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Abstract

In this note we show that the algebraic parameters of a linear translation
generalized quadrangle are not restricted. This is done with a free construction
of fourgonal families on vector spaces. Secondly we prove that a compact
translation generalized quadrangle can only have the topological parameters
(1, t), (2, 2), (3, 4t) or (7, 8t) for t ∈ N. This is achieved by determining the
possible dimensions of the elements of continuous partial spreads which satisfy
a certain planarity condition.

1 Introduction

1.1 Elation generalized quadrangles.

A generalized quadrangle is an incidence geometry G = (P, L, F ) with point set P ,
line set L and flag set F ⊆ P × L such that for every anti-flag (p, l) ∈ (P × L) \ F
there is a unique flag (π(p, l), λ(p, l)) ∈ F such that (p, λ(p, l)) and (π(p, l), l) are
flags; furthermore it is required that any point and any line is incident with at least
three lines or points, respectively. Usually we simply write (P, L) for G if F is given
by the element relation. As for any incidence geometry we can regard G as a graph
in the following way.

If P and L are disjoint (this is no restriction), then (V, E) := (P ∪̇ L, {{p, l} :
(p, l) ∈ F}) is a graph, the incidence graph of G. Denote by d : V 2 → N0 ∪{∞} the
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graph theoretic distance. For n ∈ N and v ∈ V set Dn(v) := {w ∈ V : d(v, w) = n}.
The number sup d(V 2) is called the diameter of (V, E). A set of l distinct vertices
v1, . . . , vl = v0 satisfying {vi−1, vi} ∈ E for i = 1, . . . , l is called a circle of length l,
and the least number l ≥ 3 (or infinity) such that there is such a circle is called the
girth of (V, E).

The language of graph theory (see [7] for notions not defined here) provides a
different way of defining generalized quadrangles (see [34, Section 1.3]): an incidence
geometry is a generalized n-gon if its incidence graph has diameter n and girth 2n
and if there is a circle of length 2n + 2. Circles of length 2k in a (bipartite) graph
are also called ordinary k-gons. With this terminology the latter definition reads as
follows: any two vertices are contained in an ordinary n-gon, there are no k-gons
for k < n, and there is an ordinary (n + 1)-gon. This is where the name generalized
polygon comes from. A generalized 3-gon is the same thing as a projective plane.
The notion of generalized polygons was introduced by Jacques Tits, and it first
appeared in [33].

The quadrangle G is called an elation generalized quadrangle if there is a point
∞ ∈ P , the center, and a group E of collineations (i.e., bijections that leave
the flag set F invariant) which fixes every line of D1(∞) and acts sharply tran-
sitively on the set D4(∞) of vertices at distance 4 of ∞. If the elation group E is
abelian, then G is called a translation generalized quadrangle. For a line l ∈ D1(∞)
the subgroups El := {e ∈ E : e fixes every line in D2(l)} and TEl

:= {e ∈ E :
e fixes every point in D1(l)} are defined; it is easy to see that El ≤ TEl

and that
El ∩TE

l′
= {0} for different lines l, l′ ∈ D1(∞); so these groups determine l, and TEl

is well-defined. Furthermore these subgroups constitute a fourgonal family in the
following sense; see [15] and [2] as well as [3] for the independence of the axioms.

1.2 Fourgonal families.

Let (E, +) be a group, O be a set of non-trivial subgroups of E and let T be a
map from O to the set of subgroups of E mapping each A ∈ O to a subgroup
TA containing A properly. The triple (E,O, T ) is called a fourgonal family if the
following axioms hold.

(FF1) TA + B = E for all A, B ∈ O with A 6= B.

(FF2) TA ∩ B = {0} for all A, B ∈ O with A 6= B.

(FF3) (A + B) ∩ C = {0} for all A, B, C ∈ O with A 6= C 6= B.

(FF4) E = TA ∪ ⋃

B∈O(B + A) for each A ∈ O.

Note that usually the group E is written multiplicatively and the subgroup TA is
written as A∗. We deviate from this standard notation, because we want to allude
to examples arising in vector spaces; see Section 1.4.

The above process can be reversed; i.e., a fourgonal family defines an elation
generalized quadrangle: in fact it is easy to check that (E,O + E) is an affine
quadrangle, which can be completed to a generalized quadrangle as described below.
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1.3 Affine quadrangles.

The following axiom system is a generalization of the one for affine planes. Here two
types of parallel relations and two parallel axioms are needed. These correspond to
the two types of vertices at infinity. Let A = (P, L, F ) be an incidence geometry
and define the relations

g ‖ h :⇐⇒ ∀ p ∈ D1(g), q ∈ D1(h) : d(p, h) = d(q, g) and

g ||| h :⇐⇒ d(g, h) ∈ {0, 6}.

for g, h ∈ L. The geometry A is called an affine quadrangle if the following axioms
hold.

(A1) Some point row has at least 2, and some line pencil has 3 elements.

(A2) The girth of A is greater than 6 and d(L2) ≤ 6.

(A3) For every (p, h) ∈ P × L there is a unique l ∈ D1(p) such that l ‖ h.

(A4) For (g, h) ∈ L2 with g ∦ h there is a unique l ∈ D2(g) such that l ||| h.

If (P, L) is a generalized quadrangle and ∞ ∈ P , then (D4(∞), D3(∞)) is an
affine quadrangle. Furthermore every affine quadrangle can be obtained in this way;
i.e., every affine quadrangle has a completion to a generalized quadrangle; see [29],
and cf. [27] and [32] for variations of this definition. This is completely analogous
to the case of affine and projective planes, and as there the vertices at infinity are
given by parallel classes and a further vertex ∞.

1.4 Linearity.

If G is a translation generalized quadrangle (i.e., the elation group E is abelian),
then K(∞) := {α ∈ End(E) : α(El) ⊆ El for all l ∈ D1(∞)} is called the kernel

of G. It is an integral domain (see [12, 3.8]), and it has been conjectured in [13,
4.2] that K(∞) is always a skew field, but this could only be shown in some special
cases: for finite translation generalized quadrangles, for planar translation gener-
alized quadrangles, for translation generalized quadrangles with a strongly regular
translation center and for compact connected translation generalized quadrangles,
which will be defined in Section 4; see [26, 8.5.1], [13, 4.7], [13, 4.9] and [14, 5.4],
respectively. The translation generalized quadrangle is called linear, if the kernel
K(∞) is a skew field. In this case E is a vector space over the kernel, and all sub-
groups El and TEl

are subspaces of E. By (FF1) and (FF2) all subspaces El and
and all spaces TEl

/El have the same dimensions s, t ∈ N ∪ {∞}, respectively, and
we have dim E = 2s + t. By (FF3) we have s ≤ t. The numbers s and t are called
the parameters of the linear translation generalized quadrangle G. Note that for
finite generalized quadrangles the numbers |K(∞)|s and |K(∞)|t are often called
the parameters.

A fourgonal family (E,O, T ) such that the group E is a vector space and the
subgroups in O and T (O) are subspaces of E is called linear. In the case understood
best the subspaces in O are one-dimensional and the ones in T (O) are hyperplanes;
then the axioms of a fourgonal family simply mean that O is an ovoid in the projec-
tive space over E with tangent hyperplanes T (O). In this case the related translation
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generalized quadrangle is called a Tits-quadrangle. If any three subspaces of O span
E, then O is called a pseudo-oval and these objects were treated in [22]. The trans-
lation generalized quadrangles which define fourgonal families that are pseudo-ovals
are called planar in [13, 4.6]. These are related to Laguerre planes.

2 Construction of translation generalized quadrangles

The following theorem shows that there are many translation generalized quadran-
gles. Note that for finite translation generalized quadrangles the parameters s and
t are further restricted by t ≤ 2s by Higman’s inequality, which holds for all finite
generalized quadrangles; see [26, 1.2.3].

We denote the Graßmann space of all k-dimensional subspaces of a vector space
E by Gk(E).

Theorem 2.1. Let s, t ∈ N with s ≤ t, and let E be a vector space over an infinite

skew field such that dim E = 2s+t. Then there is a linear fourgonal family (E,O, T )
satisfying O ⊆ Gs(E) and T (O) ⊆ Gs+t(E).

Furthermore finitely many of the elements of O and their images under T can

be chosen arbitrarily subject to the conditions (FF1) to (FF3).

The proof relies on the following lemma.

Lemma 2.2. Let E be a vector space over a skew field K. Assume U is a set of

proper subspaces of E with bounded finite dimensions and |U| < |K| + 1.

(a) Then
⋃U 6= E.

(b) If X is a subspace with X ∩⋃U = {0}, then there is a complement Y of some

U ∈ U such that X ⊆ Y and Y ∩ ⋃U = {0}.

Proof. Part (a) is Theorem 3 of [28]. For (b) we employ Zorn’s lemma to get a
maximal subspace Y of E such that X ⊆ Y and Y ∩⋃U = {0}. Then an application
of (a) to E/Y and {(U + Y )/Y : U ∈ U} shows that Y has indeed a complement in
U . �

The following proof of Theorem 2.1 can also be used to show that (FF1) is
independent of the axioms (FF2) to (FF4). To that end one simply has to choose
the parameters s and t such that 2s+ t < dim E, and the proof remains valid; cf. [3].

Proof of Theorem 2.1. Let us call a partial map T : Gs(E) → Gs+t(E) a partial
fourgonal family if the axioms (FF1) to (FF3) are satisfied for (E, domT, T ). We
regard such a map T : dom T → Gs+t(E) as a subset of Gs(E) × Gs+t(E). In the
following we will define a partial fourgonal family by transfinite recursion. For
background on ordinals and cardinals see [9]. The sets

Zq,T := {q + r : r ∈ dom T} ∪ {Tq} and ZT :=
⋃

q∈dom T

Zq,T
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defined for any partial fourgonal family T and q ∈ dom T play a crucial role in the
proof.

Let κ be the cardinality of E, which is the cardinality of the skew field over which
E is defined. Then E ×Gs(E) also has this cardinality; so let f : κ → E ×Gs(E) be
a bijection, and set (xσ, pσ) := f(σ) for σ ∈ κ.

Let α ∈ κ. Assume that T σ is a partial fourgonal family for every σ ∈ α such
that T σ ⊆ T σ′

if σ ∈ σ′ ∈ α, assume that T {} is finite and assume that we have the
following condition for (xσ, pσ) = f(σ) and all σ ∈ α.

(∗) If pσ ∈ dom T σ, then xσ ∈ ⋃Zpσ, T σ , and
if pσ 6∈ domT σ, then pσ ∩ ⋃ZT σ 6= {0}.

This condition guarantees that in every ‘step’ σ of the construction, any element of
Gs(E) is either an element of dom T σ or will not become one in any future step.

Now set (x, p) := (xα, pα) = f(α), and define a partial fourgonal family T ′ :=
⋃

σ∈α T σ. If p intersects a member of ZT ′ non-trivially, then define T ′′ := T ′. If p
has trivial intersection with all members of ZT ′, then there is a subspace Tp ∈ Gs(E)
by Lemma 2.2(b) such that T ′′ := T ′ ∪ {(p, Tp)} is a partial fourgonal family.

In order to ensure condition (∗) for σ = α we may need to enlarge the partial
fourgonal family T ′′ further. If p ∈ dom T ′′ and x ∈ ⋃Zp,T ′′ or if p 6∈ dom T ′′, then
condition (∗) is satisfied, and we set T α := T ′′.

If p ∈ dom T ′′ and x 6∈ ⋃Zp,T ′′, then we have 〈x, p〉 6⊆ U for all U ∈ ZT ′′ by
(FF3). So 〈x, p〉∩U is a proper subspace of 〈x, p〉 for all U ∈ ZT ′′ , and we can choose
y ∈ 〈x, p〉 \ ⋃ZT ′′ by Lemma 2.2(a), since the cardinality of ZT ′′ is smaller than κ.
Now Lemma 2.2(b) yields a subspace q ∈ Gs(E) which has trivial intersection with
all subspaces in ZT ′′ and satisfies 〈y〉 ⊆ q. We have x ∈ p+q. A further application of
Lemma 2.2(b) yields a complement Tq ⊇ q of all subspaces in dom T ′′, and condition
(∗) is satisfied for T α := T ′′ ∪ {(q, Tq)}.

By transfinite recursion we have defined a partial fourgonal family T α satisfying
condition (∗) for all α ∈ κ. Finally set T :=

⋃

α∈κ T α. Then T is a partial fourgonal
family, and (FF4) follows from the surjectivity of f : Let p ∈ dom T and x ∈ E. Then
there is a σ ∈ κ such that (p, x) = f(σ). Since p 6∈ dom T σ would contradict (FF2)
or (FF3) for T by (∗), we have p ∈ dom T σ, and (∗) yields (FF4). So (E, domT, T )
is a fourgonal family. �

Corollary 2.3. For every s, t ∈ N with s ≤ t and every infinite skew field K there

is a linear translation generalized quadrangle with parameters (s, t) and kernel K.

Proof. Let E be a left vector space of dimension 2s+ t over K, and use the notation
of the previous proof. For O ⊆ Gs(E) consider the right vector subspace KO := {α ∈
End(E) : α(A) ⊆ A for all A ∈ O} of End(E). We will show that there is a finite
subset O ⊆ Gs(E) such that (FF3) is satisfied and such that KO = idE ·K. Then
we can use Lemma 2.2(b) to define T on O such that (FF1) and (FF2) are satisfied,
and an application of Theorem 2.2 yields a translation generalized quadrangle with
kernel KO

∼= K and parameters (s, t).
Now let O be a finite subset of Gs(E) such that KO has minimal dimension, and

let α ∈ KO. Then α leaves all subspaces A ∈ Gs(E) invariant which have trivial
intersection with X :=

⋃{B+C : B, C ∈ O}, because otherwise there were an A such
that α 6∈ KO∪{A} and this subspace would have smaller dimension than KO. This
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implies that any one-dimensional subspace 〈v〉 of E which has trivial intersection
with X is left invariant; indeed by a twofold application of Lemma 2.2(b) there are
two s-dimensional subspaces whose intersection is 〈v〉 and both of which have trivial
intersection with X. Now again by Lemma 2.2(b) there are dimE +1 such invariant
one-dimensional subspaces in general position. This implies α ∈ idE ·K. �

Given dim E +1 one-dimensional subspaces in general position it is also possible
to construct a finite family O ⊆ Gs(E) which satisfies (FF3) and contains the given
one-dimensional subspaces in its lattice span. But this seems more complicated.

Remark 2.4. As mentioned earlier it is an open problem, whether every translation

generalized quadrangle is linear. The above construction method might extend to

modules and thus solve this problem in the negative. However, if R is a commutative

integral domain such that every submodule of Rn has a complement, then R is a

field. Thus Lemma 2.2(b) on which the construction relies heavily does not hold for

modules.

3 Parameters of continuous spreads

Let E be a vector space over a skew field. A set S of non-trivial proper subspaces
of E is called a partial spread on E if the intersection of different elements of S is
trivial (note that sometimes it is assumed that the subspaces of a partial spread
have the same dimension). A partial spread S of E is called a spread if

⋃S = E.
A partial spread S is called planar at U0 ∈ S, if U + U0 = E for all U ∈ S \ {U0}.
A planar partial spread S is a partial spread which is planar at every element of S.

A planar spread defines an affine translation plane (E,S + E), and every trans-
lation plane is obtained in this way; see [23]. For linear translation generalized
quadrangles there is also a connection to spreads, which is not quite as strong.
Every such quadrangle defines a linear fourgonal family (E,O, T ), which defines a
spread {(A+B)/A : B ∈ O\{A}}∪{TA/A} on E/A for every A ∈ O; it is planar at
TA/A. We will use this spread later in order to obtain properties of the quadrangle.

Now assume that E is a real finite-dimensional vector space. Then the Graßmann
space Gk(E) becomes a compact manifold of dimension k(dim E − k). Let S be a
spread on E which is planar at U0. Then S \ {U0} ⊆ Gdim E−dimU0

(E) carries a
natural topology, and we call S continuous, if E \ U0 → S \ {U0}, x 7→ X ∋ x is a
continuous map. If S is planar, then S ⊆ Gk(E) for 2k = dim E. So in the planar
case S carries a topology.

Our next aim is to give a class of examples of continuous spreads. Let e1, . . . , ek

be the standard basis of Rk. The real Clifford algebra Clk is the 2k-dimensional
vector space over R with basis

{ei1ei2 . . . eil : l = 0, . . . , k and 1 ≤ i1 < · · · < il ≤ k}

together with the unique multiplication making Clk into a real algebra and satisfying
e2

i = −1 and eiej = −ejei for all i, j = 1, . . . , k, i 6= j. For a skew field F ∈ {R, C, H}
let F (n) denote the R-algebra of (n×n)-matrices over F . The Clifford algebras can
be described with such matrix algebras, as the following table shows for k = s + 8r
with 0 ≤ s ≤ 7; see [20, I4.3].
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s 0 1 2 3

Clk R(16r) C(16r) H(16r) H(16r) ⊕ H(16r)

module R16r

C16r

H16r

H16r

s 4 5 6 7

Clk H(2 · 16r) C(4 · 16r) R(8 · 16r) R(8 · 16r) ⊕ R(8 · 16r)

module H2·16r

C4·16r

R8·16r

R8·16r

The last row shows the respective irreducible modules of Clk; see [20, I5.8]. Their
real dimensions can be calculated as 2δ(k) where

δ(k) :=
∣

∣

∣{l ∈ {1, . . . , k} : l ≡ 1, 2, 4, 8 mod 8}
∣

∣

∣ for all k ∈ N0.

This means that there is a representation Clk → End(U0) of real algebras for a real
vector space U0 if and only if 2δ(k) | dim U0. The map δ is a monotone function and
δ(k) is roughly k/2; more precisely we have k − 1 ≤ 2δ(k) ≤ k + 2 for all k ∈ N0

and k ≤ 2δ(k) for even k.
Consider the R-linear span of the algebra elements e0 := 1, e1, . . . , ek. Its non-

zero elements are invertible, as (r +
∑k

i=1 riei)(r − ∑k
i=1 riei) = r2 +

∑k
i=1 r2

i . Let
σ : Clk → End(U0) be a representation of real algebras. Then

{〈(ei, σ(ei)(v)) : i = 0, . . . , k〉 : v ∈ U0} ∪ {{0} × U0}

is a spread of 〈e0, . . . , ek〉R-linear × U0, which is planar at U0. The continuity of σ
implies that this spread is continuous.

Using the representation σ again we will now describe a cross section. Denote by
V∗

k(U0) the set of linearly independent k-tuples of Uk
0 . As an open subset the space

V∗
k(U0) is a manifold of the same dimension. (The compact submanifold of orthonor-

mal vectors, the Stiefel manifold, is a deformation retract, as can be seen with Gram–
Schmidt orthogonalization.) The projection π1 : V∗

k(U0) → U0 \ {0} to the first
component is a locally trivial bundle. Now the map v 7→ (v, σ(e1)(v), . . . , σ(ek)(v)),
which was used above to define a continuous spread from the representation σ, is a
continuous cross section of the bundle π1 : V∗

k+1(U0) → U0 \ {0}.
As we have seen, it is possible to define a spread as well as a cross section from

a representation of a Clifford algebra. This is no coincidence. Given a continuous
spread we will define a continuous cross section in order to apply the following
celebrated result by Adams; see [1].

Theorem 3.1. There is a continuous cross-section of π1 : V∗
k(R

n) → Rn \ {0} if

and only if 2δ(k−1) | n.

Note that this result is better known as an existence result about continuous
vector fields on spheres: there are k − 1 linearly independent vector fields on the
sphere Sn−1 if and only if 2δ(k−1) | n. For the connection of Stiefel manifolds and
vector fields see [11, Section 1].

Let S now be an arbitrary spread of E which is planar at U0 ∈ S, and set
S∗ := S \ {U0}. Let U ∈ S∗, and define the map

α : S∗ → L(U, U0) satisfying {α(X)(u)} = (X − u) ∩ U0
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where L(U, U0) denotes the set of linear maps from U to U0; it is well-defined, because
S is a partial spread which is planar at U0. Note that α(U) = 0 and that α(X) is
injective for X ∈ S∗ \ {U}. We will be particularly interested in the map

α( ·)(u) : S∗ → U0 and its inverse βu : U0 → S∗, u0 7→ X ∋ u + u0

for u ∈ U \ {0}; it is bijective, because S is a spread.
Now assume that S is continuous. Then βu is continuous. By definition the map

α( ·)( ·) is also continuous. Now let {u1, . . . , uk} be a basis of U , and define the
continuous map

γ : U0 \ {0} → V∗
k(U0), u 7→

(

α(βu1
(u))(u1), . . . , α(βu1

(u))(uk)
)

.

Note that the first coordinate of γ(u) equals u; so γ is a cross-section of the bundle
π1 : V∗

k(U0) → U0 \ {0}. This implies that 2δ(k−1) | dim U0 by Theorem 3.1. On the
other hand there are examples in these dimensions, as we have seen above. So we
have proved the following theorem.

Theorem 3.2. There is a continuous spread of Rn which is planar at an element

of dimension l if and only if 2δ(n−l−1) | l.

We have the following well known corollary; see [5, p. 47], for example.

Corollary 3.3. Compact planar spreads of Rn only exist for n ∈ {2, 4, 8, 16}.

Proof. Let S be a compact planar spread of R2k. Then mapping a non-zero element
v ∈ R2k to the subspace of S containing v is continuous, because this map has a
closed graph and S is compact. Thus Theorem 3.2 yields 2δ(k−1) | k, which implies
for k ≥ 6 that

k ≥ 2δ(k−1) ≥ 2k/2−1 = 22(1 + 1)k/2−3 ≥ 22(1 + k/2 − 3) = 2k − 8.

Thus k ≤ 8. If k ≥ 2, then k is even. Finally the case k = 6 is not possible, because
2δ(5) = 8 ∤ 6. Hence k ∈ {1, 2, 4, 8}. �

4 Compact translation generalized quadrangles

A compact generalized polygon is a generalized polygon G = (P, L, F ) such that P
and L carry compact topologies and the flag space F is a closed subset of P ×L. In
this case the geometric operations are continuous, because they have closed graphs.
There is a certain converse: if P and L are locally compact, locally connected
and non-discrete, then G is in fact a compact polygon with connected point and
line spaces; see [17, 2.5.5]. Knarr and Kramer have shown that compact n-gons
whose point and line spaces have positive finite topological dimensions exist only for
n = 3, 4 or 6; see [16] and [17, 3.3.6]. The point-rows and line-pencils are homology
spheres. Their respective dimensions are called the topological parameters of the
compact polygon. For n = 3 and 6 it has been shown that these parameters are
equal and divide 8 and 4, respectively; see [21] and [17, 3.3.6].
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For a compact connected generalized quadrangle with topological parameters
s ≤ t it has been conjectured that (s, t) = (2, 2), (4, 5) or 2δ(s−1) |s+ t+1. Examples
for these parameters are provided by quadrangles defined from hermitian forms of
Witt index 2 or by representations of real Clifford algebras; see [19, 10.3] and [4] for
a nice introduction to the subject. Examples for the parameters (1, t) for t ∈ N and
(2, 2) are also given by Tits-quadrangles and Laguerre planes, respectively. These
constitute translation generalized quadrangles; see Section 1.4. In [24] Markert
proves the following somewhat weaker result.

Theorem 4.1. For a compact generalized quadrangle with topological parameters

(s, t) such that m := min{s − 1, t − s} ≥ 1 we have 2δ(m) | s + t + 1.

We will use this theorem together with the result about continuous spreads to ob-
tain restrictions on the topological parameters of a compact translation generalized
quadrangle.

Before we start some remarks about this theorem are in order. It originates from
work by Stolz about Dupin hypersurfaces which are generalizations of isoparametric
hypersurfaces; see [31]. An isoparametric hypersurface is a closed connected sub-
manifold of Sn of codimension one such that all its principal curvatures, i.e., the
eigenvalues of the shape (or Weingarten) operator, are constant. Münzner showed
in [25, Satz 1(b)] that the number g of distinct principal curvatures equals 1, 2, 3,
4 or 6 and that the multiplicities are determined by two of the g multiplicities. For
the case g = 4 Stolz showed that the two multiplicities s and t are related in the
following fashion: if s ≤ t, then (s, t) = (2, 2), (4, 5) or 2δ(s−1) | s + t + 1. In the last
case examples are given by representations of Clifford algebras.

Immervoll has shown in [10] that every isoparametric hypersurface with g = 4
defines a smooth generalized quadrangle. Now Markert’s approach (she attributes
some of the ideas in her work to Kramer and Stolz) is to adapt Stolz’s proof to
generalized quadrangles. His proof splits into two parts. In the first part it is
shown that, if X := D2(p) ∧D2(l) desuspends m-times for m ≤ s− 1, then one has
2δ(m) |s+ t+1. This part of the proof can be modified using Knarr’s embedding (see
[16, 2.8]), and the statement remains valid in the general case. In the second part
it is shown that the space X desuspends (s− 1)-times. In the smooth case D2(p) is
a Thom space of a vector bundle over Ss and the Bott periodicity theorem can be
used. In the general case the vector bundle is only known to be a bundle, so only
Freudenthal’s suspension theorem is available. As a consequence one only obtains
that the space X desuspends min{s− 1, t− s} times. We prove the following result.

Theorem 4.2. The topological parameters of a compact connected translation gen-

eralized quadrangle are (1, t), (2, 2), (3, 4t) or (7, 8t) for t ∈ N.

Proof. Let (P, L) be a compact translation generalized quadrangle with center ∞,
translation group E and parameters (s, t) such that s > 1 and (s, t) 6= (2, 2). By [14,
5.4 and 5.5] the kernel of (P, L) is R and for the groups of the corresponding fourgonal
family we have El

∼= Rs and TEl
/El

∼= Rt. In particular s ≤ t. The case s = t only
occurs for s ∈ {1, 2} (see [6, 3.6] or [30, 1.2]), because then (P, L) is a planar
translation generalized quadrangle and defines a 2s-dimensional locally compact
Laguerre plane; see [14, 3.7]. Thus we have 1 < s < t and an application of
Theorem 4.1 yields 2δ(m) | t + s + 1 where m := min{s − 1, t − s} ≥ 1.
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Let (E,O, T ) be the fourgonal family defined by (P, L). We can identify D4(∞)
with E and D3(∞) with O + E. For A ∈ O the set S := {(A + B)/A : B ∈
O \ {A}} ∪ {TA/A} defines a spread which is planar at TA/A. The map (E/A) \
(TA/A) → S \ {TA/A}, A + x 7→ (λ(x, A) − π(x, A) + A)/A is well defined, since A
consists of translations of the quadrangle. So the spread is continuous, as π and λ
are continuous. We apply Theorem 3.2 and obtain 2δ(s−1) | t, since dim E = 2s + t,
dim A = s and dim TA = s + t.

This implies 2δ(m) | s + 1. The parameter s is odd, as m ≥ 1. If s = 5, then
8 = 2δ(4) | t, and if s = 9, then 16 = 2δ(8) | t. So in both cases t− s ≥ 3. Thus m ≥ 3
and we have 8 = 23 | s + 1, a contradiction. We have excluded the cases s = 5 and
s = 9. Now if s ≥ 11, we have

t ≥ 2δ(s−1) ≥ 2
s−1

2 = 25(1 + 1)
s−1

2
−5 ≥ 25(1 +

s − 1

2
− 5) = 16s − 144 ≥ 2s

which implies t− s > s− 1, so m = s− 1 and we have 2s ≤ 2δ(s−1) ≤ s + 1, again a
contradiction. �

As mentioned above a large class of generalized quadrangles can be constructed
from representations of Clifford algebras. We want to determine whether there are
translation generalized quadrangles among these. The point and line spaces of a
Clifford quadrangle are disjoint compact submanifolds of S2n−1 ⊆ R2n. A point
and a line are incident if their scalar product is 1/

√
2. The map − idR2n induces

a collineation which maps any vertex to a non-incident vertex. Now a translation
generalized quadrangle with two elation centers at distance 4 is a Moufang quad-
rangle as shown in [12, Proposition 5.2]. So every Clifford quadrangle which is a
translation generalized quadrangle (up to duality) is a Moufang quadrangle. And
indeed, there is a single Moufang quadrangle with parameters s = 3 or s = 7 which
is a translation generalized quadrangle (for a list of compact connected Moufang
quadrangles see [8, Table 1]). It has parameters (3, 4) and is the dual of the smallest
hermitian quadrangle over H; see [34, 4.9.8 and Table 5.1] or [34, p. 213, bottom].
The above argument also applies to the octonion hermitian quadrangles HnO which
are related to Clifford quadrangles; for a definition see [18]. But as none of them is a
Moufang quadrangle, none of them is (up to duality) a translation generalized quad-
rangle. The author does not know whether there are compact connected translation
generalized quadrangles with parameters s = 3 and t ≥ 8 or with s = 7.

Finally we remark that Theorem 4.2 cannot be improved on just by sharpening
the conclusion of Theorem 4.1 to 2δ(s−1) | s + t + 1, as the obtained parameters
satisfy this condition.
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