Polynomial characterization of Asplund spaces

Raffaella Cilia*
Joaquín M. Gutiérrez ${ }^{\dagger}$

Abstract

We prove that, given an index m, if every Pietsch integral m-homogeneous polynomial on a Banach space E is nuclear, then E is Asplund. The converse was proved by Alencar.

A Banach space E is A splund if every separable subspace of E has a separable dual, equivalently, if the dual of E has the Radon-Nikodým property. A short introduction to Asplund spaces may be seen in [DGZ, I.5] and a more detailed one is contained in $[\mathrm{Y}]$.

For Banach spaces E and F, we use the notation $\mathcal{L}_{\mathrm{PI}}(E, F)$ for the space of all Pietsch integral operators from E into F, and $\mathcal{L}_{\mathrm{N}}(E, F)$ for the nuclear operators (see definitions in [DU]). The following result is proved in [A1]:

Theorem 1. A Banach space E is Asplund if and only if, for every Banach space F, we have $\mathcal{L}_{\mathrm{PI}}(E, F)=\mathcal{L}_{\mathrm{N}}(E, F)$.

Given an integer m, we use the notation $\mathcal{P}_{\mathrm{PI}}\left({ }^{m} E, F\right)$ for the space of m-homogeneous Pietsch integral polynomials from E into F, and $\mathcal{P}_{\mathrm{N}}\left({ }^{m} E, F\right)$ for the nuclear polynomials (see definitions below). It is proved in [A2] that, if E is Asplund, and m is an integer, then $\mathcal{P}_{\mathrm{PI}}\left({ }^{m} E, F\right)=\mathcal{P}_{\mathrm{N}}\left({ }^{m} E, F\right)$ for every Banach space F.

Here we give a converse to this result, proving that the equality $\mathcal{P}_{\mathrm{PI}}\left({ }^{m} E, F\right)=$ $\mathcal{P}_{\mathrm{N}}\left({ }^{m} E, F\right)$ for some m implies $\mathcal{L}_{\mathrm{PI}}(E, F)=\mathcal{L}_{\mathrm{N}}(E, F)$. As a consequence, if every Pietsch integral polynomial on E is nuclear, then E is Asplund.

[^0]To obtain this, we need to show that every 1-dominated polynomial on a $C(K)$ space is Pietsch integral, which extends a well-known result for linear operators.

We also prove that, if $T \in \mathcal{L}_{\mathrm{PI}}(E, F)$, then the operator

$$
\otimes^{m} T: \otimes_{\epsilon}^{m} E \longrightarrow \otimes_{\pi}^{m} F
$$

is well-defined and Pietsch integral.
Throughout, E and F denote Banach spaces, E^{*} is the dual of E, and B_{E} stands for its closed unit ball. By \mathbb{N} we represent the set of all natural numbers. By an operator we always mean a linear bounded mapping between Banach spaces. The notation $\mathcal{L}(E, F)$ stands for the space of all operators from E into F. By $E \equiv F$, we mean that E and F are isometrically isomorphic. Given $m \in \mathbb{N}$, we denote by $\mathcal{P}\left({ }^{m} E, F\right)$ the space of all m-homogeneous (continuous) polynomials from E into F. Recall that with each $P \in \mathcal{P}\left({ }^{m} E, F\right)$ we can associate a unique symmetric m-linear $\widehat{P}: E \times \stackrel{(m)}{\stackrel{(}{x}} \times E \rightarrow F$ so that

$$
P(x)=\widehat{P}(x, \stackrel{(n)}{,}, x) \quad(x \in E)
$$

For the general theory of polynomials on Banach spaces, we refer to $[\mathrm{D}]$ and $[\mathrm{Mu}]$.
We use the notation $\otimes^{m} E:=E \otimes \stackrel{(m)}{\bullet} \otimes E$ for the m-fold tensor product of E, $\left.\otimes_{\epsilon}^{m} E:=E \otimes_{\epsilon} \stackrel{(m)}{.}\right) \otimes_{\epsilon} E$ for the m-fold injective tensor product of E, and $\otimes_{\pi}^{m} E$ for the m-fold projective tensor product of E (see [DU] for the theory of tensor products). By $\left.\otimes_{s}^{m} E:=E \otimes_{s} \stackrel{(n)}{(}\right) \otimes_{s} E$ we denote the m-fold symmetric tensor product of E, i.e., the set of all elements $u \in \otimes^{m} E$ of the form

$$
u=\sum_{j=1}^{n} \lambda_{j} x_{j} \otimes \stackrel{(m)}{\bullet} \otimes x_{j} \quad\left(n \in \mathbb{N}, \lambda_{j} \in \mathbb{K}, x_{j} \in E, 1 \leq j \leq n\right)
$$

By $\otimes_{\pi, s}^{m} E$ we denote the closure of $\otimes_{s}^{m} E$ in $\otimes_{\pi}^{m} E$. For symmetric tensor products, we refer to [F]. For simplicity, we write $\otimes^{m} x:=x \otimes!(m) \otimes x$. For $T \in \mathcal{L}(E, F), \otimes^{m} T$ stands for the m-fold tensor product:

$$
\otimes^{m} T:=T \otimes \stackrel{(m)}{!} \otimes T: \otimes^{m} E \longrightarrow \otimes^{m} F .
$$

Given $P \in \mathcal{P}\left({ }^{m} E, F\right)$, let

$$
\overline{\widehat{P}}: \otimes^{m} E \longrightarrow F
$$

be the linearization of \widehat{P}, defined by

$$
\overline{\widehat{P}}\left(\sum_{j=1}^{n} x_{1 j} \otimes \cdots \otimes x_{m j}\right)=\sum_{j=1}^{n} \widehat{P}\left(x_{1 j}, \ldots, x_{m j}\right)
$$

where $x_{k j} \in E(1 \leq k \leq m, 1 \leq j \leq n)$.
A polynomial $P \in \mathcal{P}\left({ }^{m} E, F\right)$ is nuclear [D, Definition 2.9] if it can be written in the form

$$
P(x)=\sum_{i=1}^{\infty}\left[x_{i}^{*}(x)\right]^{m} y_{i} \quad(x \in E)
$$

where $\left(x_{i}^{*}\right) \subset E^{*}$ and $\left(y_{i}\right) \subset F$ are sequences such that

$$
\sum_{i=1}^{\infty}\left\|x_{i}^{*}\right\|^{m}\left\|y_{i}\right\|<\infty
$$

A polynomial $P \in \mathcal{P}\left({ }^{m} E, F\right)$ is Pietsch integral if it can be written in the form

$$
P(x)=\int_{B_{E^{*}}}\left[x^{*}(x)\right]^{m} d \mathcal{G}\left(x^{*}\right) \quad(x \in E)
$$

where \mathcal{G} is an F-valued regular countably additive Borel measure, of bounded variation, defined on $B_{E^{*}}$, where $B_{E^{*}}$ is endowed with the weak-star topology. A similar definition may be given for the Pietsch integral multilinear mappings (see [A2]). Every nuclear polynomial is Pietsch integral.

Given $1 \leq r<\infty$, a polynomial $P \in \mathcal{P}\left({ }^{m} E, F\right)$ is r-dominated (see, e.g., [M, $\mathrm{MT}]$) if there exists a constant $k>0$ such that, for all $n \in \mathbb{N}$ and $\left(x_{i}\right)_{i=1}^{n} \subset E$, we have

$$
\left(\sum_{i=1}^{n}\left\|P\left(x_{i}\right)\right\|^{\frac{r}{m}}\right)^{\frac{m}{r}} \leq k \sup _{x^{*} \in B_{E^{*}}}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{r}\right)^{\frac{m}{r}} .
$$

For $m=1$ we obtain the absolutely r-summing operators.
Proposition 2. Let E, F, X, and Y be Banach spaces. Suppose that $P \in \mathcal{P}\left({ }^{m} E, F\right)$ is Pietsch integral, and let $T \in \mathcal{L}(X, E)$ and $S \in \mathcal{L}(F, Y)$. Then $S \circ P \circ T \in \mathcal{P}\left({ }^{m} X, Y\right)$ is Pietsch integral.

Proof. It is enough to show that both $P \circ T$ and $S \circ P$ are Pietsch integral. If P is Pietsch integral, so is \widehat{P}, by [A2, Proposition 2]. This implies that the linearization

$$
\overline{\hat{P}}: \otimes_{\epsilon}^{m} E \longrightarrow F
$$

is well-defined and Pietsch integral [V, Proposition 2.6]. Since $\otimes^{m} T: \otimes_{\epsilon}^{m} X \rightarrow \otimes_{\epsilon}^{m} E$ is continuous, we have that

$$
\overline{\hat{P}} \circ\left(\otimes^{m} T\right): \otimes_{\epsilon}^{m} X \longrightarrow F
$$

is Pietsch integral. Using the polarization formula [Mu , Theorem 1.10], we easily have

$$
\overline{\widehat{P}} \circ\left(\otimes^{m} T\right)=\overline{\widehat{P \circ T}}
$$

Hence, $\overline{\widehat{P \circ T}}$ is Pietsch integral. By [V, Proposition 2.6], so is $\widehat{P \circ T}$ and, by [A2, Proposition 2], so is $P \circ T$.

Using the fact that

$$
\overline{\widehat{S \circ P}}=S \circ \overline{\widehat{P}}
$$

a similar argument shows that $S \circ P$ is Pietsch integral.
The following result may be of independent interest:
Lemma 3. Let $T \in \mathcal{L}_{\mathrm{PI}}(E, F)$ and $m \in \mathbb{N}$. Then the tensor product operator

$$
\otimes^{m} T: \otimes_{\epsilon}^{m} E \longrightarrow \otimes_{\pi}^{m} F
$$

is well-defined and Pietsch integral.

Proof. By [DJT, Theorem 5.6], we can find a compact Hausdorff space K, a regular Borel probability measure μ on K, and operators $a: E \rightarrow C(K)$ and $b: L_{1}(K, \mu) \rightarrow$ F such that the following diagram commutes

where j is the natural inclusion.
The tensor product operator
$\otimes^{m} j: \otimes_{\epsilon}^{m} C(K) \equiv C(K \times \stackrel{(m)}{\bullet} \times K) \rightarrow \otimes_{\pi}^{m} L_{1}(K, \mu) \equiv L_{1}(K \times \stackrel{(m)}{\bullet} \times K, \mu \times \stackrel{(m)}{\bullet} \times \mu)$
is the natural inclusion, so it is Pietsch integral (see the definition in [DJT, page 97]). Hence, the composition

$$
\otimes^{m} T: \otimes_{\epsilon}^{m} E \xrightarrow{\otimes^{m} a} \otimes_{\epsilon}^{m} C(K) \xrightarrow{\otimes^{m} j} \otimes_{\pi}^{m} L_{1}(K, \mu) \xrightarrow{\otimes^{m} b} \otimes_{\pi}^{m} F
$$

is Pietsch integral.

Proposition 4. Let E, F, and G be Banach spaces. Assume that $T \in \mathcal{L}_{\mathrm{PI}}(E, F)$, and let $Q \in \mathcal{P}\left({ }^{m} F, G\right)$ be a polynomial. Then $P:=Q \circ T \in \mathcal{P}\left({ }^{m} E, G\right)$ is Pietsch integral.

Proof. By Lemma 3, the operator

$$
\overline{\widehat{P}}=\overline{\widehat{Q}} \circ\left(\otimes^{m} T\right): \otimes_{\epsilon}^{m} E \longrightarrow G
$$

is Pietsch integral. By [V, Proposition 2.6], \widehat{P} is Pietsch integral and, by [A2, Proposition 2], so is P.

It is proved in [M, Proposition 3.1] that a polynomial $P \in \mathcal{P}\left({ }^{m} E, F\right)$ is r dominated if and only if there are a constant $C \geq 0$ and a regular Borel probability measure μ on $B_{E^{*}}$ (endowed with the weak-star topology) such that

$$
\begin{equation*}
\|P(x)\| \leq C\left[\int_{B_{E^{*}}}|\varphi(x)|^{r} d \mu(\varphi)\right]^{\frac{m}{r}} \quad(x \in E) \tag{1}
\end{equation*}
$$

The next result is stated in [P , Theorem 14] for the multilinear, scalar-valued case, and in [S, Proposition 3.6] for the vector-valued case. It will be needed in Proposition 6. Following the referee's suggestion, for the sake of completeness, we include the proof which is an easy modification of [G, 3.2.4].

Theorem 5. A polynomial $P \in \mathcal{P}\left({ }^{m} E, F\right)$ is r-dominated if and only if there are a Banach space G, an absolutely r-summing operator $T \in \mathcal{L}(E, G)$ and a polynomial $Q \in \mathcal{P}\left({ }^{m} G, F\right)$ such that $P=Q \circ T$.

Proof. Let $P \in \mathcal{P}\left({ }^{m} E, F\right)$ be r-dominated. Then there is a regular Borel probability measure μ on $B_{E^{*}}$ such that the inequality (1) holds. Let $T_{0}: E \rightarrow L_{r}\left(B_{E^{*}}, \mu\right)$ be given by $T_{0}(x)(\varphi):=\varphi(x)$ for all $x \in E$ and $\varphi \in B_{E^{*}}$. Clearly, T_{0} is linear. Moreover,

$$
\left\|T_{0}(x)\right\|=\left[\int_{B_{E^{*}}}|\varphi(x)|^{r} d \mu(\varphi)\right]^{\frac{1}{r}} \leq\|x\| .
$$

Let G be the closure of $T_{0}(E)$ in $L_{r}\left(B_{E^{*}}, \mu\right)$. Let $T: E \rightarrow G$ be given by $T(x):=T_{0}(x)$. Then T is linear and, by [DJT, Theorem 2.12], absolutely r-summing. Define $Q_{0}: T_{0}(E) \rightarrow F$ by $Q_{0}\left(T_{0}(x)\right):=P(x)$. Using the inequality (1), we have:

$$
\|P(x)\| \leq C\left[\int_{B_{E^{*}}}|\varphi(x)|^{r} d \mu(\varphi)\right]^{\frac{m}{r}}=C\left\|T_{0}(x)\right\|^{m}
$$

so Q_{0} is a continuous m-homogeneous polynomial. Let $Q: G \rightarrow F$ be its extension to G. Then, $P=Q \circ T$.

The converse is shown in [MT, Theorem 10].
The following result extends the linear case [DU, Theorem VI.3.12].
Proposition 6. Let Ω be a compact Hausdorff space. Then, every 1-dominated polynomial $P \in \mathcal{P}\left({ }^{m} C(\Omega), E\right)$ is Pietsch integral.

Proof. Let $P \in \mathcal{P}\left({ }^{m} C(\Omega), E\right)$ be 1-dominated. By Theorem 5, there are a Banach space G, an absolutely summing operator $T \in \mathcal{L}(C(\Omega), G)$ and a polynomial $Q \in$ $\mathcal{P}\left({ }^{m} G, E\right)$ such that $P=Q \circ T$. By [DU, Theorem VI.3.12], T is Pietsch integral. By Proposition 4, P is a Pietsch integral polynomial.

For a Banach space E, we denote by $\delta_{m}: E \rightarrow \otimes_{\pi, s}^{m} E$ the polynomial given by

$$
\delta_{m}(x)=x \otimes \stackrel{(m)}{\stackrel{ }{n}} \otimes x
$$

With each absolutely summing operator, the following lemma associates an m homogeneous 1-dominated polynomial.

Lemma 7. Let $T \in \mathcal{L}(E, F)$ be absolutely summing. Then

$$
\left(\otimes^{m} T\right) \circ \delta_{m}: E \longrightarrow \otimes_{\pi, s}^{m} F
$$

is an m-homogeneous 1-dominated polynomial.
Proof. Fix $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in E$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|\left(\otimes^{m} T\right) \circ \delta_{m}\left(x_{i}\right)\right\|^{1 / m} & =\sum_{i=1}^{n}\left\|T\left(x_{i}\right) \otimes \stackrel{(m)}{\bullet} \otimes T\left(x_{i}\right)\right\|^{1 / m} \\
& =\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\| \\
& \leq k \sup _{x^{*} \in B_{E^{*}}} \sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|
\end{aligned}
$$

where we have used that T is absolutely summing.

Proposition 8. Given Banach spaces E and F, and $m \in \mathbb{N}$, suppose that we have $\mathcal{P}_{\mathrm{PI}}\left({ }^{m} E, F\right)=\mathcal{P}_{\mathrm{N}}\left({ }^{m} E, F\right)$. Then $\mathcal{L}_{\mathrm{PI}}(E, F)=\mathcal{L}_{\mathrm{N}}(E, F)$.
Proof. Since $\mathcal{L}_{\mathrm{N}}(E, F) \subseteq \mathcal{L}_{\mathrm{PI}}(E, F)$ is always true, we only need to prove the other inclusion. Let $T \in \mathcal{L}_{\mathrm{PI}}(E, F)$. By [DU, page 168], there is a regular Borel measure μ on $B_{E^{*}}$ and an operator $b: L_{1}\left(B_{E^{*}}\right)=L_{1}\left(B_{E^{*}}, \mu\right) \rightarrow F$ such that the following diagram commutes

where i and j are the natural inclusions.
Fix $\bar{x} \in E$ and consider $\bar{f}=j i(\bar{x})$. Choose $\bar{g} \in L_{\infty}\left(B_{E^{*}}\right)$ with $\bar{g}(\bar{f})=1$. Observe that

$$
\left[i^{*} j^{*}(\bar{g})\right](\bar{x})=j^{*}(\bar{g})(i(\bar{x}))=\bar{g}(j i(\bar{x}))=\bar{g}(\bar{f})=1 .
$$

For every index $i=1, \ldots, m-1$, we consider the operators (see [B, page 168]):

$$
\pi_{i}: \otimes_{\pi, s}^{i+1} L_{1}\left(B_{E^{*}}\right) \longrightarrow \otimes_{\pi, s}^{i} L_{1}\left(B_{E^{*}}\right)
$$

given by

$$
\pi_{i}\left(\otimes^{i+1} f\right)=\bar{g}(f)\left(\otimes^{i} f\right)
$$

and

$$
\pi_{i}^{\prime}: \otimes_{\pi, s}^{i+1} E \longrightarrow \otimes_{\pi, s}^{i} E
$$

given by

$$
\pi_{i}^{\prime}\left(\otimes^{i+1} x\right)=\left(i^{*} j^{*}(\bar{g})\right)(x)\left(\otimes^{i} x\right)
$$

The polynomials

$$
T \circ \pi_{1}^{\prime} \circ \ldots \circ \pi_{m-1}^{\prime} \circ \delta_{m}: E \longrightarrow F
$$

and

$$
b \circ \pi_{1} \circ \ldots \circ \pi_{m-1} \circ\left(\otimes^{m} j\right) \circ \delta_{m} \circ i: E \longrightarrow F
$$

coincide. Indeed, we have

$$
\begin{aligned}
T \circ \pi_{1}^{\prime} \circ \ldots \circ \pi_{m-1}^{\prime} \circ \delta_{m}(x) & =T \circ \pi_{1}^{\prime} \circ \ldots \circ \pi_{m-1}^{\prime}\left(\otimes^{m} x\right) \\
& =\left(\left(i^{*} j^{*}(\bar{g})\right)(x)\right)^{m-1} T(x) \\
& =\left(\left(i^{*} j^{*}(\bar{g})\right)(x)\right)^{m-1} b j i(x)
\end{aligned}
$$

and, on the other hand,

$$
\begin{aligned}
b \circ \pi_{1} \circ \ldots \circ \pi_{m-1} \circ\left(\otimes^{m} j\right) \circ \delta_{m} \circ i(x) & =b \circ \pi_{1} \circ \ldots \circ \pi_{m-1}\left(\otimes^{m} j i(x)\right) \\
& =(\bar{g}(j i(x)))^{m-1} b j i(x) .
\end{aligned}
$$

Since j is absolutely summing, thanks to Lemma 7, the polynomial

$$
\left(\otimes^{m} j\right) \circ \delta_{m}: C\left(B_{E^{*}}\right) \longrightarrow \otimes_{\pi, s}^{m} L_{1}\left(B_{E^{*}}\right)
$$

is 1-dominated. Now, by Proposition 6, $\left(\otimes^{m} j\right) \circ \delta_{m}$ is Pietsch integral and so are (by Proposition 2) the polynomials

$$
b \circ \pi_{1} \circ \ldots \circ \pi_{m-1} \circ\left(\otimes^{m} j\right) \circ \delta_{m} \circ i=T \circ \pi_{1}^{\prime} \circ \ldots \circ \pi_{m-1}^{\prime} \circ \delta_{m} .
$$

By our hypothesis, the latter is also nuclear. As shown in [CDG, pages 120-121], this implies that T is nuclear and so we are done.

Theorem 9. For a Banach space E, the following assertions are equivalent:
(a) E is Asplund;
(b) for all $m \in \mathbb{N}$ and every Banach space F, we have $\mathcal{P}_{\mathrm{PI}}\left({ }^{m} E, F\right)=\mathcal{P}_{\mathrm{N}}\left({ }^{m} E, F\right)$;
(c) there is $m \in \mathbb{N}$ such that for every Banach space F, we have $\mathcal{P}_{\mathrm{PI}}\left({ }^{m} E, F\right)=$ $\mathcal{P}_{\mathrm{N}}\left({ }^{m} E, F\right)$.

Proof. (a) $\Rightarrow(\mathrm{b})$ is proved in [A2, Proposition 1].
(b) \Rightarrow (c) is obvious.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. It is enough to apply Proposition 8 and Theorem 1.
It is shown in [CD] that (a) implies that the equality of (b) is an isometry.
We are grateful to Daniel Pellegrino for pointing out a gap in the first version of this paper.

References

[A1] R. Alencar, Multilinear mappings of nuclear and integral type, Proc. Amer. Math. Soc. 94 (1985), 33-38.
[A2] R. Alencar, On reflexivity and basis for $\mathcal{P}\left({ }^{m} E\right)$, Proc. Roy. Irish Acad. 85A (1985), 131-138.
[B] F. Blasco, Complementation in spaces of symmetric tensor products and polynomials, Studia Math. 123 (1997), 165-173.
[CD] D. Carando and V. Dimant, Duality in spaces of nuclear and integral polynomials, J. Math. Anal. Appl. 241 (2000), 107-121.
[CDG] R. Cilia, M. D'Anna, and J. M. Gutiérrez, Polynomials on Banach spaces whose duals are isomorphic to $\ell_{1}(\Gamma)$, Bull. Austral. Math. Soc. 70 (2004), 117-124.
[DGZ] R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman, Harlow 1993.
[DJT] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge 1995.
[DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monographs 15, American Mathematical Society, Providence RI 1977.
[D] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Math., Springer, Berlin 1999.
[F] K. Floret, Natural norms on symmetric tensor products of normed spaces, Note Mat. 17 (1997), 153-188.
[G] S. Geiß, Ideale multilinearer Abbildungen, Diplomarbeit, Jena 1984.
[M] M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Bras. Ci. 68 (1996), 1-13.
[MT] Y. Meléndez and A. Tonge, Polynomials and the Pietsch domination theorem, Math. Proc. Roy. Irish Acad. 99A (1999), 195-212.
[Mu] J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, NorthHolland, Amsterdam 1986.
[P] A. Pietsch, Ideals of multilinear functionals (designs of a theory), in: H. Baumgärtel et al. (eds.) Proceedings of the Second International Conference on Operator Algebras, Ideals, and their Applications in Theoretical Physics (Leipzig, 1983), Teubner-Texte Math. 67, Teubner, Leipzig 1984, 185-199.
[S] B. Schneider, On absolutely p-summing and related multilinear mappings, Brandenburgische Landeshochschule Wissenschaftliche Zeitschrift 35 (1991), 105-117.
[V] I. Villanueva, Integral mappings between Banach spaces, J. Math. Anal. Appl. 279 (2003), 56-70.
[Y] D. Yost, Asplund spaces for beginners, Acta Univ. Carolin. Math. Phys. 34 (1993), 159-177.

Dipartimento di Matematica
Facoltà di Scienze
Università di Catania
Viale Andrea Doria 6
95125 Catania (Italy)
cilia@dmi.unict.it
Departamento de Matemática Aplicada
ETS de Ingenieros Industriales
Universidad Politécnica de Madrid
C. José Gutiérrez Abascal 2

28006 Madrid (Spain)
jgutierrez@etsii.upm.es

[^0]: *The first named author was supported in part by GNAFA(Italy)
 ${ }^{\dagger}$ The second named author was supported in part by Dirección General de Investigación, BFM 2003-06420 (Spain)

 Received by the editors August 2003 - In revised form in December 2003.
 Communicated by F. Bastin.
 2000 Mathematics Subject Classification : Primary: 46G25. Secondary: 46B20, 47H60.
 Key words and phrases : Pietsch integral polynomial, nuclear polynomial.

