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Abstract

The purpose of this paper is to prove an analogue of A. Weil’s explicit
formula for a fundamental class of functions, i.e. the class of meromorphic
functions that have an Euler sum representation and satisfy certain a func-
tional equation. The advance of this explicit formula is that it enlarges the
class of allowed test functions, from the class of functions with bounded Jor-
dan variation to the class of functions of φ-bounded variation. A condition
posed to the test function at zero is also reconsidered.

1 Introduction

It is well known that the Euler product formula
∑ 1

ns =
∏
p

(
1− 1

ps

)−1
, where s is

a complex number with Re (s) > 1 and the product is taken over all primes served
as a starting point for Riemann’s investigation of a function widely known as the
Riemann ζ function ever since. The function ζ satisfies the functional equation

ς (s) = η (s) ς (1− s) ,where η (s) = π−s+
1
2

Γ( s
2)

Γ( 1−s
2 )
. The function η (s) is a ratio of two

functions that possess a representation in a form of canonical Weierstrass product.
A generalization of these properties led J. Jorgenson and S. Lang [7] to the

concept of a fundamental class of functions - the class of meromorphic functions
whose logarithmic derivative has an Euler sum representation and that satisfy a
functional equation with fudge factors of a regularized product type.

Explicit formulas in classical number theory assert that the sum of a certain test
function over the prime powers is equal to the sum of its transform usually taken
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over the zeros of the Riemann zeta function. A. Weil in [9] was the first to point
out that these formulas can be stated more generally. He proved that the sum of
a suitably smooth test function taken over the prime powers of the number field k
is equal to the sum of its Mellin transform taken over the non-trivial zeros of the
related Hecke L− function, plus an analytic term at infinity. This term is called
Weil’s functional and may be viewed as a functional evaluated on a test function.

The purpose of this paper is to prove an analogue of the Weil explicit formula for
a fundamental class of functions and a larger class of test functions. The advance
in this explicit formula consists in weakening growth conditions posed on the test
function F . Namely, J. Jorgenson and S. Lang in [7] required that F satisfy the
following conditions:

JL1 F ∈ BV (R) ∩ L1 (R)
JL2 There exists ε > 0 such that F (x)− F (0) = O (|x|ε) (x→ 0)

JL3 F (x) e(
σ0
2

+a′)|x| ∈ BV (R) for some a′ > 0 and σ0 > 0 to be defined in the
Euler sum property.

In [2] we proved a general Parseval formula that provides an evaluation of the
term at infinity under less restrictive conditions than JL1 and JL2.

In this paper we will derive an explicit formula under the conditions of [2] and
will further weaken the condition JL3, replacing Jordan variation by φ−variation.

2 Generalized variation, Stieltjes integral and Fourier transform

The universal class of this paper is the class W of regulated functions [4] i.e. func-
tions possessing the one - sided limits at each point. For f ∈ W , we always suppose
2f (x) = f (x+ 0) + f (x− 0). If I is an interval with endpoints a and b (a < b), we
write f (I) = f (b)− f (a).

Let φ be a continuous function defined on [0,∞) and strictly increasing from 0
to ∞. A function f is said to be of φ−bounded variation on I if

Vφ (f, I) = sup
∑
n

φ (|f (In)|) <∞,

where the supremum is taken over all systems {In} of nonoverlapping subintervals
of I.

Example. φ (u) = u gives us Jordan variation, and φ (u) = up, p > 1, corre-
sponds to Wiener variation. In the latter case Vp (f) traditionally denotes the p−th
root of Vφ (f) for φ (u) = up, p > 1.

Lemma 2.1. a) Functions FA,α (x) =
x∫
0
e−αu cosAudu, and GA,α (x) =

x∫
0
e−αu sinAudu, (A > 0, α > 0) both belong to Vp (R+) , p > 1 and for their p−varia-

tion the following estimates hold

Vp
(
FA,α

)
= Oα

( 1

A

)1− 1
p

 , Vp
(
GA,α

)
= Oα

( 1

A

)1− 1
p

 (A→∞) .

b) Functions FA,α and GA,α (A > 0, α > 0) are bounded on R+.
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Proof. For simplicity, we will prove the statement for the function GA,α.

Since
(
GA,α

)′
(x) = 0 for x = kπ

A
, k ∈ Z≥0 we have that

V p
p

(
GA,α,R+

)
=

∞∑
k=0

∣∣∣∣∣∣∣∣
(k+1)π

A∫
kπ
A

e−αu sinAudu

∣∣∣∣∣∣∣∣
p

≤
∞∑
k=0

1

αp
e−αp

(k+1)π
A

(
1− e−

απ
A

)p

=
1

αp
e−

απ
A
p

(
1− e−

απ
A

)p(
1− e−

απ
A
p
)

Now, we get that V p
p

(
GA,α,R+

)
≤ 1

αp

(
1− e−

απ
A

)p−1
. The observation that(

1− e−
απ
A

)
= Oα

(
1
A

)
(A→∞) completes the proof.

b) Obvious.

A function f is said to be of harmonic bounded variation on I (f ∈ HBV (I)) if

∑ |f (In)|
n

<∞

for every choice of nonoverlapping subintervals In ⊂ I. The supremum of these sums
is called the harmonic variation of f on I and denoted by VH (f, I). HBV (I) is a
linear space and furthermore, the product of two functions from HBV (I) lies again
in HBV (I).

The following remark [1] will be useful in the proof of the explicit formula.

Remark. φ is usually taken to be a continuous, strictly increasing convex func-
tion on [0,∞) satisfying two asymptotic conditions

(01) lim
x→0+

φ(x)
x

= 0 and

(∞1) lim
x→∞

φ(x)
x

= ∞.

Under these conditions the inclusion φBV (I) ⊂ HBV (I) holds if
∑ 1

n
φ−1

(
1
n

)
<∞.

The additional assumption

(∆2) There exist positive constants x0 and d (d ≥ 2) such that for 0 ≤ x ≤ x0

we have φ (2x) ≤ dφ (x)

turns φBV into a linear space.

The next straightforward lemma is a direct consequence of the definition of
φ−variation.

Lemma 2.2. If f ∈ φBV (R) ∩ L1 (R) then f (x) → 0 (|x| → ∞).

In the case of functions of φ−bounded variation L.C.Young proved the following
theorem on existence and approximation of the Stieltjes integral (in generalized
Moore-Pollard sense, defined in [10]).

Theorem 2.A. [10] Let f and g be respectively of bounded φ− and ψ− variation

on [a, b] and let φ and ψ satisfy the condition
∑
φ−1

(
1
n

)
ψ−1

(
1
n

)
< ∞. Then the

Stieltjes integral of f and g exists and for a ≤ ξ ≤ b we have

b∫
a

[f (x)− f (ξ)] dg (x) ≤ c
∑

φ−1
(
A

n

)
ψ−1

(
B

n

)
,
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where A = Vφ (f, [a, b]) and B = Vψ (g, [a, b]).

Using Young’s results we proved the formula of partial integration for functions
of φ−bounded variation.

Theorem 2.B. [2] Let f and g be respectively of bounded φ− and ψ− variation

on [a, b] and
∑
φ−1

(
1
n

)
ψ−1

(
1
n

)
<∞. If for every δ > 0 there exists a division of

[a, b] into subintervals on each of which at least one of the functions f and g has
its oscillation less than δ, then

b∫
a

fdg = f (b) g (b)− f (a) g (a)−
b∫
a

gdf.

In particular, the formula of partial integration is valid if one of the functions f
and g is continuous.

Now, let f be an integrable function over R and f̂ (t) = 1√
2π

∞∫
−∞
f (x) e−itxdx be

its Fourier transform. For such an f and A > 0, we define

fA (x) =
1

π

∞∫
−∞

f (y)
sinA (x− y)

x− y
dy =

1√
2π

A∫
−A

f̂ (t) eitxdx.

For integrable functions of harmonic bounded variation we have proved the following
Fourier inversion theorem:

Theorem 2.C. [2] If f ∈ HBV (R)∩L1 (R), then fA is bounded independently
of A, fA (x) → f (x) (A→∞) everywhere and convergence is uniform on compact
sets of points of continuity of f.

3 Regularized products and series. Fundamental class of func-
tions

In this section we will recall a necessary background material from the theory of
regularized products and series, introduced by J. Jorgenson and S. Lang in [6] and
the theory of functions that are of regularized product and series type, developed in
[7].

J. Jorgenson and S. Lang consider two sequences L = {λk} and A = {ak} of
complex numbers ( λ0 = 0 and λk 6= 0 for k ≥ 1) and refer to the case ak ∈ Z as a
spectral case.

To the sequences L and A they formally associate a Dirichlet series and a theta-
series or a theta function θ (t) = a0 +

∑
k
ake

−λkt.

These series are usually subject to the certain convergence conditions, such as
DIR1-DIR3 and AS1-AS3, given in [6, pp. 9-29]. We will recall only the condition
AS2 posed on the theta function.

AS2. There exist a sequence {p} = {pj} of complex numbers with Re (p0) ≤
Re (p1) ≤ ... increasing to infinity and a sequence of polynomials Bp such that for
every complex q we have

θ (t)− Pq (t) = O
(
tRe(q) |log t|m(q)

)
(t→ 0) ,
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where Pq (t) =
∑

Re(p)<Re(q)
tpBp (log t) .

To the pair (L,A) in a spectral case, they associate, under conditions AS1-AS3,
a regularized product, and in a general case, a regularized harmonic series. Many
properties of regularized products and series, similar to those of zeta and gamma
functions are proved in [6, pp. 30-52]. One of them is a generalization of Gauss
formula [6, Th. 4.1., p. 49] we will use in the evaluation of the Weil’s functional.

The asymptotic condition AS2 is closely related to the definition of the reduced
order (M,m) of a regularized product, since M is an integer such that − 1 ≤
M + Re (p0) < 0, and m depends upon the degree of Bp. For a precise definition
see [6].

Furthermore, J. Jorgenson and S. Lang generalized the concept of regularized
series and products introducing functions of regularized series and product type [7,
pp. 36-37]. The function is of a regularized product (RP) type if it is a product of a
rational function, a function eP (z) (P is a polynomial) and finitely many regularized
products. Similarly, they defined functions of regularized harmonic series (RHS)
type. The logarithmic derivative of a RP type function is a RHS type function.

The definition of the reduced order of both types of functions is given, as well as
a very important theorem on asymptotic behaviour (in vertical strips) of functions
of RHS type of a given order [7, Th. 6.2., p. 38].

Finally, in [7] they introduce a fundamental class of functions as a family of

triples
(
Z, Z̃,Φ

)
of functions that are meromorphic, such that logZ and log Z̃ have

a Dirichlet series representation and which satisfy a functional equation Z (s) Φ (s) =
Z̃ (σ0 − s) , with the factor Φ of a regularized product type. For a precise definition
see [7, pp. 45-46].

4 Mellin transform estimates

Let f be a measurable function on R+. The Mellin transform of the function f is
formally (without any convergence assumptions) defined as

Mf (s) =

∞∫
0

f (u)us
du

u
.

For σ0 ∈ R, letMσ0
2
f denote the translate ofMf by σ0

2
, i.e. Mσ0

2
f (s) = Mf

(
s− σ0

2

)
.

If one put F (x) = f (e−x), or f (u) = F (− log u) , u > 0, letting s = σ + it one
formally gets that

Mσ0
2
f (s) =

∞∫
−∞

F (x) e−(σ−σ0
2 )xe−itxdx.

With this notation we have the following lemma:

Lemma 4.1. Let F (x) e(
σ0
2

+a′)|x| ∈ φBV (R) ∩ L1 (R), for some a′ > 0. Let
φ be a continuous function on (0,∞) strictly increasing from zero to infinity, such

that
∑
φ−1( 1

n
)( 1
n
)

1
p <∞, for some p > 1. For s = σ + it and a′ > a > 0 we have
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the asymptotic relation

Mσ0
2
f (s) = O

( 1

|t|

)1− 1
p

 uniformly in − a ≤ σ ≤ σ0 + a.

Proof. Let us put g (x) = F (x) e(
σ0
2

+a′)|x|. Then

Mσ0
2
f (s) =

∞∫
0

g (−x) e−(σ0+a′−σ)xeitxdx+

∞∫
0

g (x) e−(σ+a′)xe−itxdx.

Since − a′ < −a ≤ σ ≤ σ0 + a < σ0 + a′ we have that α = σ0 + a′ − σ > 0 and
β = σ + a′ > 0. Now, we have:

Mσ0
2
f (s) =

∞∫
0

g (−x) e−αx cos (tx) dx+ i

∞∫
0

g (−x) e−αx sin (tx) dx+

+

∞∫
0

g (x) e−βx cos (tx) dx− i

∞∫
0

g (x) e−βx sin (tx) dx.

Without loss of generality, we may assume t > 0. If t < 0 we will write cos (tx) =
cos (−tx) and sin (tx) = − sin (−tx).

With the notation of Lemma 2.1. we have:

Mσ0
2
f (s) =

∞∫
0

g (−x) dF t,α (x) + i

∞∫
0

g (−x) dGt,α (x)

+

∞∫
0

g (x) dF t,β (x)− i

∞∫
0

g (x) dGt,β (x)

= I1 + iI2 + I3 + iI4.

Let us look at I1.
It is possible to apply the integration by parts formula (Theorem 2.B.) here,

since F t,α is a continuous function, F t,α ∈ Vp and g (−x) ∈ φBV . We have:

a∫
0

g (−x) dF t,α (x) = g (−a)F t,α (a)−
a∫
0

F t,α (x) dg (−x) .

Applying Theorem 2.A. we obtain:∣∣∣∣∣∣
a∫
0

(
F t,α (x)− F t,α (0)

)
dg (−x)

∣∣∣∣∣∣ ≤ k
∑
n

φ−1
(
V

n

)
· Vp ·

1

np
, where

V = Vφ (g,R+), Vp = Vp (F t,α,R+). Letting a → ∞ and applying Lemma 2.1. and
Lemma 2.2. we end up with

I1 =

∞∫
0

g (−x) dF t,α (x) = O

(1

t

)1− 1
p

 .
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Integrals I2, I3, and I4 are estimated similarly. This proves the Lemma.

Let the function φ satisfy conditions of the previous Lemma.

Lemma 4.2. Let F be an M times differentiable function such that

1. F (M) (x) e(
σ0
2

+a′)|x| ∈ φBV (R) ∩ L1 (R)

2. F (j) (x) e(
σ0
2

+a′)|x| � C, for j ∈ {0, ...,M − 1}.
Then, for s = σ + it and a′ > a > 0 we have the estimate

Mσ0
2
f (s) = O

( 1

|t|

)M+1− 1
p

 uniformly in − a ≤ σ ≤ σ0 + a.

Proof. Lemma 4.1. implies that

∞∫
−∞

F (M) (x) e−(σ−σ0
2 )xe−itxdx = O

( 1

|t|

)1− 1
p

 uniformly in − a ≤ σ ≤ σ0 + a.

On the other hand, for arbitrary b < 0 < c we have

c∫
b

F (M) (x) e−(σ−σ0
2

+it)xdx =

c∫
b

e−(σ−σ0
2

+it)xdF (M−1) (x) .

Application of the classical integration by parts theorem yields

c∫
b

F (M) (x) e−(σ−σ0
2

+it)xdx = e−(σ−σ0
2

+it)cF (M−1) (c)− e−(σ−σ0
2

+it)bF (M−1) (b)

+
(
σ − σ0

2
+ it

) c∫
b

F (M−1) (x) e−(σ−σ0
2

+it)xdx.

Since

e−(σ−σ0
2

+it)cF (M−1) (c) = F (M−1) (c) e(
σ0
2

+a′)ce−(σ+a′)ceitc, and

(σ + a′) > 0, F (M−1) (c) e(
σ0
2

+a′)c � C,

letting c→ +∞ we get that

e−(σ−σ0
2

+it)cF (M−1) (c) → 0.

Similarly, we obtain that

e−(σ−σ0
2

+it)bF (M−1) (b) → 0 when b→ −∞.

Applying this to the integration by parts formula we get that

+∞∫
−∞

F (M) (x) e−(σ−σ0
2

+it)xdx = −
(
σ − σ0

2
+ it

) +∞∫
−∞

F (M−1) (x) e−(σ−σ0
2

+it)xdx.
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Repeating the same procedure (M − 1) times, we end up with

O

( 1

|t|

)1− 1
p

 =
∣∣∣∣σ − σ0

2
+ it

∣∣∣∣M
∣∣∣∣∣∣
+∞∫
−∞

F (x) e−(σ−σ0
2

+it)xdx

∣∣∣∣∣∣ .
This implies that

Mσ0
2
f (s) = O

( 1

|t|

)M+1− 1
p

 uniformly in − a ≤ σ ≤ σ0 + a.

The direct consequence of Lemma 4.2., the definition of a reduced order of a function
of regularized product type and the theorem on the asymptotic behaviour of a
function of a RHS type is the following

Theorem 4.1. Let Φ be of a regularized product type of the reduced order (M,m)
and let F be a function that satisfies conditions of Lemma 4.2.(for the same M that
appears in the assumption about the order of Φ). Let the function f be defined on
R+ by the relation f (u) = F (− log u). Then, there exists a sequence {Tn} tending
to infinity such that

Φ′

Φ
(s)Mσ0

2
f (s) → 0 when n→∞,

for any s on the horizontal line segment defined by s = σ±iTn with −a ≤ σ ≤ σ0+a.

5 Growth conditions on the test function

Let f and F be measurable functions related by F (x) = f (e−x) , so f (u) =
F (− log u), u ∈ R+.

In what follows we will assume that φ is a continuous, convex function on [0,∞)
strictly increasing from 0 to∞. Let φ satisfy conditions (01), (∞1) and the condition∑
n
φ−1

(
1
n

) (
1
n

) 1
p <∞, for some p > 1. In [2] we introduced

Condition 1. (φ−condition) F ∈ φBV (R) ∩ L1 (R).

Condition 2. (α−condition) F (x) = F (0)+O
(
|log |x||−α

)
, (x→ 0) for some

α > 1,

and proved that these were sufficient to ensure the existence of the Weil functional.
We will state here the corollary of the theorem (general Parseval formula) proved in
[2, Th. 6.1.]. This corollary will be used in the evaluation of the Weil functional.

Corollary 5.A. Let (L,A) be a pair of sequences of complex numbers such that
that the corresponding theta function satisfies conditions AS1-AS3, and M be the
integer such that −1 ≤M+Re (p0) < 0. Let f be an M times differentiable function
such that f (M) satisfies the φ−condition and α−condition for some α > M + 2.
Suppose also that f (j) ∈ HBV (R) ∩ L1 (R) for j ∈ {0, ...,M − 1}. Then, for any
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w ∈ C such that Re (w) > 0 and Re (w) > max
k

(−Re (λk)) and a ∈ R+, we have

lim
A→∞

1√
2π

A∫
−A

f̂ (t) Iw (a+ it) dt =

=

∞∫
0

θa (x) f− (x)−
∑

k+Re(p0)<0

ck (a, x) f (k) (0)

 e−wxdx.
The function Iw and the coefficients ck (a, x) are defined in the generalization of

the Gauss formula, proved by J. Jorgenson and S. Lang in [6, Th. 4.1., p. 49].
The third condition we will impose on F is concerned with the evaluation of the

integral of the functions Mσ0
2
f (s) Φ′

Φ
(s) and Mσ0

2
f (s) Z

′

Z
(s) along the horizontal line

segments σ ± iTn for − a ≤ σ ≤ σ0 + a. We will assume the following

Condition 3. (exponential φ−condition) There exists a′ > 0 such that

F (x) e(a
′+

σ0
2 )|x| ∈ φBV (R).

In the following sections we will prove that under Conditions 1-3. posed on
the test function F , the explicit formula holds for the functions in the fundamental
class.

6 The explicit formula

Let
(
Z, Z̃,Φ

)
be in the fundamental class. Let a > 0 be such that for σ′0 from

the definition of the fundamental class we have σ′0 < σ0 + a, and such that Z, Z̃
and Φ do not have a zero or a pole on the line Re (s) = −a and Re (s) = σ0 +
a.We will assume that Φ is of regularized product type of a reduced order (M,m).
Then, by generalization of Cramer’s theorem, proved in [5] functions Z and Z̃ are
of regularized product type of the reduced order (M,m+ 1) or (M,m).

We will denote by:

• Ra the infinite rectangle bounded by the lines Re (s) = −a and Re (s) = σ0+a.

• Ra (T ) the finite rectangle bounded by the lines Re (s) = −a, Re (s) = σ0 + a
and horizontal lines Im (s) = ±T .

• {ρ} the set of zeros and poles of Z in the full strip Ra.

• {κ} the set of zeros and poles of Φ in the half strip Ra,
σ0
2
, − a ≤ σ ≤ σ0

2
.

We will assume that Φ has finitely many zeros and poles in the half strip Ra,
σ0
2

and that it has no zeros or poles on the line Re (s) = σ0

2
.

If T is chosen so that functions Z, Z̃ and Φ have no zeros or poles on the horizontal
lines that border Ra (T ), it is possible to form the following sums:

SZ,a (f, T ) =
∑

ρ∈Ra(T )

ord (ρ) ·Mσ0
2
f (ρ) (1)
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and
SΦ,a,

σ0
2

(f, T ) =
∑

κ∈R
a,

σ0
2

(T )

ord (κ) ·Mσ0
2
f (κ) , (2)

where ord (ρ) denotes the order of ρ as a zero resp. minus the order of ρ as a pole.
Letting T →∞ in the second sum we will get the sum

SΦ,a,
σ0
2

(f) = lim
T→∞

∑
κ∈R

a,
σ0
2

(T )

ord (κ) ·Mσ0
2
f (κ) .

that is finite. The limit of the first sum need not be finite. We will be interested in
conditions on the test function f (or, equivalently, on F ) that ensure the existence
of the limit

SZ,a (f) = lim
T→∞

∑
ρ∈Ra(T )

ord (ρ) ·Mσ0
2
f (ρ) .

On a test function F we will impose the following conditions:

C I. F is M times differentiable, F (M) satisfies φ−condition and
F (j) ∈ L1 (R) ∩HBV (R) for j = 0, (M − 1).

C II. F (M) (x) satisfies α−condition, for some α > M + 2.

C III. a) There exists a′ > a such that F (M) (x) e(a
′+

σ0
2 )|x| ∈ φBV (R) ∩ L1 (R),

b) F (j) (x) e(a
′+

σ0
2 )|x| � C, j = 1,M − 1 (if M ≥ 2).

c)F (x) e(a
′+

σ0
2 )|x| ∈ HBV (R) ∩ L1 (R)

Additional condition (∆2) on φ would simplify C I in an obvious way, which we
omit here.

It goes without saying that in case M = 0 requirements involving j = 0,M − 1
are non-existent.

Growth conditions C I and C II are related to the evaluation of the Weil’s
functional

WΦ (F ) = lim
n→∞

1√
2π

Tn∫
−Tn

F̂ (t)
Φ′

Φ

(
σ0

2
+ it

)
dt,

where numbers Tn are chosen as in Theorem 4.1.
The main result of this paper is the following

Theorem 6.1. (The explicit formula) Let
(
Z, Z̃,Φ

)
be in the fundamental

class and assume that Φ is of reduced order (M,m) with finitely many zeros and
poles in the half strip Ra,

σ0
2

and no zeros or poles on the line Re (s) = σ0

2
. Then

for any function F that satisfies conditions C I-C III functionals SZ,a and WΦ are
well defined and the explicit formula, i.e. the formula

SZ,a (f) + SΦ,a,
σ0
2

(f) =
∑
q

−c (q) log q

q
σ0
2

f (q) +
∑
q̃

−c (q̃) log q̃

q̃
σ0
2

f

(
1

q̃

)
+WΦ (F )

holds.

Sums over q and q̃ in the formula above correspond to the representation of
functions logZ and log Z̃ as a Dirichlet series.

The proof of the theorem consists of two major parts. In the first part, integrating
over the boundary of the rectangle Ra (Tn) and using the residue theorem, we will
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express functionals SZ,a (f, Tn), SΦ,a,
σ0
2

(f, Tn) in the form of sums over q and q̃ plus
the Weil’s functional. In the second part we will apply a general Parseval formula
[2, Theorem 6.1] to finish the proof of the theorem.

7 Evaluation of sums

Let Ba (Tn) denote the boundary of the rectangle Ra (Tn) defined above. By the
residue theorem,∑

ρ∈Ra(Tn)

ord (ρ) ·Mσ0
2
f (ρ) =

1

2πi

∫
Ba(Tn)

Mσ0
2
f (s)

Z ′

Z
(s) ds =

=
1

2πi

σ0+a−iTn∫
−a−iTn

+

σ0+a+iTn∫
σ0+a−iTn

+

−a+iTn∫
σ0+a+iTn

+

−a−iTn∫
−a+iTn

 = I1 + I2 + I3 + I4.

Since the function Z is of reduced order at most (M,m+ 1), applying Theorem
4.1. we have that Mσ0

2
f (s) Z

′

Z
(s) → 0, n → ∞ uniformly in s, for s on the lines

σ± iTn, − a ≤ σ ≤ σ0 + a. Therefore, I1 → 0, and I3 → 0 when n→∞. Using the
functional equation we obtain that

∑
ρ∈Ra(Tn)

ord (ρ) ·Mσ0
2
f (ρ) + o (1) =

1

2πi

σ0+a+iTn∫
σ0+a−iTn

Mσ0
2
f (s)

Z ′

Z
(s) ds+

1

2πi

−a−iTn∫
−a+iTn

Mσ0
2
f (s)

(
−Z̃

′

Z̃
(σ0 − s)

)
ds+ +

1

2πi

−a−iTn∫
−a+iTn

Mσ0
2
f (s)

(
−Φ′

Φ
(s)

)
ds

= J1 + J2 + J3.

In this section we will deal with J1 and J2 and in the next section we will treat
J3. For simplicity, we will evaluate J1. For s = σ0 + a + it, − Tn ≤ t ≤ T , it is
possible to interchange the sum and the derivative in the Euler sum for logZ (s),
since the sum converges uniformly for Re (s) = σ0 + a > σ′0. After the change of
variables s = σ0 + a+ it, − Tn ≤ t ≤ Tn and x = y − log q we get

J1 =
−1

2π

Tn∫
−Tn

 ∞∫
−∞

F (x) e−(σ0−
σ0
2

+a+it)xdx

 ·∑
q

c (q) log q

qσ0+a+it
dt =

=
−1

2π

Tn∫
−Tn

dt
∑
q

∞∫
−∞

F (y − log q) e−(σ0
2

+a+it)yq−
σ0
2 c (q) log qdy.

Let us consider the series∑
q

F (y − log q) e−(σ0
2

+a+it)yq−
σ0
2 c (q) log q =

∑
q

Bq (y) e−ity. (3)

Using the condition C III it the same way as in [7] we obtain that the series (3)
converges uniformly. This enables us to interchange the integral and the sum in J1,
so it becomes:

J1 = − 1

2π

Tn∫
−Tn

dt

∞∫
−∞

(∑
q

Bq (y)

)
e−itydy.



580 M. Avdispahić – L. Smajlović

Let us put B (y) =
∑
q
Bq (y). By the assumptions (C III) of the theorem, it is obvious

that Bq ∈ L1 (R) for all q, so B ∈ L1 (R).
Let us write the function Bq in the following way

Bq (y + log q) =

 F (y) e−(σ0
2

+a)yR (q) ,

F (y) e(
σ0
2

+a′)|y|e−(a′−a)|y|R (q) ,

for y ≥ 0
for y < 0

where R (q) denotes all factors that depend on q only.
The assumption C III, c) implies that F (y) ∈ HBV (R) since the function

e−(σ0
2

+a′)|y| is of bounded variation. For the same reason, F (y) e−(σ0
2

+a)y ∈ HBV (R+)

and F (y) e(
σ0
2

+a′)|y|e−(a′−a)|y| ∈ HBV (R−), since a′ − a > 0.
Now, we have that Bq (y + log q) ∈ HBV (R) and therefore Bq ∈ HBV (R).
Let Ij be non-overlapping subintervals of R. We have:

∑
j

|B (Ij)|
j

=
∑
j

1

j

∣∣∣∣∣∑
q

Bq (Ij)

∣∣∣∣∣ ≤∑
q

∑
j

|Bq (Ij)|
j

.

Taking the supremum over all such Ij,we obtain that VH (B) ≤ ∑
q
VH (Bq) where

VH (f) denotes the harmonic variation of f on R.
Let us evaluate VH (Bq). By the definition,

Bq (y) = F (y − log q) e−(σ0
2

+a)(y−log q) · q−(σ0+a)c (q) log q = Gq (y)
c (q) log q

qσ0+a
,

so

VH (Bq (y)) ≤ |c (q) log q|
qσ0+a

VH (Gq (y)) .

Now, we will use the fact that F (y) e−(σ0
2

+a)y ∈ HBV (R) (this can be established
in an analogous way as above) to get

VH (Gq (y)) = VH (Gq (y + log q)) = VH

(
F (y) e−(σ0

2
+a)y

)
= V <∞.

This, together with the convergence assumptions on the Euler sum, implies that

VH (B) ≤
∑
q

|c (q) log q|
qσ0+a

· V ≤ K, so

B ∈ HBV (R).
The function B satisfies the assumptions of Theorem 2.C. Therefore, we have:

lim
n→∞

J1 = lim
n→∞

−1√
2π

Tn∫
−Tn

B̂ (t) dt = −B (0) = −
∑
q

c (q) log q

q
σ0
2

f (q) .

It is possible to carry out similar arguments for J2, now putting

Bq̃ (y) = F (y + log q̃) e(
σ0
2

+a)y q̃−
σ0
2 c (q̃) log q̃.
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Finally we get that

lim
n→∞

J2 = −B̃ (0) = −
∑
q̃

c (q̃) log q̃

q̃
σ0
2

f

(
1

q̃

)
.

At this point, we have proved that

SZ,a (f) =
∑
q

−c (q) log q

q
σ0
2

f (q) +
∑
q̃

−c (q̃) log q̃

q̃
σ0
2

f

(
1

q̃

)
+ (4)

+ lim
n→∞

1

2πi

−a−iTn∫
−a+iTn

Mσ0
2
f (s)

(
−Φ′

Φ
(s)

)
ds.

8 Weil’s functional

As promised, in this section we will evaluate the last summand on the right hand
side of (4). In this integral we will move path of integration to the right, in the
following way:

SΦ,a,
σ0
2

(f, Tn) =
1

2πi

−a−iTn∫
−a+iTn

Mσ0
2
f (s)

Φ′

Φ
(s) ds+

1

2πi

σ0
2
−iTn∫

−a−iTn

Mσ0
2
f (s)

Φ′

Φ
(s) ds

+
1

2πi

σ0
2

+iTn∫
σ0
2
−iTn

Mσ0
2
f (s)

Φ′

Φ
(s) ds+

1

2πi

−a+iTn∫
σ0
2

+iTn

Mσ0
2
f (s)

Φ′

Φ
(s) ds.

Since Φ is of regularized product type of reduced order (M,m) , by Theorem 4.1.
Mσ0

2
f (s) Φ′

Φ
(s) → 0 for s = σ ± iTn, − a ≤ σ ≤ σ0

2
. Letting n → ∞ in the last

equality and using (4), we obtain (after a change of variable)

SZ,a (f) + SΦ,a,
σ0
2

(f) =
∑
q

−c (q) log q

q
σ0
2

f (q) +
∑
q̃

−c (q̃) log q̃

q̃
σ0
2

f

(
1

q̃

)
+

+
1√
2π

lim
n→∞

Tn∫
−Tn

F̂ (t)
Φ′

Φ

(
σ0

2
+ it

)
dt.

It is left to prove that WΦ (F ) = 1√
2π

lim
n→∞

Tn∫
−Tn

F̂ (t) Φ′

Φ

(
σ0

2
+ it

)
dt is well defined, and

to evaluate it.
Φ is of a regularized product type of reduced order (M,m), so

Φ (z) = Q (z) eP (z)
n∏
j=1

[Dj (αjz + βj)]
kj ,

in the notation of [7, p. 36].
By the linearity of the integral, it is easy to see that it is enough to consider the

following three cases:
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1. Φ (z) = Q (z), for some rational function Q.

The expression Q′

Q
(z) for z = σ0

2
+ it can be written in the form Q′

Q

(
σ0

2
+ it

)
=∑

β
Aβ

σ0
2

+it−β , where the sum on the right is taken over all zeros and poles of Q(z).

By the assumption on Φ, we have Re(β) 6= σ0

2
and the last expression becomes

Q′

Q

(
σ0

2
+ it

)
=
∑
α

Aα
t+ α

,

for some complex α, such that Im(α) 6= 0.

Now, we see that it is enough to consider the case Φ
(
σ0

2
+ it

)
= 1

t+α
, Im(α) 6= 0.

This case is treated in the following lemma.

Lemma 8.1. Assume that g ∈ HBV (R) ∩ L1 (R). Then

1√
2π

+∞∫
−∞

ĝ (t)
1

t+ α
dt =


− i

+∞∫
0
g (x) eiαxdx, Im α > 0

i
+∞∫
0
g (−x) e−iαxdx, Im α < 0

.

Proof. We will prove the statement in the case Imα > 0. The case Imα < 0 is
treated similarly. Since, for Imα > 0

T∫
−T

ĝ (t)
1

t+ α
dt =

T∫
−T

ĝ (t)

+∞∫
0

− iei(t+α)xdxdt

and ĝ(t)
t+α

∈ L1 [−T, T ], we can apply Fubini’s theorem to get

1√
2π

T∫
−T

ĝ (t)
1

t+ α
dt =

+∞∫
0

− ieiαxgT (x) dx.

The uniform boundedness of ‖gT‖∞ and the fact that eiαx ∈ L1 (0,∞) enables us
to apply the Lebesgue dominated convergence theorem. This, together with the
Theorem 2.C gives us:

1√
2π

+∞∫
−∞

ĝ (t)
1

t+ α
dt =

+∞∫
0

− ieiαx lim
T→∞

gT (x) dx = −i
+∞∫
0

g (x) eiαxdx.

This finishes the proof of the lemma.

2. Φ (z) = eP (z), so Φ′

Φ
(z) = P ′ (z) , degP ′ (z) ≤M.

In this case, the evaluation of the Weil functional reduces to the Fourier inversion
formula, i.e. to Theorem 2.C, as the following lemma demonstrates:

Lemma 8.2. Assume that M−times differentiable function g is such that

g(j) ∈ HBV (R) ∩ L1 (R) , for j = 0,M .

Then, for all n ∈ {0, 1, ...,M} we have that

lim
T→∞

1√
2π

T∫
−T

ĝ (t) (it)n eitxdt = g(n) (x) .
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Proof. In the case n = 0 the statement of lemma is the same as Theorem 2.C. Let

n ≥ 1. Applying Theorem 2.C to the function ĝ(n) (t)we have that

lim
T→∞

1√
2π

T∫
−T

ĝ(n) (t) eitxdt = g(n) (x) . (5)

On the other hand, for a < 0 < b we have:

b∫
a

g(n) (x) e−itxdx =

b∫
a

e−itxdg(n−1) (x) .

Applying the classical integration by parts formula,(note that e−itx ∈ BV [a, b] and
g(n−1) (x) is differentiable and so continuous), we get that

b∫
a

g(n) (x) e−itxdt = g(n−1) (b) e−itb − g(n−1) (a) e−ita −
b∫
a

(−it) e−itxg(n−1) (x) dx.

Letting a→ −∞, b→∞ and applying Lemma 2.2. we have that

ĝ(n) (t) =
1√
2π

∞∫
−∞

g(n) (x) e−itxdx =
(it)√
2π

∞∫
−∞

e−itxg(n−1) (x) dx.

Repeating this (n− 1)−times, we end up with

ĝ(n) (t) = (it)n ĝ (t) .

Putting this into (5) gives us the statement.
A direct consequence of the lemma is the following corollary

Corollary 8.1. If g satisfies conditions of Lemma 8.2. then

lim
T→∞

1√
2π

T∫
−T

ĝ (t)P ′ (t) dt = P ′ (−i∂) g (0)

for every polynomial P
′
, such that degP ′ ≤M .

3. Φ (z) = DL (z) for some regularized product DL associated to the pair (L,A).

For any n ∈ N let Ln = {λn+1, ...}. Then

D′
L

DL

(z) =
n∑
k=0

ak
z + λk

+
D′
Ln

DLn

(z) .

To the sum on the right-hand side we can apply Lemma 8.1. and evaluate Weil’s
functional. That is why, without loss of generality, we may assume that L is such
that

max
λk∈L

{−Re (λk)} <
σ0

2
.
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The generalization of Gauss formula, proved in [6] yields, for any α > 0,

lim
n→∞

1√
2π

Tn∫
−Tn

F̂ (t)

(
DL

′

DL

(
σ0

2
+ it

))
dt =

lim
n→∞

1√
2π

Tn∫
−Tn

F̂ (t) Iα

(
σ0

2
+ it− α

)
dt+ lim

n→∞

1√
2π

Tn∫
−Tn

F̂ (t)Sα

(
σ0

2
+ it− α

)
dt.

where, in the notation of [6] we have

Iα

(
σ0

2
+ it− α

)
=

∞∫
0

[
θ(σ0

2
+it−α) (u)− P0θ(σ0

2
+it−α) (u)

]
e−αudu

and Sα (z) is a polynomial of a degree less or equal to M .
Since Sα is a polynomial of a degree less or equal toM and F satisfies condition C

I, Corollary 8.1. can be applied to the second summand on the right-hand side. The
first summand can be evaluated using Corollary 5.A. Let us put Sα

(
σ0

2
+ it− α

)
=

Uα,σ0
2

(t). The evaluation of the Weil’s functional in this case can be described in
the form of the following lemma.

Lemma 8.3 Let the function F satisfy conditions C I and C II. Let Φ (z) =
DL (z) for some regularized product DL associated to the pair (L,A) such that
max
λk∈L

{−Re (λk)} < σ0

2
. Then

lim
n→∞

1√
2π

Tn∫
−Tn

F̂ (t)
Φ′

Φ

(
σ0

2
+ it

)
dt

= Uα,σ0
2

(−i∂)F (0) +

∞∫
0

[
θ(σ0

2
−α) (x)F− (x)− P0θ(σ0

2
+it−α) (u)

]
e−αxdx,

for all α > 0.

Lemma 8.1., Lemma 8.2. and Lemma 8.3. show us that Weil’s functional WΦ (F )
is well defined for the class of functions that satisfy conditions C I - C II and also give
us the direct evaluation of WΦ (F ). This finishes the proof of the explicit formula.

9 Application: Weil’s explicit formula for the L-function

In this section we will show how to apply our results and prove the Barner - Weil
explicit formula from [3] for a larger class of test functions. We will use the same
notation as in [8].

Let k be a complete number field, χ a Hecke character of the ideal classes and
dχ = N (Dfχ), where D denotes the local different and fχ is the conductor of χ. We
put A = 2−2r2π−Ndχ, where N is the absolute degree of k and r2 is the number of
complex primes v that belong to S∞, the set of archimedean prime spots of k.

The Hecke L−function, L (s, χ) , s = σ + it, t ∈ R is defined for σ > 1 as

L (s, χ) =
∏

p/∈Sχ

(
1− χ (p)

Nps

)−1

.



Explicit formula for a fundamental class of functions 585

Here Sχ denotes the set of all prime ideals p of k that are ramified for χ.
In [8] it is proved that the logarithmic derivative of the function L (s, χ) has an

Euler sum

−d logL(s, χ) = −L
′

L
(s, χ) =

∑
p,m

(log Np)χ(pm)(Np)−ms

that converges absolutely in a half plane Re(s) > 1 and uniformly in any half plane
of the form Re (s) ≥ 1 + ε > 1 (ε > 0). The sum on the right hand side is taken
over all prime ideals p and natural numbers m.

Let

Λ (s, χ) = A
s
2

∏
v∈S∞

Γ
(
sv
2

)
L (s, χ) ,

where sv = sv (χ) = Nv (s+ iϕv (χ)) + |mv (χ)| .
In [8] it is also proved that the function [s(s− 1)]δχ Λ (s, χ) , where

δχ =

{
1
0

if χ is a principal character
if χ is a non - principal character.

is an entire function of order 1. It is also proved that the function Λ (s, χ)
satisfies the functional equation

W (χ) Λ (s, χ) = Λ (1− s, χ) ,

where W (χ) denotes the constant of modulus 1 depending on χ only. We can write
the last equation in the form:

W (χ)G (s, χ)L (s, χ) = G (1− s, χ)L (1− s, χ) ,

for

G (s, χ) = A
s
2

∏
v∈S∞

Γ
(
sv
2

)
, G (1− s, χ) = A

1−s
2

∏
v∈S∞

Γ

(
ŝv
2

)
,

and ŝv = ŝv (χ) = Nv (1− s− iϕv (χ)) + |mv (χ)|.
If, for a fixed χ we put G (s) = G (s, χ) ; G̃ (s) = G (s, χ) ; Z (s) = L (s, χ) and

Z̃ (s) = L (s, χ) the functional equation becomes:

W (χ)Z (s)G (s) = G̃ (1− s) Z̃ (1− s) ,

or
Z (s) Φ (s) = Z̃ (1− s) .

Here,

Φ (s) = W (χ)As−
1
2

∏
v∈S∞

Γ
(
sv

2

)
Γ
(
ŝv

2

) ,

so the fudge factor Φ of the last equation is of regularized product type of a reduced
order (0, 0) . This follows from the fact that the function 1

Γ(s)
is a regularized product

of a reduced order (0, 0).

Now, we see that
(
Z, Z̃,Φ

)
is in the fundamental class with σ0 = σ′0 = 1, so, it

is possible to apply Theorem 6.1., with M = 0 as well as Corollary 6.2 from [2],

to obtain the explicit formula for the L-function. Let us note that functions Γ
(
sv

2

)
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and Γ
(
ŝv

2

)
have finitely many zeros and poles in the half strip Ra, 1

2
and no zeros or

poles on the line Re (s) = 1
2
, so conditions posed on Z, Z̃ and Φ are satisfied.

The following corollary is a generalization of Weil’s explicit formula from [3].

Corollary 9.1. Let F satisfy conditions C I-C III with M = 0, introduced in
the Section 6. Then, the following explicit formula holds:

lim
T→∞

∑
|γ|<T

ord (ρ)M 1
2
f (ρ) = δχ

∞∫
−∞

F (x)
(
e

x
2 + e−

x
2

)
dx+ F (0) logA− (6)

−
∑
p,n

log Np

Np
n
2

[
χ (p)n f (Npn) + χ (p)−n f

(
1

Npn

)]
+

+
∑
v∈S∞

∞∫
0

NvF (0)

x
− (Fχ (x) + Fχ (−x)) · e

( 2−|mv |
Nv

− 1
2)x

1− e
−2x
Nv

 e−2x
Nv dx

where the sum on the left is taken over all non-trivial zeros ρ = β + iγ, 0 ≤ β ≤ 1
of the L-function and Fχ (x) = F (x) e−iϕvx.

The first integral on the right-hand side of (6) appears in the case when χ is a
principal character, since then, the function Λ has simple poles at s = 0 and s = 1.
Otherwise, it is equal to zero.

Let us note also, that the evaluation of the Weil functional on the right - hand
side of (6) is a direct consequence of the Corollary 6.1. from [2], and the Fourier
inversion theorem, since

Φ′

Φ
(s) = logA+

∑
v∈S∞

Nv

2

(
Γ′

Γ

(
sv
2

)
+

Γ′

Γ

(
ŝv
2

))
.

Applying [2, Corollary 6.1.] we have

lim
T→∞

T∫
−T

F̂ (t)

(
Γ′

Γ

(
sv
2

)
+

Γ′

Γ

(
ŝv
2

))
dt =

=

∞∫
0

F (0)

x
− Fχ (−x)

2
Nv
e(

2−|mv |
Nv

− 1
2)x

1− e
−2x
Nv

 e−2x
Nv dx+

+

∞∫
0

F (0)

x
− Fχ (x)

2
Nv
e(

2−|mv |
Nv

− 1
2)x

1− e
−2x
Nv

 e−2x
Nv dx,

for the function F that satisfies C I and C II.
Summation over v ∈ S∞ and application of the Theorem 2.C. to the term con-

taining logA gives us the term F (0) logA and the last sum on the right-hand side
of (6).
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