this paper, we consider a tiling generated by a Pisot unit number of
degree d ≥ 3 which has a finite expansible property. We compute the states
of a finite automaton which recognizes the boundary of the central tile. We
also prove in the case d = 3 that the interior of each tile is simply connected.

1 Introduction

Let β > 1 be a real number. A β-representation of a real number x ≥ 0 is an infinite
sequence (ai)k≥i>−∞, ai ∈ N, such that

x = akβ
k + ak−1β

k−1 + · · ·+ a1β + a0 + a−1β
−1 + a−2β

−2 + · · ·

for a certain integer k ≥ 0. It is denoted by

x = akak−1 . . . a1a0.a−1a−2 . . .

A particular β-representation, called β-expansion, is computed by the “greedy al-
gorithm” (see [4] and [5]): denote by byc and {y} respectively the integer part and
the fractional part of a number y. There exists k ∈ Z such that βk ≤ x < βk+1. Let
xk = bx/βkc and rk = {x/βk}. Then for i < k, put xi = bβri+1c and ri = {βri+1}.
We get

x = xkβ
k + xk−1β

k−1 + · · ·
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If k < 0 (i.e., if x < 1), we put x0 = x−1 = · · · = xk+1 = 0. If an expansion ends
with infinitely many zeros, it is said to be finite, and the ending zeros are omitted.

The digits xi’s computed by the previous algorithm belong to the set A =
{0, . . . , β − 1} if β is an integer, or to the set A = {0, . . . , bβc} if β is not an
integer. We will sometimes omit the splitting point between the integer part and
the fractional part of the β-expansion; then the infinite sequence is just an element
of AN.

For the numbers 0 ≤ x < 1, the expansion defined above coincides with the β-
representation of Rényi [10], which can be defined by means of the β transformation
of the unit interval

Tβ(x) = {βx}, x ∈ [0, 1].

For x ∈ [0, 1), we have x−j = bβT j−1
β (x)c for j = 1, 2, . . . .

Remark 1.1. For x = 1 the two algorithms differ. The β-expansion of 1 is just
1 = 1.0000 . . ., while the Rényi β-representation of 1 is

d(1, β) = .t−1t−2 . . . ,

where
t−j = bβT j−1

β (1)c, ∀j ≥ 1.

Let Fin(β) be the set of nonnegative real numbers which have a finite β-expansion.
We will sometimes denote a finite β-expansion xn . . . xk, k ≤ n, by (xi)n≥i≥k. We
denote the set of finite β-expansions by Fβ. We put

Eβ = {(xi)i≥k, k ∈ Z | ∀n ≥ k, (xi)n≥i≥k ∈ Fβ}.

We say that β has a finite expansible property and we denote this by (F) if

Z[β] ∩ [0,+∞) = Fin(β),

where Z[β] is the ring generated by Z and β. If β satisfies the property (F), then
d(1, β) is finite, because β − bβc ∈ Fin(β).
We say that β is a Pisot number if β is an algebraic integer number whose all Galois
conjugates have modulus less than one. Moreover, if

Xd + bd−1X
d−1 + · · ·+ b0

is the minimal polynomial of β then β is said to be a unit Pisot number if b0 = ±1.
In the following, we assume that β = β1 is a Pisot unit number of degree d ≥ 3. We
denote by β2, . . . , βr the real Galois conjugates of β and by βr+1, . . . , βr+s, βr+s+1 =
βr+1, . . . , βr+2s = βr+s its complex Galois conjugates. We also assume that β has
the property (F) and that d(1, β) = .a−1 . . . a−t, where a−t 6= 0. We have a−1 = bβc.

Let ψ = (β2, . . . , βr+s). We denote (aβi
2, . . . , aβ

i
r+s) by aψi for all i ∈ Z and

a ∈ Z. If B is a subset of Z and i ∈ Z, then we denote by Bψi the set {bψi | b ∈ B}.
If .x−1 . . . x−N is a finite β-expansion, we put

K.x−1...x−N
= {

+∞∑
i=−N

diψ
i | (di)i≥−N ∈ Eβ, di = xi, ∀i = −N, −N + 1, . . . ,−1}

and call it a tile. We denote ψNK.x−1...x−N
by Kx−1...x−N . and K.0 by K. We call

K the central tile. It is known that the central tile K induces a periodic tiling of
Rr−1 × Cs.
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Proposition 1. (see [1],[2], [3] and [8]) The tiles are compact sets of Rr−1 × Cs

and satisfy the following properties.

1. Every tile intersects a finite number of different tiles.

2. The Lebesgue measure of the intersection of two different tiles is zero.

3. The intersection of a tile with the interior of another tile is empty.

4. If x =
∑M

i=−N diψ
i is an element of a tile K.x−1...x−N

, then x is an interior
point of this tile. In particular, 0 is an interior point of the central tile.

5. If a−t = 1, then the tiles are arcwise connected sets.

In this paper we study the boundary of the tiles. In particular, we compute the
states of a finite automaton that recognizes the boundary of the central tile. We
also prove that in the case d = 3 the interior of each tile is simply connected. This
generalizes a result of Rauzy (see [9]) which was done in the case of β satisfying the
relation β3 − β2 − β − 1 = 0.

2 Notations and definitions

We denote by || || the norm in Rr−1 × Cs defined by

||(x1, . . . , xr−1, z1, . . . , zs)|| = max{|xi|, |zj| | i = 1, . . . , r − 1, j = 1, . . . , s}

where |xi| is the absolute value of xi and |zj| is the modulus of zj.

Let z = (z2, . . . , zr+s) ∈ Rr−1×Cs and i ∈ Z, we denote (z2β
i
2, . . . , zr+sβ

i
r+s) by zψi.

Let Z be a subset of Rr−1×Cs. We denote by diam(Z) the diameter of Z, by int(Z)
the interior of Z, by ∂(Z) the boundary of Z and by ψiZ the set {zψi | z ∈ Z} for
all i ∈ Z.

Let X be a finite and non-empty set. Let XN be the set of infinite sequences
on X. An automaton over X is an oriented graph denoted by A = (V,X,E, I, T )
with edges labelled by the elements of X where V is the set of vertices, called
states, I ⊂ V is the set of initial states, T ⊂ V is the set of terminal states, and
E ⊂ V × X × V is the set of labelled edges. The automaton is said to be finite
if V is a finite set. All states of the automata considered in this paper are final.
Let (an)n≥0 ∈ XN; we say that the automaton A recognizes (an)n≥0 if there exists
a sequence of states (qn)n≥0 such that q0 is an initial state and for all n ≥ 1, qn is
a final state satisfying (qn−1, an−1, qn) ∈ E. For more information about automata,
see [11].

A subset Y of XN is said to be recognized by a finite automaton if there exists
a finite automaton such that Y is exactly the set of sequences recognized by the
automaton.

A subset C of K is said to be recognized by a finite automaton if the set {(di)i≥0 ∈
Eβ |

∑+∞
i=0 diψ

i ∈ C} is recognized by a finite automaton.
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3 Boundary of K

Proposition 2. Let x =
∑+∞

i=0 εiψ
i and y =

∑+∞
i=0 ε

′
iψ

i where (εi)i≥0, (ε′i)i≥0 ∈
Eβ. Then x = y if and only if there exists M = M(β) ∈ N such that the set
{∑k

i=0(εi− ε′i)ψi−k | k ≥ 0} is included in the set {±∑0
i=−M ciψ

i | (ci)0≥i≥−M ∈ Fβ}.

Lemma 1. Let x0.x−1 . . . x−n be a finite β-expansion. Then x0 + x−1/β + · · · +
x−n/β

n < β.

Proof. The proof is a direct consequence of the greedy algorithm (see [7]). �

Proof of Proposition 2. Assume that x = y and put Ak =
∑k

i=0(εi−ε′i)ψi−k. Assume
that Ak 6= 0. Since β satisfies the property (F), there exists a finite β-expansion
(ci)L≥i≥−M with cL 6= 0 such that

∑k
i=0(εi − ε′i)β

i−k = ±∑L
i=−M ciβ

i. Now assume
without loss of generality that

∑k
i=0(εi − ε′i)β

i−k =
∑L

i=−M ciβ
i. Let h be an integer

such that h > max(k,M). Put P (x) = xh(
∑k

i=0(εi − ε′i)x
i−k − ∑L

i=−M cix
i). Then

P (x) is a polynomial with integer coefficients satisfying P (β) = 0. Then for all
Galois conjugates γ of β we have P (γ) = 0. Hence

Ak =
L∑

i=−M

ciψ
i.

Since

k∑
i=0

εiβ
i−k =

k∑
i=0

ε′iβ
i−k +

L∑
i=−M

ciβ
i (1)

we should have
∑k

i=0 εiβ
i−k ≥ βL. Therefore L ≤ 0, otherwise we have

k∑
i=0

εiβ
i−k ≥ β.

This latter inequality contradicts Lemma 1, because εk . . . ε0 is a finite β-expansion.
On the other hand, since x = y, Ak =

∑+∞
i=k+1(ε

′
i − εi)ψ

i−k =
∑+∞

i=1 ε
′
k+iψ

i −∑+∞
i=1 εk+iψ

i; then there exists a fixed constant c(β) = c > 0 such that ||Ak|| < c.
Hence

|
k∑

i=0

(εi − ε′i)β
i−k
j | < c, ∀j = 2, . . . , r + 2s, ∀k ≥ 0. (2)

Now put for all k ≥ 0, zk =
∑k

i=0(εi − ε′i)β
i−k. Since β is a Pisot unit number, 1/β

is an algebraic integer, hence for all k ≥ 0, zk is an algebraic integer of Q(β). The
Galois conjugates of zk are contained in the set {∑k

i=0(εi−ε′i)βi−k
j | j = 2, . . . , r+2s}.

By (2) and the fact that zk is bounded by a fixed constant independent of k, we
deduce that the set Γ constituted of all zk and their Galois conjugates is bounded
independently of k. This implies that there exists a fixed constant l independent
of k such that for all k ≥ 0, the coefficients of the minimal polynomial of zk are
bounded by l. Since these coefficients are integer numbers, we deduce that the set
of minimal polynomial of all zk is finite. Hence the set Γ is finite. Thus the set
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{Ak | k ≥ 0} is finite. Then M is a finite integer independent of k. This ends the
proof of the direct implication.

Now assume that the set {∑k
i=0(εi − ε′i)ψ

i−k | k ≥ 0} is included in the set
{±∑0

i=−M ciψ
i | (ci)0≥i≥−M ∈ Fβ}, then there exists d > 0 such that ||∑k

i=0(εi −
ε′i)ψ

i−k|| < d for all k ≥ 0. Hence for all k ≥ 0, ||∑k
i=0(εi − ε′i)ψ

i|| < d||ψ||k. Since
||ψ|| < 1, we obtain

∑+∞
i=0 εiψ

i =
∑+∞

i=0 ε
′
iψ

i.
�

Theorem 1. The boundary of K is recognized by a finite automaton whose set of
states is contained in the product set {±∑−1

i=−M−1 ciψ
i | (ci)−1≥i≥−M−1 ∈ Fβ}×A×A

where M is a fixed nonnegative integer number and A = {0, . . . , bβc}.

Lemma 2. Let x ∈ Rr−1×Cs, then x ∈ ∂(K) if and only if there exist N = N(β) < 0
and l ∈ {N, . . . ,−1} such that x =

∑+∞
i=0 εiψ

i =
∑+∞

i=l ε
′
iψ

i, where (εi)i≥0, (ε′i)i≥l ∈
Eβ and ε′l 6= 0.

Proof. Assume that x ∈ ∂(K). Since x 6∈ int(K), for all τ > 0 there exists y 6∈ K
such that ||x− y|| < τ. Hence there exists a sequence (yn)n≥1 such that for all n ≥
1, ||x−yn|| < 1/n and yn 6∈ K. Since there exists a finite number of tiles intersecting
K (item 1 of Proposition 1), we deduce that there exists a tile K′ = K.ε′−1...ε′

l
6= K

and a subsequence (ypn)n≥0 such that for all n ≥ 0, ||x− ypn|| < 1/pn and ypn ∈ K′.
Hence limn7→+∞ ypn = x. Since K′ is a compact set, x ∈ K′, hence x ∈ K ∩ K′. The
number l is limited independently of x because of item 1 of Proposition 1. This
proves the direct implication.

Assume that x =
∑+∞

i=0 εiψ
i =

∑+∞
i=l ε

′
iψ

i where l < 0, then x ∈ K ∩ K.ε′−1...ε′
l
.

If x ∈ int(K), then there exists a real number r1 > 0 such that B(x, r1) = {z ∈
Rr−1×Cs | ||z−x|| < r1} ⊂ K. Put for all n ∈ N, zn =

∑n
i=l ε

′
iψ

i. Since the sequence
zn converges to x and zn is an interior point of K.ε′−1...ε′

l
(item 4 of Proposition 1),

there exists a positive integer n and a real number r2 > 0 such that

zn ∈ B(x, r1) and B(zn, r2) ⊂ K.ε′−1...ε′
l
.

Then there exists δ > 0 such that B(zn, δ) ⊂ K ∩ K.ε′−1...ε′
l
; this is a contradiction

because the Lebesgue measure of K∩K.ε′−1...ε′
l
is zero (item 2 of Proposition 1). This

ends the proof. �

Beginning of the proof of Theorem 1. Let l be a negative integer. Put

Dl = {(εi)i≥0 ∈ Eβ | ∃(ε′i)i≥l ∈ Eβ ; ε′l 6= 0,
+∞∑
i=0

εiψ
i =

+∞∑
i=l

ε′iψ
i},

El = {(εi, ε
′
i)i≥l | (εi)i≥l, (ε

′
i)i≥l ∈ Eβ, εi = 0, ∀l ≤ i ≤ −1 , ε′l 6= 0 ,

∑∞
i=0 εiψ

i =∑∞
i=l ε

′
iψ

i} and

Vl = {
k∑

i=l

(εi − ε′i)ψ
i−k | k ≥ l, (εi, ε

′
i)i≥l ∈ El}.

By Proposition 2, the set Vl is finite. First, put l = −1 and assume that V−1∩Aψ0 6=
∅. Let y−1 ∈ A such that y−1ψ

0 ∈ V−1 ∩Aψ0. Put x−1 = 0 and A−1 = y−1ψ
0. Hence

A−1 = 0ψ−1 + (y−1 − x−1)ψ
0.
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Now, consider the equation in (X, a, b) ∈ V−1 × A× A defined by:

X = A−1ψ
−1 + (b− a)ψ0 (3)

Let (A0, x0, y0) ∈ V−1 × A× A. If (A0, x0, y0) is a solution of (3) and

x0/β + x−1/β
2 < 1, y0/β + y−1/β

2 < 1 (4)

then we put an edge from (A−1, x−1, y−1) to (A0, x0, y0) and label it by x0. The
relation (4) guarantees that the words x0x−1 and y0y−1 are finite β-expansions.
Now assume that we have constructed the sequence (Ai, xi, yi), −1 ≤ i ≤ m. If
(Am+1, xm+1, ym+1) is a solution of the equationX = Amψ

−1+(b−a)ψ0 and xm+1/β+
· · · + x−1/β

m+3 < 1, ym+1/β + · · · + y−1/β
m+3 < 1, then we put an edge from

(Am, xm, ym) to (Am+1, xm+1, ym+1) and label it by xm+1. If we continue on, we obtain
an automaton that we denote by A−1. Since V−1 is a finite set, the automaton A−1

is finite.

Lemma 3. The automaton A−1 recognizes the set D−1.

Proof. Let (εi)i≥0 ∈ D−1; then there exists (ε′i)i≥−1 ∈ Eβ such that ε′−1 6= 0 and∑∞
i=0 εiψ

i =
∑∞

i=−1 ε
′
iψ

i. Put ε−1 = 0 and Bk =
∑k

i=−1(ε
′
i − εi)ψ

i−k for all k ≥ −1.
We have B−1 = ε′−1ψ

0 and by induction Bk = Bk−1ψ
−1+(ε′k−εk)ψ

0, ∀k ∈ N. Hence
the sequence (εi)i≥0 is recognized by the automaton A−1.

Now let (xi)i≥0 be a sequence recognized by the automaton A−1; then there exists
a sequence (yi)i≥−1 ∈ Eβ such that A−1 = y−1ψ

0 and Ak = Ak−1ψ
−1 + (xk − yk)ψ

0

for all k ∈ N. Hence for all k ∈ N,

Akψ
k+1 = y−1ψ

0 +
k∑

i=0

(xi − yi)ψ
i+1.

Since ||ψ|| < 1 and for all k ∈ N, Ak ∈ V−1 (finite set), we have

lim
k 7→+∞

Akψ
k+1 = 0.

Therefore
∑∞

i=0 xiψ
i =

∑∞
i=−1 yiψ

i. Thus (xi)i≥0 ∈ D−1. This ends the proof of the
lemma.

�

End of the proof of Theorem 1. Consider l < −1. It is easy to see that a sequence
(xi)i≥0 belongs to Dl if and only if the associated sequence (yi)i≥0, defined by yi = 0
for i = 0, . . . ,−l − 2 and yi = xi+l+1 for all i ≥ −l − 1, belongs to D−1. Hence we
construct an automaton Al which recognizes Dl in the following manner: denote
by Il the set of all states v

(j)
−l−2 of A−1 such that there exist an initial state v

(j)
−1 of

A−1 and final states v
(j)
0 , . . . , v

(j)
−l−3 such that for all i = −1, . . . ,−l − 3, the edge

between v
(j)
i and v

(j)
i+1 is labeled by 0. Then if we denote A−1 by (S,A,E−1, I−1, T−1),

we have Al = (S,A,El, Il, Tl) where El = E−1\Rl where Rl = {(v(j)
i , 0, v

(j)
i+1) ∈

E−1 | − 1 ≤ i ≤ −l − 3 , v
(j)
−l−2 ∈ Il} and Tl is the set of v ∈ T−1 such that there

exist k+ 1 states of A−1 : v−l−2, v−l−1, . . . , v−l−2+k = v such that v−l−2 ∈ Il and for
all i = −l− 1, . . . ,−l− 2 + k, (vi−1, ai, vi) ∈ El for some sequence (ai)−l−1≤i≤−l−2+k

of elements of A.
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Let C = {(εi)i≥0 ∈ Eβ |
∑∞

i=0 εiψ
i ∈ ∂(K)}. By Lemma 2, we have C =

⋃−1
l=N Dl

where N is the integer given in Lemma 2. Then an automaton which recognizes C
is L = (S,A,E, I, T ) where I =

⋃−1
l=N Il, T = T−1, E = E−1 and S ⊂ V−1 × A× A.

�

Remark 3.1. By using the same approach, we can prove that the boundary of every
tile is recognized by a finite automaton.

Remark 3.2. The interest of automata remains in the fact that they give informa-
tion for the boundary of compact sets given by numeration systems. For example
in the case of β satisfying the relation β3 − β2 − β − 1 = 0, the central tile (Rauzy
fractal) (see [9]) is the set K = {∑+∞

i=0 εiα
i | ∀i : εi = 0, 1 ∧ εiεi+1εi+2 = 0}, where α

is one of the two complex roots of the polynomial x3 − x2 − x − 1. The automaton
which recognizes the boundary of K helps us to show that this boundary is a Jordan
curve and that it is a quasi-circle (image of a circle by a quasi-conformal map) with
Hausdorff dimension 1.0645 (see [6]). It will be interesting to try to extend these
results to other Pisot unit numbers.

Theorem 2. If β is a cubic Pisot unit number with the property (F), then the
interior of each tile is simply connected.

Remark 3.3. The class of β cubic Pisot unit numbers with the property (F) is equal
to the class of numbers β > 1 with minimal polynomial x3 − ax2 − bx− 1 = 0 where
a, b are integer numbers satisfying the property −1 ≤ b ≤ a + 1 and a + b ≥ 1 (see
[2]). This class of real numbers β satisfies also d(1, β) = .a−1 . . . a−t, where a−t = 1.
Then for this class the tiles are arcwise connected sets (see item 5 of Proposition 1).

Proof. It suffices to prove the result for the central tile K. We notice that in
the case of β cubic Pisot unit number, we have ψ = β2 if β is not totally real, and
otherwise ψ = (β2, β3).

Let Γ be a Jordan simple and closed curve contained in int(K). Let C be the
connected bounded component of Γ (C is the open set delimited by Γ ) and C ′ be
the connected unbounded component of Γ. Let us prove that C ⊂ int(K).
First we shall show that ψC ∩ K ⊂ ψK. Let z0 ∈ ψC ∩ K. Assume that z0 6∈ ψK.
Since

K =
bβc⋃
i=0

Ki. and ψK = K0.,

there exists i0 ∈ {1, . . . , bβc}} such that z0 ∈ Ki0.. Put

r = d(ψΓ, K2\int(ψK)),

where
d(X ,Y) = inf{||x− y|| | x ∈ X , y ∈ Y}

for every X and Y subsets of K2, where K2 = C if β is not totally real, and otherwise
K2 = R2. Since the set ψΓ is contained in int(ψK), we have r > 0.
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Since Ki0. ∩ int(ψK) = ∅, d(Ki0., ψΓ) ≥ r. Since Ki0. is connected (item 5 of
Proposition 1) and Ki0. ∩ψC 6= ∅, we have Ki0. ⊂ ψC. Since K is connected (item 5
of Proposition 1), for all ε > 0 there exist x1, . . . , xn ∈ K such that x1 = x, xn = y
and ||xi − xi+1|| < ε for all 1 ≤ i ≤ n− 1.

Let 1 ≤ j ≤ bβc, j 6= i0, and δ = min{d(Ki.,Kj.) | Ki. ∩ Kj. = ∅}. In both cases
δ = 0 and δ > 0, we deduce by taking ε = δ (in the second case) that there exist k
integers n1, . . . , nk ∈ {1, . . . , bβc} such that n1 = i0, nk = j and Kni. ∩ Kni+1. 6= ∅
for all 1 ≤ i ≤ k − 1. Therefore Kj. contains a point of ψC ∩ K. Hence by using
the same argument used for Ki0., we deduce that Kj. ⊂ ψC, ∀1 ≤ j ≤ bβc. Then
ψC ′∩K ⊂ ψK. Let x be an element of K such that ||x|| = max{||z|| | z ∈ K}. Then
x ∈ ψC ′. Thus x ∈ ψK. This is impossible, because in this case we have xψ−1 ∈ K
and ||xψ−1|| > ||x||. Therefore

ψC ∩ K ⊂ ψK. (5)

The relation (5) implies that ψC ∩ K = ψC ∩ ψK. If we apply the same argument
to the curve ψn−1Γ, we obtain

∀n ∈ N\{0}, ψnC ∩ K = ψnC ∩ ψK.

Then by induction we have

ψnC ∩ K = ψnC ∩ ψnK, ∀n ∈ N\{0}.

Let z ∈ C. Since 0 ∈ int(K) and |ψ| < 1, there exists n ∈ N such that zψn ∈ K.
Then zψn ∈ ψnC ∩ K = ψnC ∩ ψnK. Hence z ∈ K. This implies that C ⊂ K. Since
C is an open set, we have C ⊂ int(K). �

Remark 3.4. The proof cannot be extended to β with deg(β) = d > 3, because
a Jordan simple and closed curve Γ does not separate the d − 1 dimensional space
Rr−1 ×Cs into two connected components. However if we take Γ as a d− 1 sphere,
using the same proof of Theorem 2, we can show that C ⊂ int(K).

Acknowledgements The author thanks the referee for useful suggestions.
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plexe, Acta Arithmética, XCV. 3 (2000), 195–224.

[7] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hun-
gar. 11 (1960), 401–416.

[8] B. Praggastis, Markov partitions for hyperbolic toral automorphisms, Ph.d.
Thesis, Univ. of Washington, (1992).
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