Combinatorial and geometrical properties of a class of tilings

Ali Messaoudi^{*}

Abstract

In this paper, we consider a tiling generated by a Pisot unit number of degree $d \ge 3$ which has a finite expansible property. We compute the states of a finite automaton which recognizes the boundary of the central tile. We also prove in the case d = 3 that the interior of each tile is simply connected.

1 Introduction

Let $\beta > 1$ be a real number. A β -representation of a real number $x \ge 0$ is an infinite sequence $(a_i)_{k>i>-\infty}, a_i \in \mathbb{N}$, such that

$$x = a_k \beta^k + a_{k-1} \beta^{k-1} + \dots + a_1 \beta + a_0 + a_{-1} \beta^{-1} + a_{-2} \beta^{-2} + \dots$$

for a certain integer $k \ge 0$. It is denoted by

$$x = a_k a_{k-1} \dots a_1 a_0 \dots a_{-1} a_{-2} \dots$$

A particular β -representation, called β -expansion, is computed by the "greedy algorithm" (see [4] and [5]): denote by $\lfloor y \rfloor$ and $\{y\}$ respectively the integer part and the fractional part of a number y. There exists $k \in \mathbb{Z}$ such that $\beta^k \leq x < \beta^{k+1}$. Let $x_k = \lfloor x/\beta^k \rfloor$ and $r_k = \{x/\beta^k\}$. Then for i < k, put $x_i = \lfloor \beta r_{i+1} \rfloor$ and $r_i = \{\beta r_{i+1}\}$. We get

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \cdots$$

*Supported by CNPq-Brasil, Proc. 302298/2003-7

Received by the editors October 2002 - In revised form in June 2003. Communicated by V. Blondel.

Bull. Belg. Math. Soc. 12 (2005), 625-633

¹⁹⁹¹ Mathematics Subject Classification : 11B39 - 52C22 - 68Q70.

Key words and phrases : Tiling, Automata, Pisot number.

If k < 0 (i.e., if x < 1), we put $x_0 = x_{-1} = \cdots = x_{k+1} = 0$. If an expansion ends with infinitely many zeros, it is said to be *finite*, and the ending zeros are omitted.

The digits x_i 's computed by the previous algorithm belong to the set $A = \{0, \ldots, \beta - 1\}$ if β is an integer, or to the set $A = \{0, \ldots, \lfloor\beta\rfloor\}$ if β is not an integer. We will sometimes omit the splitting point between the integer part and the fractional part of the β -expansion; then the infinite sequence is just an element of $A^{\mathbb{N}}$.

For the numbers $0 \le x < 1$, the expansion defined above coincides with the β -representation of Rényi [10], which can be defined by means of the β transformation of the unit interval

$$T_{\beta}(x) = \{\beta x\}, \ x \in [0, 1].$$

For $x \in [0, 1)$, we have $x_{-j} = \lfloor \beta T_{\beta}^{j-1}(x) \rfloor$ for $j = 1, 2, \ldots$

Remark 1.1. For x = 1 the two algorithms differ. The β -expansion of 1 is just 1 = 1.0000..., while the Rényi β -representation of 1 is

$$d(1,\beta) = .t_{-1}t_{-2}\ldots,$$

where

$$t_{-j} = \lfloor \beta T_{\beta}^{j-1}(1) \rfloor, \ \forall j \ge 1.$$

Let $Fin(\beta)$ be the set of nonnegative real numbers which have a finite β -expansion. We will sometimes denote a finite β -expansion $x_n \dots x_k$, $k \leq n$, by $(x_i)_{n \geq i \geq k}$. We denote the set of finite β -expansions by F_{β} . We put

$$E_{\beta} = \{ (x_i)_{i \ge k}, \ k \in \mathbb{Z} \mid \forall n \ge k, \ (x_i)_{n \ge i \ge k} \in F_{\beta} \}.$$

We say that β has a finite expansible property and we denote this by (F) if

$$\mathbb{Z}[\beta] \cap [0, +\infty) = Fin(\beta),$$

where $\mathbb{Z}[\beta]$ is the ring generated by \mathbb{Z} and β . If β satisfies the property (F), then $d(1,\beta)$ is finite, because $\beta - \lfloor \beta \rfloor \in Fin(\beta)$.

We say that β is a *Pisot number* if β is an algebraic integer number whose all Galois conjugates have modulus less than one. Moreover, if

$$X^d + b_{d-1}X^{d-1} + \dots + b_0$$

is the minimal polynomial of β then β is said to be a *unit* Pisot number if $b_0 = \pm 1$. In the following, we assume that $\beta = \beta_1$ is a Pisot unit number of degree $d \ge 3$. We denote by β_2, \ldots, β_r the real Galois conjugates of β and by $\beta_{r+1}, \ldots, \beta_{r+s}, \beta_{r+s+1} = \overline{\beta_{r+1}}, \ldots, \beta_{r+2s} = \overline{\beta_{r+s}}$ its complex Galois conjugates. We also assume that β has the property (F) and that $d(1,\beta) = a_{-1} \ldots a_{-t}$, where $a_{-t} \neq 0$. We have $a_{-1} = \lfloor \beta \rfloor$.

Let $\psi = (\beta_2, \dots, \beta_{r+s})$. We denote $(a\beta_2^i, \dots, a\beta_{r+s}^i)$ by $a\psi^i$ for all $i \in \mathbb{Z}$ and $a \in \mathbb{Z}$. If B is a subset of \mathbb{Z} and $i \in \mathbb{Z}$, then we denote by $B\psi^i$ the set $\{b\psi^i \mid b \in B\}$.

If $x_{-1} \dots x_{-N}$ is a finite β -expansion, we put

$$\mathcal{K}_{x_{-1}\dots x_{-N}} = \{\sum_{i=-N}^{+\infty} d_i \psi^i \mid (d_i)_{i\geq -N} \in E_\beta, \ d_i = x_i, \ \forall i = -N, \ -N+1,\dots,-1\}$$

and call it a *tile*. We denote $\psi^N \mathcal{K}_{\cdot x_{-1} \dots x_{-N}}$ by $\mathcal{K}_{x_{-1} \dots x_{-N}}$ and $\mathcal{K}_{\cdot 0}$ by \mathcal{K} . We call \mathcal{K} the *central tile*. It is known that the central tile \mathcal{K} induces a periodic tiling of $\mathbb{R}^{r-1} \times \mathbb{C}^s$.

Proposition 1. (see [1],[2], [3] and [8]) The tiles are compact sets of $\mathbb{R}^{r-1} \times \mathbb{C}^s$ and satisfy the following properties.

- 1. Every tile intersects a finite number of different tiles.
- 2. The Lebesgue measure of the intersection of two different tiles is zero.
- 3. The intersection of a tile with the interior of another tile is empty.
- 4. If $x = \sum_{i=-N}^{M} d_i \psi^i$ is an element of a tile $\mathcal{K}_{x_{-1}...x_{-N}}$, then x is an interior point of this tile. In particular, 0 is an interior point of the central tile.
- 5. If $a_{-t} = 1$, then the tiles are arcwise connected sets.

In this paper we study the boundary of the tiles. In particular, we compute the states of a finite automaton that recognizes the boundary of the central tile. We also prove that in the case d = 3 the interior of each tile is simply connected. This generalizes a result of Rauzy (see [9]) which was done in the case of β satisfying the relation $\beta^3 - \beta^2 - \beta - 1 = 0$.

2 Notations and definitions

We denote by || || the norm in $\mathbb{R}^{r-1} \times \mathbb{C}^s$ defined by

$$||(x_1, \dots, x_{r-1}, z_1, \dots, z_s)|| = max\{|x_i|, |z_j| \mid i = 1, \dots, r-1, j = 1, \dots, s\}$$

where $|x_i|$ is the absolute value of x_i and $|z_j|$ is the modulus of z_j .

Let $z = (z_2, \ldots, z_{r+s}) \in \mathbb{R}^{r-1} \times \mathbb{C}^s$ and $i \in \mathbb{Z}$, we denote $(z_2\beta_2^i, \ldots, z_{r+s}\beta_{r+s}^i)$ by $z\psi^i$. Let \mathcal{Z} be a subset of $\mathbb{R}^{r-1} \times \mathbb{C}^s$. We denote by $diam(\mathcal{Z})$ the diameter of \mathcal{Z} , by $int(\mathcal{Z})$ the interior of \mathcal{Z} , by $\partial(\mathcal{Z})$ the boundary of \mathcal{Z} and by $\psi^i \mathcal{Z}$ the set $\{z\psi^i \mid z \in \mathcal{Z}\}$ for all $i \in \mathbb{Z}$.

Let X be a finite and non-empty set. Let $X^{\mathbb{N}}$ be the set of infinite sequences on X. An *automaton* over X is an oriented graph denoted by $\mathcal{A} = (V, X, E, I, T)$ with edges labelled by the elements of X where V is the set of vertices, called states, $I \subset V$ is the set of initial states, $T \subset V$ is the set of terminal states, and $E \subset V \times X \times V$ is the set of labelled edges. The automaton is said to be finite if V is a finite set. All states of the automata considered in this paper are final. Let $(a_n)_{n\geq 0} \in X^{\mathbb{N}}$; we say that the automaton \mathcal{A} recognizes $(a_n)_{n\geq 0}$ if there exists a sequence of states $(q_n)_{n\geq 0}$ such that q_0 is an initial state and for all $n \geq 1$, q_n is a final state satisfying $(q_{n-1}, a_{n-1}, q_n) \in E$. For more information about automata, see [11].

A subset Y of $X^{\mathbb{N}}$ is said to be *recognized* by a finite automaton if there exists a finite automaton such that Y is exactly the set of sequences recognized by the automaton.

A subset \mathcal{C} of \mathcal{K} is said to be *recognized* by a finite automaton if the set $\{(d_i)_{i\geq 0} \in E_{\beta} \mid \sum_{i=0}^{+\infty} d_i \psi^i \in \mathcal{C}\}$ is recognized by a finite automaton.

3 Boundary of \mathcal{K}

Proposition 2. Let $x = \sum_{i=0}^{+\infty} \varepsilon_i \psi^i$ and $y = \sum_{i=0}^{+\infty} \varepsilon'_i \psi^i$ where $(\varepsilon_i)_{i\geq 0}$, $(\varepsilon'_i)_{i\geq 0} \in E_{\beta}$. Then x = y if and only if there exists $M = M(\beta) \in \mathbb{N}$ such that the set $\{\sum_{i=0}^{k} (\varepsilon_i - \varepsilon'_i) \psi^{i-k} \mid k \geq 0\}$ is included in the set $\{\pm \sum_{i=-M}^{0} c_i \psi^i \mid (c_i)_{0\geq i\geq -M} \in F_{\beta}\}$.

Lemma 1. Let $x_0.x_{-1}...x_{-n}$ be a finite β -expansion. Then $x_0 + x_{-1}/\beta + \cdots + x_{-n}/\beta^n < \beta$.

Proof. The proof is a direct consequence of the greedy algorithm (see [7]).

Proof of Proposition 2. Assume that x = y and put $A_k = \sum_{i=0}^k (\varepsilon_i - \varepsilon'_i) \psi^{i-k}$. Assume that $A_k \neq 0$. Since β satisfies the property (F), there exists a finite β -expansion $(c_i)_{L \geq i \geq -M}$ with $c_L \neq 0$ such that $\sum_{i=0}^k (\varepsilon_i - \varepsilon'_i) \beta^{i-k} = \pm \sum_{i=-M}^L c_i \beta^i$. Now assume without loss of generality that $\sum_{i=0}^k (\varepsilon_i - \varepsilon'_i) \beta^{i-k} = \sum_{i=-M}^L c_i \beta^i$. Let h be an integer such that h > max(k, M). Put $P(x) = x^h (\sum_{i=0}^k (\varepsilon_i - \varepsilon'_i) x^{i-k} - \sum_{i=-M}^L c_i x^i)$. Then P(x) is a polynomial with integer coefficients satisfying $P(\beta) = 0$. Then for all Galois conjugates γ of β we have $P(\gamma) = 0$. Hence

$$A_k = \sum_{i=-M}^{L} c_i \psi^i.$$

Since

$$\sum_{i=0}^{k} \varepsilon_i \beta^{i-k} = \sum_{i=0}^{k} \varepsilon'_i \beta^{i-k} + \sum_{i=-M}^{L} c_i \beta^i$$
(1)

we should have $\sum_{i=0}^{k} \varepsilon_i \beta^{i-k} \ge \beta^L$. Therefore $L \le 0$, otherwise we have

$$\sum_{i=0}^{k} \varepsilon_i \beta^{i-k} \ge \beta$$

This latter inequality contradicts Lemma 1, because $\varepsilon_k \dots \varepsilon_0$ is a finite β -expansion. On the other hand, since x = y, $A_k = \sum_{i=k+1}^{+\infty} (\varepsilon'_i - \varepsilon_i) \psi^{i-k} = \sum_{i=1}^{+\infty} \varepsilon'_{k+i} \psi^i - \sum_{i=1}^{+\infty} \varepsilon_{k+i} \psi^i$; then there exists a fixed constant $c(\beta) = c > 0$ such that $||A_k|| < c$. Hence

$$\left|\sum_{i=0}^{k} (\varepsilon_i - \varepsilon'_i) \beta_j^{i-k}\right| < c, \ \forall j = 2, \dots, r+2s, \ \forall k \ge 0.$$

$$(2)$$

Now put for all $k \ge 0$, $z_k = \sum_{i=0}^k (\varepsilon_i - \varepsilon'_i)\beta^{i-k}$. Since β is a Pisot unit number, $1/\beta$ is an algebraic integer, hence for all $k \ge 0$, z_k is an algebraic integer of $\mathbb{Q}(\beta)$. The Galois conjugates of z_k are contained in the set $\{\sum_{i=0}^k (\varepsilon_i - \varepsilon'_i)\beta_j^{i-k} \mid j = 2, \ldots, r+2s\}$. By (2) and the fact that z_k is bounded by a fixed constant independent of k, we deduce that the set Γ constituted of all z_k and their Galois conjugates is bounded independently of k. This implies that there exists a fixed constant l independent of k are bounded by l. Since these coefficients are integer numbers, we deduce that the set of minimal polynomial of all z_k is finite. Hence the set Γ is finite. Thus the set

628

 $\{A_k \mid k \ge 0\}$ is finite. Then M is a finite integer independent of k. This ends the proof of the direct implication.

Now assume that the set $\{\sum_{i=0}^{k} (\varepsilon_i - \varepsilon'_i)\psi^{i-k} \mid k \ge 0\}$ is included in the set $\{\pm \sum_{i=-M}^{0} c_i\psi^i \mid (c_i)_{0\ge i\ge -M} \in F_\beta\}$, then there exists d > 0 such that $||\sum_{i=0}^{k} (\varepsilon_i - \varepsilon'_i)\psi^{i-k}|| < d$ for all $k \ge 0$. Hence for all $k \ge 0$, $||\sum_{i=0}^{k} (\varepsilon_i - \varepsilon'_i)\psi^i|| < d||\psi||^k$. Since $||\psi|| < 1$, we obtain $\sum_{i=0}^{+\infty} \varepsilon_i\psi^i = \sum_{i=0}^{+\infty} \varepsilon'_i\psi^i$.

Theorem 1. The boundary of \mathcal{K} is recognized by a finite automaton whose set of states is contained in the product set $\{\pm \sum_{i=-M-1}^{-1} c_i \psi^i \mid (c_i)_{-1 \ge i \ge -M-1} \in F_\beta\} \times A \times A$ where M is a fixed nonnegative integer number and $A = \{0, \ldots, \lfloor\beta\rfloor\}$.

Lemma 2. Let $x \in \mathbb{R}^{r-1} \times \mathbb{C}^s$, then $x \in \partial(\mathcal{K})$ if and only if there exist $N = N(\beta) < 0$ and $l \in \{N, \ldots, -1\}$ such that $x = \sum_{i=0}^{+\infty} \varepsilon_i \psi^i = \sum_{i=l}^{+\infty} \varepsilon'_i \psi^i$, where $(\varepsilon_i)_{i\geq 0}$, $(\varepsilon'_i)_{i\geq l} \in E_\beta$ and $\varepsilon'_l \neq 0$.

Proof. Assume that $x \in \partial(\mathcal{K})$. Since $x \notin int(\mathcal{K})$, for all $\tau > 0$ there exists $y \notin \mathcal{K}$ such that $||x - y|| < \tau$. Hence there exists a sequence $(y_n)_{n\geq 1}$ such that for all $n \geq 1$, $||x - y_n|| < 1/n$ and $y_n \notin \mathcal{K}$. Since there exists a finite number of tiles intersecting \mathcal{K} (item 1 of Proposition 1), we deduce that there exists a tile $\mathcal{K}' = \mathcal{K}_{\mathcal{E}'_{-1}\dots\mathcal{E}'_{l}} \neq \mathcal{K}$ and a subsequence $(y_{p_n})_{n\geq 0}$ such that for all $n \geq 0$, $||x - y_{p_n}|| < 1/p_n$ and $y_{p_n} \in \mathcal{K}'$. Hence $\lim_{n \mapsto +\infty} y_{p_n} = x$. Since \mathcal{K}' is a compact set, $x \in \mathcal{K}'$, hence $x \in \mathcal{K} \cap \mathcal{K}'$. The number l is limited independently of x because of item 1 of Proposition 1. This proves the direct implication.

Assume that $x = \sum_{i=0}^{+\infty} \varepsilon_i \psi^i = \sum_{i=l}^{+\infty} \varepsilon'_i \psi^i$ where l < 0, then $x \in \mathcal{K} \cap \mathcal{K}_{.\varepsilon'_{-1}...\varepsilon'_l}$. If $x \in int(\mathcal{K})$, then there exists a real number $r_1 > 0$ such that $B(x, r_1) = \{z \in \mathbb{R}^{r-1} \times \mathbb{C}^s \mid ||z-x|| < r_1\} \subset \mathcal{K}$. Put for all $n \in \mathbb{N}$, $z_n = \sum_{i=l}^n \varepsilon'_i \psi^i$. Since the sequence z_n converges to x and z_n is an interior point of $\mathcal{K}_{.\varepsilon'_{-1}...\varepsilon'_l}$ (item 4 of Proposition 1), there exists a positive integer n and a real number $r_2 > 0$ such that

$$z_n \in B(x, r_1)$$
 and $B(z_n, r_2) \subset \mathcal{K}_{\varepsilon'_{-1} \dots \varepsilon'_{l}}$.

Then there exists $\delta > 0$ such that $B(z_n, \delta) \subset \mathcal{K} \cap \mathcal{K}_{\varepsilon'_{-1} \dots \varepsilon'_{l}}$; this is a contradiction because the Lebesgue measure of $\mathcal{K} \cap \mathcal{K}_{\varepsilon'_{-1} \dots \varepsilon'_{l}}$ is zero (item 2 of Proposition 1). This ends the proof.

Beginning of the proof of Theorem 1. Let l be a negative integer. Put

$$D_l = \{ (\varepsilon_i)_{i \ge 0} \in E_\beta \mid \exists (\varepsilon'_i)_{i \ge l} \in E_\beta ; \ \varepsilon'_l \neq 0, \ \sum_{i=0}^{+\infty} \varepsilon_i \psi^i = \sum_{i=l}^{+\infty} \varepsilon'_i \psi^i \},$$

 $\begin{array}{l} E_l = \{(\varepsilon_i, \varepsilon'_i)_{i \geq l} \mid (\varepsilon_i)_{i \geq l}, (\varepsilon'_i)_{i \geq l} \in E_\beta, \ \varepsilon_i = 0, \ \forall l \leq i \leq -1 \ , \varepsilon'_l \neq 0 \ , \sum_{i=0}^{\infty} \varepsilon_i \psi^i = \sum_{i=l}^{\infty} \varepsilon'_i \psi^i \} \text{ and} \end{array}$

$$V_l = \{ \sum_{i=l}^k (\varepsilon_i - \varepsilon'_i) \psi^{i-k} \mid k \ge l, \ (\varepsilon_i, \varepsilon'_i)_{i \ge l} \in E_l \}.$$

By Proposition 2, the set V_l is finite. First, put l = -1 and assume that $V_{-1} \cap A\psi^0 \neq \emptyset$. Let $y_{-1} \in A$ such that $y_{-1}\psi^0 \in V_{-1} \cap A\psi^0$. Put $x_{-1} = 0$ and $A_{-1} = y_{-1}\psi^0$. Hence

$$A_{-1} = 0\psi^{-1} + (y_{-1} - x_{-1})\psi^0.$$

Now, consider the equation in $(X, a, b) \in V_{-1} \times A \times A$ defined by:

$$X = A_{-1}\psi^{-1} + (b-a)\psi^0 \tag{3}$$

Let $(A_0, x_0, y_0) \in V_{-1} \times A \times A$. If (A_0, x_0, y_0) is a solution of (3) and

$$x_0/\beta + x_{-1}/\beta^2 < 1, \ y_0/\beta + y_{-1}/\beta^2 < 1$$
 (4)

then we put an edge from (A_{-1}, x_{-1}, y_{-1}) to (A_0, x_0, y_0) and label it by x_0 . The relation (4) guarantees that the words x_0x_{-1} and y_0y_{-1} are finite β -expansions. Now assume that we have constructed the sequence (A_i, x_i, y_i) , $-1 \leq i \leq m$. If $(A_{m+1}, x_{m+1}, y_{m+1})$ is a solution of the equation $X = A_m \psi^{-1} + (b-a)\psi^0$ and $x_{m+1}/\beta + \cdots + x_{-1}/\beta^{m+3} < 1$, $y_{m+1}/\beta + \cdots + y_{-1}/\beta^{m+3} < 1$, then we put an edge from (A_m, x_m, y_m) to $(A_{m+1}, x_{m+1}, y_{m+1})$ and label it by x_{m+1} . If we continue on, we obtain an automaton that we denote by \mathcal{A}_{-1} . Since V_{-1} is a finite set, the automaton \mathcal{A}_{-1} is finite.

Lemma 3. The automaton \mathcal{A}_{-1} recognizes the set D_{-1} .

Proof. Let $(\varepsilon_i)_{i\geq 0} \in D_{-1}$; then there exists $(\varepsilon'_i)_{i\geq -1} \in E_\beta$ such that $\varepsilon'_{-1} \neq 0$ and $\sum_{i=0}^{\infty} \varepsilon_i \psi^i = \sum_{i=-1}^{\infty} \varepsilon'_i \psi^i$. Put $\varepsilon_{-1} = 0$ and $B_k = \sum_{i=-1}^{k} (\varepsilon'_i - \varepsilon_i) \psi^{i-k}$ for all $k \geq -1$. We have $B_{-1} = \varepsilon'_{-1} \psi^0$ and by induction $B_k = B_{k-1} \psi^{-1} + (\varepsilon'_k - \varepsilon_k) \psi^0$, $\forall k \in \mathbb{N}$. Hence the sequence $(\varepsilon_i)_{i\geq 0}$ is recognized by the automaton \mathcal{A}_{-1} .

Now let $(x_i)_{i\geq 0}$ be a sequence recognized by the automaton \mathcal{A}_{-1} ; then there exists a sequence $(y_i)_{i\geq -1} \in E_\beta$ such that $A_{-1} = y_{-1}\psi^0$ and $A_k = A_{k-1}\psi^{-1} + (x_k - y_k)\psi^0$ for all $k \in \mathbb{N}$. Hence for all $k \in \mathbb{N}$,

$$A_k \psi^{k+1} = y_{-1} \psi^0 + \sum_{i=0}^k (x_i - y_i) \psi^{i+1}.$$

Since $||\psi|| < 1$ and for all $k \in \mathbb{N}$, $A_k \in V_{-1}$ (finite set), we have

$$\lim_{k \mapsto +\infty} A_k \psi^{k+1} = 0.$$

Therefore $\sum_{i=0}^{\infty} x_i \psi^i = \sum_{i=-1}^{\infty} y_i \psi^i$. Thus $(x_i)_{i\geq 0} \in D_{-1}$. This ends the proof of the lemma.

End of the proof of Theorem 1. Consider l < -1. It is easy to see that a sequence $(x_i)_{i\geq 0}$ belongs to D_l if and only if the associated sequence $(y_i)_{i\geq 0}$, defined by $y_i = 0$ for $i = 0, \ldots, -l - 2$ and $y_i = x_{i+l+1}$ for all $i \geq -l - 1$, belongs to D_{-1} . Hence we construct an automaton \mathcal{A}_l which recognizes D_l in the following manner: denote by I_l the set of all states $v_{-l-2}^{(j)}$ of \mathcal{A}_{-1} such that there exist an initial state $v_{-1}^{(j)}$ of \mathcal{A}_{-1} and final states $v_0^{(j)}, \ldots, v_{-l-3}^{(j)}$ such that for all $i = -1, \ldots, -l - 3$, the edge between $v_i^{(j)}$ and $v_{i+1}^{(j)}$ is labeled by 0. Then if we denote \mathcal{A}_{-1} by $(S, A, E_{-1}, I_{-1}, T_{-1})$, we have $\mathcal{A}_l = (S, A, E_l, I_l, T_l)$ where $E_l = E_{-1} \setminus R_l$ where $R_l = \{(v_i^{(j)}, 0, v_{i+1}^{(j)}) \in E_{-1} \mid -1 \leq i \leq -l - 3, v_{-l-2}^{(j)} \in I_l\}$ and T_l is the set of $v \in T_{-1}$ such that there exist k + 1 states of $\mathcal{A}_{-1} : v_{-l-2}, v_{-l-1}, \ldots, v_{-l-2+k} = v$ such that $v_{-l-2} \in I_l$ and for all $i = -l - 1, \ldots, -l - 2 + k$, $(v_{i-1}, a_i, v_i) \in E_l$ for some sequence $(a_i)_{-l-1 \leq i \leq -l-2+k}$ of elements of \mathcal{A} .

Let $\mathcal{C} = \{(\varepsilon_i)_{i\geq 0} \in E_\beta \mid \sum_{i=0}^{\infty} \varepsilon_i \psi^i \in \partial(\mathcal{K})\}$. By Lemma 2, we have $\mathcal{C} = \bigcup_{l=N}^{-1} D_l$ where N is the integer given in Lemma 2. Then an automaton which recognizes \mathcal{C} is $\mathcal{L} = (S, A, E, I, T)$ where $I = \bigcup_{l=N}^{-1} I_l$, $T = T_{-1}$, $E = E_{-1}$ and $S \subset V_{-1} \times A \times A$.

Remark 3.1. By using the same approach, we can prove that the boundary of every tile is recognized by a finite automaton.

Remark 3.2. The interest of automata remains in the fact that they give information for the boundary of compact sets given by numeration systems. For example in the case of β satisfying the relation $\beta^3 - \beta^2 - \beta - 1 = 0$, the central tile (Rauzy fractal) (see [9]) is the set $\mathcal{K} = \{\sum_{i=0}^{+\infty} \varepsilon_i \alpha^i \mid \forall i : \varepsilon_i = 0, 1 \land \varepsilon_i \varepsilon_{i+1} \varepsilon_{i+2} = 0\}$, where α is one of the two complex roots of the polynomial $x^3 - x^2 - x - 1$. The automaton which recognizes the boundary of \mathcal{K} helps us to show that this boundary is a Jordan curve and that it is a quasi-circle (image of a circle by a quasi-conformal map) with Hausdorff dimension 1.0645 (see [6]). It will be interesting to try to extend these results to other Pisot unit numbers.

Theorem 2. If β is a cubic Pisot unit number with the property (F), then the interior of each tile is simply connected.

Remark 3.3. The class of β cubic Pisot unit numbers with the property (F) is equal to the class of numbers $\beta > 1$ with minimal polynomial $x^3 - ax^2 - bx - 1 = 0$ where a, b are integer numbers satisfying the property $-1 \le b \le a + 1$ and $a + b \ge 1$ (see [2]). This class of real numbers β satisfies also $d(1, \beta) = .a_{-1} \dots a_{-t}$, where $a_{-t} = 1$. Then for this class the tiles are arcwise connected sets (see item 5 of Proposition 1).

Proof. It suffices to prove the result for the central tile \mathcal{K} . We notice that in the case of β cubic Pisot unit number, we have $\psi = \beta_2$ if β is not totally real, and otherwise $\psi = (\beta_2, \beta_3)$.

Let Γ be a Jordan simple and closed curve contained in $int(\mathcal{K})$. Let C be the connected bounded component of Γ (C is the open set delimited by Γ) and C' be the connected unbounded component of Γ . Let us prove that $C \subset int(\mathcal{K})$.

First we shall show that $\psi C \cap \mathcal{K} \subset \psi \mathcal{K}$. Let $z_0 \in \psi C \cap \mathcal{K}$. Assume that $z_0 \notin \psi \mathcal{K}$. Since

$$\mathcal{K} = \bigcup_{i=0}^{\lfloor \beta \rfloor} \mathcal{K}_{i.}$$
 and $\psi \mathcal{K} = \mathcal{K}_{0.}$

there exists $i_0 \in \{1, \ldots, \lfloor \beta \rfloor\}$ such that $z_0 \in \mathcal{K}_{i_0}$. Put

$$r = d(\psi\Gamma, K_2 \setminus int(\psi\mathcal{K})),$$

where

$$d(\mathcal{X}, \mathcal{Y}) = \inf\{||x - y|| \mid x \in \mathcal{X}, \ y \in \mathcal{Y}\}$$

for every \mathcal{X} and \mathcal{Y} subsets of K_2 , where $K_2 = \mathbb{C}$ if β is not totally real, and otherwise $K_2 = \mathbb{R}^2$. Since the set $\psi \Gamma$ is contained in $int(\psi \mathcal{K})$, we have r > 0.

Since $\mathcal{K}_{i_0} \cap int(\psi\mathcal{K}) = \emptyset$, $d(\mathcal{K}_{i_0}, \psi\Gamma) \geq r$. Since \mathcal{K}_{i_0} is connected (item 5 of Proposition 1) and $\mathcal{K}_{i_0} \cap \psi C \neq \emptyset$, we have $\mathcal{K}_{i_0} \subset \psi C$. Since \mathcal{K} is connected (item 5 of Proposition 1), for all $\varepsilon > 0$ there exist $x_1, \ldots, x_n \in \mathcal{K}$ such that $x_1 = x, x_n = y$ and $||x_i - x_{i+1}|| < \varepsilon$ for all $1 \leq i \leq n - 1$.

Let $1 \leq j \leq \lfloor \beta \rfloor$, $j \neq i_0$, and $\delta = \min\{d(\mathcal{K}_{i.}, \mathcal{K}_{j.}) \mid \mathcal{K}_{i.} \cap \mathcal{K}_{j.} = \emptyset\}$. In both cases $\delta = 0$ and $\delta > 0$, we deduce by taking $\varepsilon = \delta$ (in the second case) that there exist k integers $n_1, \ldots, n_k \in \{1, \ldots, \lfloor \beta \rfloor\}$ such that $n_1 = i_0$, $n_k = j$ and $\mathcal{K}_{n_i.} \cap \mathcal{K}_{n_{i+1.}} \neq \emptyset$ for all $1 \leq i \leq k - 1$. Therefore $\mathcal{K}_{j.}$ contains a point of $\psi C \cap \mathcal{K}$. Hence by using the same argument used for $\mathcal{K}_{i_0.}$, we deduce that $\mathcal{K}_{j.} \subset \psi C$, $\forall 1 \leq j \leq \lfloor \beta \rfloor$. Then $\psi C' \cap \mathcal{K} \subset \psi \mathcal{K}$. Let x be an element of \mathcal{K} such that $||x|| = max\{||z|| \mid z \in \mathcal{K}\}$. Then $x \in \psi C'$. Thus $x \in \psi \mathcal{K}$. This is impossible, because in this case we have $x\psi^{-1} \in \mathcal{K}$ and $||x\psi^{-1}|| > ||x||$. Therefore

$$\psi C \cap \mathcal{K} \subset \psi \mathcal{K}.$$
 (5)

The relation (5) implies that $\psi C \cap \mathcal{K} = \psi C \cap \psi \mathcal{K}$. If we apply the same argument to the curve $\psi^{n-1}\Gamma$, we obtain

$$\forall n \in \mathbb{N} \setminus \{0\}, \ \psi^n C \cap \mathcal{K} = \psi^n C \cap \psi \mathcal{K}.$$

Then by induction we have

$$\psi^n C \cap \mathcal{K} = \psi^n C \cap \psi^n \mathcal{K}, \ \forall n \in \mathbb{N} \setminus \{0\}.$$

Let $z \in C$. Since $0 \in int(\mathcal{K})$ and $|\psi| < 1$, there exists $n \in \mathbb{N}$ such that $z\psi^n \in \mathcal{K}$. Then $z\psi^n \in \psi^n C \cap \mathcal{K} = \psi^n C \cap \psi^n \mathcal{K}$. Hence $z \in \mathcal{K}$. This implies that $C \subset \mathcal{K}$. Since C is an open set, we have $C \subset int(\mathcal{K})$.

Remark 3.4. The proof cannot be extended to β with $deg(\beta) = d > 3$, because a Jordan simple and closed curve Γ does not separate the d-1 dimensional space $\mathbb{R}^{r-1} \times \mathbb{C}^s$ into two connected components. However if we take Γ as a d-1 sphere, using the same proof of Theorem 2, we can show that $C \subset int(\mathcal{K})$.

Acknowledgements The author thanks the referee for useful suggestions.

References

- S. AKIYAMA, Self affine tiling and Pisot numeration system, Number theory and its applications (Kyoto, 1997), Dev. Math. 2, Kluwer Acad. Publ., Dordrecht, (1999), 7–17.
- [2] S. AKIYAMA, Cubic Pisot units with finite beta expansions, Algebraic Number theory and Diophantine Analysis, (2000), 11–26.
- [3] S. AKIYAMA, On the boundary of self affine tiling generated by Pisot numbers, Journal of Math. Soc. Japan, vol. 54 (2002), no. 2, 283–308.
- [4] C. FROUGNY, Representation of numbers and finite automata, Math. Systems Theory 25 (1992), 37–60.

- [5] C. FROUGNY, B. SOLOMYAK, *Finite Beta-expansions*, Ergod. Th. and Dynam. Systems 12 (1992), 713–723.
- [6] A. MESSAOUDI, Frontière du fractal de Rauzy et systèmes de numération complexe, Acta Arithmética, XCV. 3 (2000), 195–224.
- [7] W. PARRY, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416.
- [8] B. PRAGGASTIS, Markov partitions for hyperbolic toral automorphisms, Ph.d. Thesis, Univ. of Washington, (1992).
- [9] G. RAUZY, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147–178.
- [10] A. RÉNYI, Representations of real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477–493.
- [11] W. THOMAS, Automata on infinite objects, Handbook of theoretical computer science, Edited by J. Van Leeuwen, Vol. B, 133–191, Elsevier, Amsterdam, (1990).

Departamento de Matemática IBILCE-UNESP Rua Cristovão Colombo, 2265, Jardim Nazareth 15054-000, São José do Rio Preto, SP, Brasil messaoud@ibilce.unesp.br