
Hopf algebroids and Galois extensions

Lars Kadison∗

Abstract

To a finite Hopf-Galois extension A|B we associate dual bialgebroids S :=
End BAB and T := (A ⊗B A)B over the centralizer R using the depth two
theory in [18, Kadison-Szlachányi]. First we extend results on the equivalence
of certain properties of Hopf-Galois extensions with corresponding properties
of the coacting Hopf algebra [21, 8] to depth two extensions using coring the-
ory [3]. Next we show that T op is a Hopf algebroid over the centralizer R via
Lu’s theorem [23, 5.1] for smash products with special modules over the Drin-
fel’d double, the Miyashita-Ulbrich action, the fact that R is a commutative
algebra in the pre-braided category of Yetter-Drinfel’d modules [28] and the
equivalence of Yetter-Drinfel’d modules with modules over Drinfel’d double
[24]. In our last section, an exposition of results of Sugano [29, 30] leads us to
a Galois correspondence between sub-Hopf algebroids of S over simple subal-
gebras of the centralizer with finite projective intermediate simple subrings of
a finite projective H-separable extension of simple rings A ⊇ B.

1 Introduction

The notion of a Hopf-Galois extension was introduced by Kreimer and Takeuchi
in 1981 [21] as a generalization of Galois extensions of fields, commutative rings
and noncommutative rings, and studied in connection with affineness theorems for
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algebraic groups, non-normal separable field extensions and Takesaki duality in op-
erator algebras by Schneider, Greither-Pareigis, Blattner-Montgomery and others.
Finite Hopf-Galois extensions have a theory similar to that of depth two finite in-
dex subfactors in the von Neumann algebra theory of “continuous geometry,” the
explanation being that both are depth two ring extensions [17, 18].

Hopf algebroids over noncommutative rings were introduced by Lu [23] in connec-
tion with quantization of Poisson groupoids in Poisson geometry. Examples of Hopf
algebroids are first and foremost Hopf algebras and groupoid algebras but more sig-
nificantly come from solutions to dynamical Yang-Baxter equations [11], weak Hopf
algebras [2, 10], finite index subfactors [11] and in the study of the non-flat case of
index theory for transversally elliptic operators [7, 1].

A bialgebroid S, i.e., a Hopf algebroid without antipode, and its R-dual T has
been associated with a depth two ring extension A|B with centralizer R in Kadison-
Szlachányi [18]. S acts from the left on the over-ring A such that the right endo-
morphism ring is isomorphic to a smash product A⋊S [18]. Moreover, T acts from
the right on the left endomorphism ring E [18] such that the endomorphism ring
End AA⊗BA is similarly isomorphic to a smash product T ⋉ E , which leads to a
Blattner-Montgomery duality result if the extension A|B is also Frobenius [16].

In this paper we show via Lu’s theorem [23, 5.1] that the bialgebroid T op of
an H-Galois extension A with subring of invariants B has Hopf algebroid structure
over R. In order to frame it in terms of Lu’s hypotheses, the proof makes use of
Miyashita-Ulbrich action, Yetter-Drinfel’d modules and Drinfel’d doubles. It is per-
haps interesting to mention that Lu’s theorem is a quantization of another theorem
by Lu in Poisson geometry [22, 23, 1.2] via a dictionary between Poisson geometry
and noncommutative algebra [23]. In section 3 we establish some theorems that
inform us when depth two extension A/B are separable or Frobenius judging from
the dual properties of the underlying R-corings of the acting bialgebroids S or T .
In a final expository section of this paper, we show that a one-sided f.g. projective
H-separable extension of simple rings, such as special finite Jones index subfactors
with simple relative commutant, enjoys a Galois correspondence between intermedi-
ate simple rings forming f.g. projectives with the overring, and Hopf subalgebroids
over the simple subalgebras of the centralizer. This depends on Sugano’s one-to-one
correspondence between the intermediate simple subrings and simple subalgebras
of the centralizer of the full H-separable extension [29, 30], with its roots in work
on certain classical inner Galois theories of simple artinian rings and division rings
by Jacobson, Bourbaki, Tominaga and others. We hope that this exposition will
be a first step toward an algebraic generalization of the Galois correspondence by
Nikshych and Vainerman between finite depth and index intermediate subfactors
and coideal subalgebras of a weak ∗-Hopf algebra [26].
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2 Dual bialgebroids over the centralizer

In this section we review the basics of the dual bialgebroid constructions in [18],
while computing the bialgebroids of a finite Hopf-Galois extension as a running
example.

Let B be a unital subring of A, an associative noncommutative ring with unit,
or an image of a ring homomorphism B → A. Recall that the ring extension A|B is
said to be of depth two if

A⊗B A⊕ ∗ ∼= ⊕nA

as natural B-A and A-B-bimodules [18]. Equivalently, there are elements βi ∈ S :=
End BAB, ti ∈ T := (A⊗B A)B (called a left D2 quasibasis) such that (a, a′ ∈ A)

a⊗ a′ =
n∑

i=1

tiβi(a)a
′, (1)

and a right D2 quasibasis γj ∈ S, uj ∈ T such that

a⊗ a′ =
∑

j

aγj(a
′)uj. (2)

Fix both D2 quasibases for our work in this paper.

Example 2.1. Consider a Hopf-Galois extension A|B with n-dimensional Hopf k-
algebra H [21] with k an arbitrary field. Our convention is that H∗ acts from the left
on A with subalgebra of invariants B, or equivalently, there is a dual right coaction

A → A ⊗k H , a 7→ a(0) ⊗ a(1): the Galois isomorphism β : A ⊗B A
∼=−→ A ⊗k H

given by β(a ⊗ a′) = aa′(0) ⊗ a′(1) , which is an A-B-bimodule, right H-comodule
morphism. It follows that A ⊗B A ∼= ⊕nA as A-B-bimodules. As B-A-bimodules
there is similarly an isomorphism A ⊗B A ∼= ⊕nA by making use of the opposite
Galois isomorphism β ′ given by β ′(a⊗ a′) = a(0)a

′ ⊗ a(1).
Now compute a right D2 quasibasis {γi}, {ui} for A|B. Let {hi}, {pi} be dual

k-bases in H , H∗, respectively. Define γi ∈ End BAB by γi(a) := pi · a (a ∈ A,
i ∈ {1, 2, . . . , n}). Let ui := β−1(1 ⊗ hi) ∈ (A⊗B A)B. We verify this: (a, a′ ∈ A)

∑

i

aγi(a
′)ui =

∑

i

a(pi · a
′)β−1(1 ⊗ hi)

=
∑

i

aa′(0)pi(a
′

(1))〉β
−1(1 ⊗ hi)

= β−1(aa′(0) ⊗ a′(1))

= a⊗ a′

The paper [18] found a bialgebroid with action and smash product structure
within the Jones construction above a depth two ring extension A|B. Namely, if R
denotes the centralizer of B in A, a left R-bialgebroid structure on S is given by the
composition ring structure on S with source and target mappings corresponding to
the left regular representation λ : R → S and right regular representation ρ : Rop →
S, respectively. Since these commute (λ(r)ρ(r′) = ρ(r′)λ(r) for every r, r′ ∈ R), we
may induce an R-bimodule structure on S solely from the left by

r · α · r′ := λ(r)ρ(r′)α = rα(?)r′.
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Now an R-coring structure S = (S,∆, ε) is given by

∆(α) :=
∑

i

α( ? t1i )t
2
i ⊗R βi (3)

for every α ∈ S, denoting ti = t1i ⊗ t2i ∈ B by suppressing a possible summation,
and

ε(α) = α(1) (4)

satisfying the additional axioms of a bialgebroid (cf. section 4), such as multiplica-
tivity of ∆ and a condition that makes sense of this requirement. We have the
equivalent formula for the coproduct [18, Th’m 4.1]:

∆(α) :=
∑

j

γj ⊗R u
1
jα(u2

j ? ) (5)

Since S ⊗R S ∼= Hom B−B(A ⊗B A,A) via α ⊗ β 7→ (a ⊗ a′ 7→ α(a)β(a′)), we have
the simpler formula via identication,

∆(α)(a⊗ a′) = α(aa′), (6)

which clearly shows this bialgebroid structure on S to be a generalization to depth
two ring extensions of Lu’s bialgebroid Endk C over a finite dimensional k-algebra
C (cf. section 4).

Example 2.2. We determine the R-bialgebroid S for the Hopf-Galois extension
A|B introduced above. It is well-known (see for example [25]) that the right endo-
morphism ring is a smash product:

A⋊H∗ ∼= EndAB (7)

via a⋊ p 7→ λ(a) ◦ (p· ? ). This is an A-B-isomorphism (where a′(a⊗ p)b := a′ab⊗ p
and EndAB is the natural A-A-bimodule). The B-centralizer in EndAB is of course
(EndAB)B = S, whence

Φ : S
∼=−→ R⋊H∗ (8)

with multiplication given by the smash product:

(r ⋊ p)(r′ ⋊ p′) = r(p(1) · r
′) ⋊ p(2)p

′. (9)

If t ∈ H, T ∈ H∗ denote a dual pair of left integrals (where T (t) = 1), and
∑

i xi⊗yi =
β−1(1 ⊗ t), Φ(α) =

∑
i(α(xi) ⋊ T )(yi ⋊ 1) for α ∈ S (cf. [25]).

The induced R-coring structure is (the trivial structure except for the more
complex right R-module action) given by s̃(r) = r ⋊ 1,

t̃(r) = Φ(ρ(r)) =
∑

i

xir(T(1) · yi) ⋊ T(2),

with coproduct

∆(r ⋊ p) = (Φ ⊗ Φ)(
∑

i

γi(?) ⊗R u
1
i r(p · (u

2
i ? ))

= (Φ ⊗ Φ)(
∑

i

γi(?)u
1
i r(p(1) · u

2
i ) ⊗R (p(2)· ? ) (10)

= r ⋊ p(1) ⊗ p(2), (11)
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and counit
ε(r ⋊ p) = r(p · 1A) = rε(p).

The formula for ∆ makes use of the depth two eq. (2).

The left action of S on A is very simply given by evaluation,

α ⊲ a = α(a). (12)

This action has invariant subring (of elements a ∈ A such that α ⊲ a = ε(α)a) equal
precisely to B if the natural module AB is balanced [18]. This action is measuring
because α(1)(a)α(2)(a

′) = α(aa′) by eq. (6).
The smash product A⋊′ S, which is A⊗R S as abelian groups with associative

multiplication given by eq. (9), is isomorphic as rings to EndAB via a⊗R α 7→ λaα
[18].

Example 2.3. For the H-Galois extension A|B just introduced, the action of S on
A under the isomorphism S ∼= R ⋊ H∗ is just given by (r ⋊ p) · a = r(p · a). The
smash product of A with the bialgebroid R ⋊ H∗ just recovers the ordinary smash
product of A with H∗:

A⋊
′ (R⋊H∗) ∼= A⋊H∗

as ring isomorphism by an easy exercise.

For any subring B in ring A, the construct T = (A⊗BA)B (“the B-central tensor-
square of A over B”) has a unital ring structure induced from T ∼= End A(A⊗BA)A

via F 7→ F (1 ⊗ 1), which is given by

tt′ = t′
1
t1 ⊗ t2t′

2
(13)

for each t, t′ ∈ T . There are obvious commuting homomorphisms of R and Rop into
T given by r 7→ 1 ⊗ r and r′ 7→ r′ ⊗ 1, respectively. From the right, these two
“source” and “target” mappings induce the R-R-bimodule structure RTR given by

r · t · r′ = (t1 ⊗ t2)(r ⊗ r′) = rtr′,

the ordinary bimodule structure on a tensor product.
For a D2 extension A/B, there is a right R-bialgebroid structure on T with

coring structure T = (T,∆, ε) given by the two equivalent formulas:

∆(t) =
∑

i

ti ⊗R (βi(t
1) ⊗B t

2) =
∑

j

(t1 ⊗B γj(t
2)) ⊗R uj (14)

ε(t) = t1t2 (15)

By [18, Th’m 5.2] ∆ is multiplicative and the other axioms of a right bialgebroid are
satisfied. Since the D2 conditions yield T ⊗R T ∼= (A⊗B A⊗B A)B, the coproduct
enjoys a Lu generalized formula,

∆(t) = t1 ⊗ 1 ⊗ t2 (t ∈ T ). (16)

Indeed, T is a right-handed generalization of Lu’s bialgebroid Ce = C ⊗k C
op for a

finite dimensional k-algebra C, although T , unlike Ce, has in general no antipode.
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Example 2.4. We return to the example of A|B an H-Galois extension, to compute
the R-bialgebroid T . Since β : A⊗B A→ A⊗H is an A-B-bimodule isomorphism,
it follows that T = AB ⊗ H ∼= R ⊗ H via β. We next study the multiplication ⋆
imposed on R⊗H by β and the multiplication (13) on T . Let h, h′ ∈ H and t, t′ ∈ T
such that β(t) = 1 ⋊ h and β(t′) = 1 ⋊ h′. We compute using the fact that β is an
H-comodule homomorphism in the last step: (r, r′ ∈ R, h, h′ ∈ H)

(r ⊗ h) ⋆ (r′ ⊗ h′) = β(rt)β(r′t′)

= β(r′t′
1
rt1 ⊗ t2t′

2
)

= r′t′
1
r(t1t2(0))t

′2
(0) ⊗ t2(1)t

′2
(1)

= r′b′
1
rb′

2
(0) ⊗ hb′(2)

= r′(r ⊳ h′(1)) ⊗ hh′(2) (17)

where ⊳ denotes the Miyashita-Ulbrich action ofH on R from the right [33, 9, 28, 15].
(Recall that if β(t) = 1⊗h then r ⊳h := t1rt2.) From this formula for ⋆, we see that
β induces an algebra isomorphism,

T op ∼= R⋊Hop (18)

where the right action by H is equivalent to a left action by Hop.
The R-coring structure on R ⋊ Hop induced from T op is (the trivial structure)

given by (b := β−1(1 ⊗ h))

s̃(r) = r ⋊ 1 (r ∈ R) (19)

t̃(r) = r(0) ⋊ r(1) (20)

∆(r ⋊ h) = rβ ⊗ β∆T (β−1(1 ⊗ h)

= rβ(b1 ⊗ b2(0)pi(b
2
(1)) ⊗ β(ui)

= rβ(b1 ⊗ b2(0)) ⊗ b2(1)

= r ⋊ h(1) ⊗ h(2) (21)

ε(r ⋊ h) = εT (β−1(r ⊗ h)

= rε(h) (22)

The formula for ∆ again uses the right H-comodule property of β, while the formula
uses the counitality of the H-comodule A with Eq. (15).

Example 2.5. The first of two special cases of finite Hopf-Galois extensions with
normal basis property is naturally a finite dimensional Hopf algebra H coacting on
itself via its comultiplication ∆. The coinvariant subalgebra B is the unit subalgebra
k1H , R = H , the R-bialgebroid S is Endk H ∼= H ⋊ H∗ by example 2.2, and the
bialgebroid structure is the same as the “Heisenberg double” of H in Lu’s [23,
section 6], for which Lu finds an antipode and Hopf algebroid structure.

The Miyashita-Ulbrich action of H on itself from the right is given by ordinary
conjugation, h ⊳ a = S(a(1))ha(2). Thus the H-bialgebroid structure on T op is given
above in example 2.4 — with antipode and Hopf algebroid structure in section 5
below.

The second example of an elementary nature is obtained from groups G and N
where N is a normal subgroup of G of index n and G/N its factor group. Given any
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field k, the group algebra A = k[G] is Galois over B = k[N ] with cocommutative
Hopf algebra H = k[G/N ]. The Galois map β : A ⊗B A → A ⊗ H is given by
β(g ⊗ g′) = gg′ ⊗ g′N for every g, g′ ∈ G. Given a set of right coset representatives
g1, . . . , gn, the prescription for finding right D2 quasibases in example 2.1 yields
ui = g−1

i ⊗ gi and γi(g) = 0 if gN 6= giN and γi(g) = g if gN = giN . Since
β−1(1 ⊗ gN) = g−1 ⊗ g, the action associated to T op above is the Miyashita action
given by x ⊳ gN = g−1xg where x ∈ CA(B).

3 When D2 extensions are separable, split or Frobenius

Given a D2 extension A/B, we made the acquaintance in the previous section of
the underlying R-corings S and T of the R-bialgebroids S = EndB−B A and T =
(A ⊗B A)B, respectively. In this section we show that coring properties of S or T
such as coseparability determine properties of A/B such as separability, and vice
versa.

For the next theorem, recall that any R′-coring (C,∆, ε) is coseparable if there
is an R′-R′-homomorphism γ : C ⊗R′ C → R′ (called a cointegral) such that γ(c(1) ⊗
c(2)) = ε(c) and c(1)γ(c(2) ⊗ c′) = γ(c⊗ c′(1))c

′

(2) for every c, c′ ∈ C (cf. [3, 5, 6]).

Theorem 3.1. Let A/B be a right f.g. projective D2 extension. Then A/B is a
separable extension if and only if the R-coring S is coseparable.

Proof. (⇒ [5, Example 3.6]) Given separability element e = e1 ⊗ e2 ∈ (A ⊗B A)A

for A/B, define cointegral γ : S ⊗R S → R by γ(α ⊗ β) = α(e1)β(e2). The rest of
the proof follows [5, Example 3.6] and does not require AB to be finite projective.

Suppose a dual basis for the natural module AB is given by {ak}, {fk}.
(⇐) Given cointegral γ : S ⊗ S → R, define e =

∑
i biγ(βi ⊗ IA) where IA is the

identity map on A and {bi}, {βi} is the left D2 quasibases introduced above. Of
course, e ∈ (A⊗B A)B; also, (α ∈ S)

α(e1)e2 =
∑

i

α(b1i )b
2
i γ(βi ⊗ IA) = γ(

∑

i

α(b1i )b
2
iβi ⊗ IA) = γ(α⊗ IA),

whence if α = IA, e1e2 = γ(IA ⊗ IA) = ε(IA) = 1A since ∆(IA) = IA ⊗ IA.
It follows that α(e1)e2a = γ(α⊗ IA)a for a ∈ A, but

α(ae1)e2 = α(1)(a)γ(α(2) ⊗ IA) = γ(α⊗ IA)IA(a) = α(e1)e2a.

Since A⋊ S ∼= EndAB via a⋊α 7→ λ(a) ◦ α, it follows that f(e1)e2a = f(ae1)e2 for
each f ∈ EndAB. Finally then computing in A⊗B A:

ae =
∑

k

ak ⊗ fk(ae
1)e2 =

∑

k

akfk(e
1) ⊗ e2a = ea,

for each a ∈ A, whence e is a separability element of A/B.

Example 3.2. Suppose again that A/B is an H-Galois extension. The multi-
plication mapping A ⊗B A → A corresponds under the Galois isomorphism β to
A ⊗k H → A given by a ⊗ h 7→ aε(h). It follows from the theorem that A/B is a
separable extension iff H is semisimple, since H is semisimple iff the left integral
t ∈ H may be chosen so that ε(t) = 1, whence e = β−1(1 ⊗ t) is a separability
element. This recovers a theorem of Doi [8].
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For the next theorem, we recall that any R-coring C is cosplit if there is e ∈ CR′

such that ε(e) = 1, i.e., the counit ε : C → R′ is a split R′-R′-epi. An ring extension
A′/B′ is split if there is a B′-B′-epimorphism E : A′ → B′ such that E(1) = 1 (cf.
[3, 6]).

Example 3.3. If A/B is a split extension, the Sweedler A-coring A ⊗B A [32] is
coseparable [3]; similarly one shows that if A/B is D2 and split, T is coseparable.

If A/B is separable and D2, then T is a cosplit R-coring, since a separability
element e ∈ T satisfies ε(e) = e1e2 = 1 and e ∈ T R. Define a ring extension
A/B to be Procesi if BR = A; e.g., centrally projective extensions or extensions of
commutative rings are Procesi. Conversely then, T cosplit implies A/B is separable
if A/B is a D2 Procesi ring extension.

Theorem 3.4. Suppose A/B is a D2 extension with double centralizer condition
CA(CA(B)) = B. Then A/B is a split extension iff S is a cosplit R-coring.

Proof. The proof only requires CA(R) = B in the direction ⇐.

(⇒) If E : A → B splits the inclusion map, then E ∈ SR since rE(a) = rE(a)
for each r ∈ CA(B), a ∈ A. Moreover, ε(E) = E(1) = 1 and we conclude S is
cosplit.

(⇐) Suppose e ∈ SR such that e(1) = 1. Since e(a)r = re(a) for a ∈ A,
e(a) ∈ CA(R) = B, whence e : A→ B splits the inclusion B →֒ A.

Example 3.5. As noted in [16], an H-separable extension is D2. If A/B is an H-
separable extension and AB is balanced, then A/B is D2 and CA(CA(B)) = B: see
Lemma 6.3.

Another example: if A/B is an H-separable extension of simple rings with AB

f.g. projective, then A/B is D2 and CA(CA(B)) = B. (Cf. Prop. 6.4.)

It is a problem which would generalize and improve results of Noether-Brauer-
Artin on simple rings, if A/B a right progenerator H-separable extension implies
A/B is split [31].

Recall that an R′-coring C is Frobenius if there is an R′-R′-coring γ : C⊗R′C → R′

and e ∈ CR′

such that γ(c⊗ e) = ε(c) = γ(e⊗ c) and γ(c⊗ c′(1))c
′

(2) = c(1)γ(c(2) ⊗ c′)
for every c, c′ ∈ C (cf. [3, 6]).

Proposition 3.6. Let A/B be a D2 right progenerator Procesi extension. Then
A/B is a Frobenius extension iff T is a Frobenius coring.

Proof. (⇒) Suppose (E : A → B, e ∈ (A ⊗B A)A) is a Frobenius system for A/B;
i.e., for each a ∈ A, we have a = e1E(e2a) = E(ae1)e2. Define γ : T ⊗R T ∼=
(A⊗B A⊗B A)B → R by γ(a⊗ a′ ⊗ a′′) = aE(a′)a′′ ∈ R. It follows that: (d ∈ T )

γ(d⊗ e) = γ(d1 ⊗ d2e1 ⊗ e2) = d1E(d2e1)e2 = d1d2 = ε(d),

and similarly γ(e⊗ d) = ε(d). Recalling the E-multiplication ·E on A⊗B A induced
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by A⊗B A ∼= EndAB, we note:

d(1)γ(d(2) ⊗ d′) =
∑

i

biβi(d
1)E(d2d′1)d′2

= d1 ⊗B E(d2d′
1
)d′

2
= d ·E d

′

=
∑

j

γ(d⊗R d
′1 ⊗B γj(d

′2))cj

= γ(d⊗ d′(1))d
′

(2)

(⇐) We now assume that BR = A and that AB is a progenerator. We see from
[6, 3.3.10] that R → T ∗ given by r 7→ rε is a Frobenius extension. But the R-dual
T ∗ ∼= S via φ 7→

∑
i φ(bi)βi with inverse

α 7→ (t 7→ α(t1)t2).

The composite R → S is the left regular map λ : R → S, which is therefore
Frobenius. Let ρk, ηk ∈ S, E ′ : S → R be a Frobenius system satisfying (α ∈
S, r, r′ ∈ R)

∑

k

λ(E ′(αρk))ηk = α =
∑

k

ρkλ(E ′(ηkα)) (23)

E ′(λ(r)αλ(r′)) = rE ′(α)r′ (24)

The last equation is equivalent toE ′(λ(rα(1)(r
′))α(2)) = rα(1)(r

′)E ′(α(2)) = rE ′(α)r′.
Since α(r)b = bα(r) for all b ∈ B, r ∈ R,α ∈ S, it follows that for every a, a′ =∑

i biri ∈ A

aα(1)(a
′)E ′(α(2)) =

∑

i

aα(1)(ri)E
′(α(2))bi = aE ′(α)a′ (25)

where of course bi ∈ B, ri ∈ R.

We now claim λ : A →֒ EndAB is a Frobenius extension, from which it follows
that A/B is Frobenius by a converse of the endomorphism ring theorem, since AB

is a progenerator [14]. This follows from A ⋊ S ∼= EndAB via a ⋊ α 7→ λ(a)α and
the assumption A = BR. Define E : EndAB → A by E(λ(a)α) = aE ′(α). Now
E ∈ HomA−A(EndAB, A) by eq. (25), since λ(a)αλ(a′) = λ(aα(1)(a

′))α(2). It follows
that

∑

k

E(λ(a)αρk)ηk = λ(a)α

by eqs. (23), which also imply (assuming a =
∑

j bjrj ∈ BR)

∑

k

ρkE(ηkλ(a)α) =
∑

k,j

λ(rj)ρkλ(bj)E
′(ηkα) = λ(a)α. (26)
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4 Hopf algebroids

For the convenience of the reader and the sake of convention, let’s recall some facts
about Lu’s Hopf algebroid, which consists of a left bialgebroid (H,R, s̃, t̃,∆, ε), and
and antipode τ for H . H and R are k-algebras and all maps are k-linear. First,
recall from [23] (and compare [4, 18]) that the source and target maps s̃ and t̃ are
algebra homomorphism and anti-homomorphism, respectively, of R into H such that
s̃(r)t̃(r′) = t̃(r′)s̃(r) for all r, r′ ∈ R. This induces an R-R-bimodule structure on
H (from the left in this case) by r · h · r′ = s̃(r)t̃(r′)h (h ∈ H). With respect to
this bimodule structure, (H,∆, ε) is an R-coring (cf. [32]), i.e. with coassociative
coproduct and R-R-bimodule map ∆ : H → H⊗RH and counit ε : H → R (also an
R-bimodule mapping). The image of ∆, written in Sweedler notation, is required
to satisfy

a(1) t̃(r) ⊗ a(2) = a(1) ⊗ a(2)s̃(r) (27)

for all a ∈ H, r ∈ R. It then makes sense to require that ∆ be homomorphic:

∆(ab) = ∆(a)∆(b), ∆(1) = 1 ⊗ 1 (28)

for all a, b ∈ H . The counit must satisfy the following modified augmentation law:

ε(ab) = ε(as(ε(b))) = ε(at(ε(b))), ε(1H) = 1R. (29)

The axioms of a right bialgebroid H ′ are opposite those of a left bialgebroid in the
sense that H ′ obtains its R-bimodule structure from the right via its source and tar-
get maps and, from the left bialgebroid H above, we have that (Hop, R, t̃op, s̃op,∆, ε)
in this precise order is a right bialgebroid: for the explicit axioms, see [18, Section 2].

The left R-bialgebroid H is a Hopf algebroid (H,R, τ) if τ : H → H is an algebra
anti-automorphism (called an antipode) such that

1. τ t̃ = s̃;

2. τ(a(1))a(2) = t̃(ε(τ(a))) for every a ∈ A;

3. there is a linear section η : H ⊗R H → H ⊗K H to the natural projection
H ⊗k H → H ⊗R H such that:

µ(H ⊗ τ)η∆ = s̃ε.

The following lemma covers some examples in the literature (e.g. [20, 3.2]).

Lemma 4.1. If (H,R, s, t,∆, ε, τ) and (H ′, R′, s′, t′,∆′, ε′, τ ′) are Hopf algebroids,
then

(H ⊗H ′, R⊗R′, s⊗ s′, t⊗ t′, (1 ⊗ σ ⊗ 1)∆ ⊗ ∆′, ε⊗ ε′, τ ⊗ τ ′)

is (the tensor) Hopf algebroid.

Proof. The proof is straightforward and left to the reader, σ denoting the twist and
the linear section being given up to two twists by η ⊗ η′ if η, η′ are the sections for
H and H ′ as in axiom (3) above.
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Lu’s examples of bialgebroids and Hopf algebroids are the following. Given
an algebra C over commutative ground ring K such that C is finitely generated
projective as K-module, the following two are left bialgebroids over C (with ⊗ =
⊗K):

Example 4.2. The endomorphism algebra E := EndK C with s̃(c) = λ(c), t̃(c′) =
ρ(c′), coproduct ∆(f)(c⊗ c′) = f(cc′) for f ∈ End KC after noting that E ⊗C E ∼=
HomK (C⊗C,C) via f⊗g 7→ (c⊗c′ 7→ f(c)g(c′)). The counit is given by ε(f) = f(1).
We see that this is the left bialgebroid S above when B = K, a subring in the center
of A = C.

Example 4.3. The ordinary tensor algebra C⊗Cop with s̃(c) = c⊗1, t̃(c′) = 1⊗ c′

with bimodule structure c · c′⊗ c′′ · c′′′ = cc′⊗ c′′c′′′. Coproduct ∆(c⊗ c′) = c⊗ 1⊗ c′

after a simple identification, with counit ε(c⊗c′) = cc′ for c, c′ ∈ C. C⊗Cop is a left
C-bialgebroid by arguing as in [23], or [18, N = K] since C|K is D2. In addition,
τ : C⊗Cop → C⊗Cop defined as the twist τ(c⊗c′) = c′⊗c is an antipode satisfying
the axioms of a Hopf algebroid (in addition, τ 2 = id, an involutive antipode).

A bialgebroid homomorphism from (H1, R1, s1, t1,∆1, ε1) into (H2, R2, s2,
t2,∆2, ε2) consists of a pair of algebra homomorphisms, F : H1 → H2 and f : R1 →
R2, such that four squares commute: Fs1 = s2f , Ft1 = t2f , ∆2F = p(F ⊗ F )∆1

and ε2F = fε1, where f induces an R1-R1-bimodule structure on H2 via “restriction
of scalars,” p : H2⊗R1

H2 → H2⊗R2
H2 is the canonical mapping and F : R1

H1R1
→

R1
H2R1

is a bimodule homomorphism since

F (r · h · r′) = F (s1(r)t1(r
′)h) = s2(f(r))t2(f(r′))F (h) = r ·f F (h) ·f r

′.

If F and f are both inclusions, we say H1 is a sub-bialgebroid of H2; if moreover
H1 and H2 are both Hopf algebroids with antipodes τ1 and τ2 such that Fτ1 = τ2F ,
we call H1 a Hopf subalgebroid of H2. We say that a bialgebroid H is minimal over
its base ring R if it has no proper R-subbialgebroid.

5 T op is a Hopf algebroid

In this section, we find an antipode for the bialgebroid T op we associated to the
H-Galois extension A|B in Section 2. We apply [23, Theorem 5.1], repeated below
without proof for the convenience of the reader, after noting that the centralizer
R = CA(B) is a commutative algebra in the Yetter-Drinfel’d category YDH

H of
modules-comodules over H [28, 3.1].

Theorem 5.1 ( Lu Theorem 5.1 [23]). Let H ′ be a Hopf algebra with antipode S̃
and D(H ′) its Drinfel’d double. Let V be a left D(H ′)-module algebra. Assume that
the R-matrix

∑
i(1 ⊗ hi) ⊗ (pi ⊗ 1) satisfies the following pre-braided commutativity

condition:
∑

i

(pi · u)(hi · v) = vu (30)
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for every u, v ∈ V . Then the obvious smash product algebra V ⋊ H ′ is a Hopf
algebroid over V with R-coring structure and antipode τ given by (v ∈ V, h ∈ H ′)

s̃(v) = v ⋊ 1 (31)

t̃(v) =
∑

i

(pi · v) ⊗ hi (32)

∆(v ⋊ h) = v ⋊ h(1) ⊗ h(2) (33)

ε(v ⋊ h) = ε(h)v (34)

τ(v ⋊ h) =
∑

i

(1 ⋊ S̃(h))t̃(S̃2(hi) · pi · v) (35)

Theorem 5.2. The left bialgebroid T op associated to an H-Galois extension A|B is
a Hopf algebroid of the type covered in [23, Theorem 5.1].

Proof. We have seen in example 2.4 that

T op ∼= R⋊Hop

as algebras. Schauenburg [28, 3.1] computes that the centralizer R ∈ YDH
H where ⊳

denotes the Miyashita-Ulbrich action of H on R, the coaction A→ A⊗H restricts
to R → R ⊗H , and the two intertwine in the following Yetter-Drinfel’d condition:
(r ∈ R, h ∈ H)

(r ⊳ h(2))(0) ⊗ h(1)(r ⊳ h(2))(1) = r(0)⊳h(1) ⊗ r(1)h(2) (36)

Moreover, the following pre-braided commutativity is satisfied: (r, r′ ∈ R)

r′r = r(0)(r
′ ⊳ r(1)). (37)

Comparing eq. (36) with the left-right Yetter-Drinfel’d condition [25, 10.6.12],
one easily computes that

YDH
H = HopYDHop

when we note that right modules over an algebra correspond exactly to left modules
over its opposite algebra, and that Hop has the same coalgebra structure as H
(but with antipode S := S̃−1). In other words, there are natural actions of Hop

and its dual on R from the left; the dual acting via the dual of the coaction (i.e.,
p · r = r(0)p(r(1))) and Hop acting via the Miyashita-Ulbrich action. But Majid [24]
computes that the left-right Yetter-Drinfel’d condition [25, 10.6.12] is equivalent
to the anti-commutation relation in the Drinfel’d double D(H) = H∗ cop ⊲⊳ H (cf.
[25, 19]) given by

(1 ⊲⊳ h)(p ⊲⊳ 1) = (h(1) ⇁ p(2)) ⊲⊳ (h(2) ↽ p(1))

where ⇁ and ↽ denote the right and left coadjoint actions of H on H∗ and H∗

on H [25, 10.3.1]; whence the left D(H)-modules correspond exactly to left-right
Yetter-Drinfel’d modules, or equivalently,

D(Hop)Mod = HopYDHop

.

Then R is a left D(Hop)-module; since the coalgebra structure of D(Hop) is just
H∗⊗H , we see this action is measuring as well. It follows thatR⋊Hop in example 2.4
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is a smash product V ⋊H of the type satisfying the conditions in Theorem 5.1 with
V = R and H ′ = Hop, for D(Hop has the R-matrix

∑
i(1 ⊲⊳ hi) ⊗ (pi ⊲⊳ 1) (where∑

i pi(x)hi = x for each x ∈ H and pi(hj) = δij), so we compute using Eq. (37):
∑

i

(pi · y)(hi · x) = y(0)pi(y(1))(x ⊳ hi)

= y(0)(x ⊳ y(1)) = xy

Finally we compute that the bialgebra structure on R ⋊ Hop coming from T op

in example 2.4 is identical with that of eqs. (31)-(34).

t̃(r) =
∑

i

(pi · r) ⊗ hi =
∑

i

r(0) ⊗ hipi(r(1)) = r(0) ⊗ r(1).

This and the other R-coring structures are then clearly the same.
We conclude that T op is a Hopf algebroid with antipode τ on R⋊Hop given by

τ(r ⋊ h) = (1 ⋊ S(h))(r(0) ⊳ S
2
(r(1)))(0) ⋊ (r(0) ⊳ S

2
(r(1)))(1). (38)

6 A Galois correspondence for H-separable extensions of sim-

ple rings

Although Hopf-Galois extensions in general lack a main theorem of Galois theory
[27], we expose results of Sugano in light of obtaining a Galois correspondence
for a depth two cousin of Hopf-Galois extensions, namely H-separable extensions.
Their definition and part of the proposition below are due to [12, 13, Hirata]. We
will require the Hopf algebroids introduced for H-separable extensions in [16]. We
must eventually narrow our focus to certain H-separable extensions of simple rings,
which in this section will denote rings with no proper two-sided ideals; such a ring
is not necessarily artinian or finite dimensional over a field. Again let B be a
subring of A with centralizer subring R, endomorphism ring S = End BAB and ring
T = (A⊗B A)B.

Lemma & Definition 6.1. A|B is H-separable if A ⊗B A ⊕ ∗ ∼= ⊕nA as A-A-
bimodules. Equivalently, A|B is H-separable if there are elements ei ∈ (A ⊗B A)A

and ri ∈ R (a so-called H-separability system) such that

1 ⊗ 1 =
∑

i

riei. (39)

We note that ei ∈ T , and for a, a′ ∈ A

a⊗ a′ =
∑

i

eiρri
(a)a′ =

∑

i

aλri
(a′)ei,

whence ei, λri
is a right D2 quasibasis and ei, ρri

is a left D2 quasibasis for A|B.
For example, given an Azumaya algebra D|K and an arbitrary K-algebra B

then A := D ⊗K B is an H-separable extension of B [12]. If B is a type II1 factor
and D = Mn(C ), this example covers all H-separable finite Jones index subfactors
B ⊆ A by Proposition 6.2(2) and Proposition 6.4 below.

We next let Z denote the center of A.
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Proposition 6.2. If A|B is an H-separable extension, then

1. R is f.g. projective Z-module;

2. A⊗Z R
op ∼= EndAB via a⊗ r 7→ λaρr;

3. R⊗Z R
op ∼= S via r ⊗ r′ 7→ λrρr′ is an isomorphism of bialgebroids;

4. A⊗B A ∼= HomZ(R,A) via a⊗ a′ 7→ λaρa′.

5. T op ∼= End ZR via t 7→ λ(t1)ρ(t2) is an isomorphism of bialgebroids.

Conversely, if AB is f.g. projective, the first two conditions imply that A is an H-
separable extension of B.

Proof. We offer some short alternative proofs to these facts. RZ is f.g. projective
since for each r ∈ R, we note that r = rie

1
i re

2
i where summation over i is understood

and for each i, r 7→ e1i re
2
i defines a map in Hom Z(R,Z).

The inverse EndAB → A ⊗Z R
op to the ring homomorphism above is given by

f 7→ f(e1i )e
2
i ⊗ri, since f(e1i )e

2
iari = f(ae1i )e

2
i ri = f(a) (a ∈ A), while ae1i re

2
i ⊗Z ri =

a⊗ e1i re
2
i ri = a⊗ r for r ∈ R and a ∈ A.

The ring isomorphism Re ∼= S follows from noting the previous isomorphism is an
A-A-bimodule morphism. That this ring isomorphism preserves the R-bialgebroid
structures on S (cf. Section 2) with respect to Lu’s R-bialgebroid structure on R⊗Z

Rop follows from [16, 5.1].
The inverse HomZ(R,A) → A ⊗B A to the ring homomorphism above is given

by g 7→ g(ri)ei, since for each a⊗ a′ ∈ A⊗B A, aria
′ei = arieia

′ = a⊗ a′, while for
each r ∈ R, g ∈ Hom (R,A), g(ri)e

1
i re

2
i = g(rie

1
i re

2
i ) = g(r).

The ring isomorphism End ZR ∼= T op follows from noting that the previous
mapping is an A-A-bimodule homomorphism; this preserves the Lu and depth two
R-bialgebroid structures by [16, 5.2].

The converse follows from the general fact that

H := Hom (A⊗B AA, AA) ∼= EndAB.

Since R is f.g. projective over Z, E := EndAB
∼= A⊗Z R implies that E is centrally

projective over A:
E ⊕ ∗ ∼= A⊕ · · · ⊕A,

whence the same is true of A⊗B A ∼= Hom (AH, AA), which follows from A⊗B AA

being finite projective.

The R-bialgebroid S is in fact an Hopf algebroid since the obvious antipode on
Re (cf. [23, Lu]) is transferred via part (3) of the proposition [16].

We prove a lemma relevant to section 2 but independent of the rest of this section.

Lemma 6.3. If A/B is H-separable and AB is balanced, then CA(CA(B)) = B.

Proof. Since Re ∼= S, we have for each α ∈ S an r1 ⊗ r2 ∈ Re such that α =
λ(r1)ρ(r2). Then for t ∈ CA(R):

α ⊲ t = λ(r)ρ(r)t = rr′t = α(1)t.

So t ∈ AS, an invariant under the action, whence t ∈ B since AB is balanced [18,
Theorem 4.1].
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The proposition and theorem below are due to Sugano, recapitulated below in a
hopefully useful expository manner.

Proposition 6.4 (Sugano [29]). Suppose B is a simple ring and subring of A.
Then A is a right f.g. projective H-separable extension of B if and only if

1. A is a simple ring,

2. CA(CA(B)) = B, and

3. CA(B) is a simple finite dimensional Z-algebra.

Proof. (⇒) Since Hom (AB, BB) 6= 0 and B has no non-trivial ideals, the trace
ideal for AB is B, so AB is a generator. Let fi ∈ Hom (AB, BB), ai ∈ A such that∑

i fi(ai) = 1A. Then the inclusion ι : B → A is split as right B-module mapping by
a 7→

∑
i fi(aia). Let e : AB → BB be a projection. Given a two-sided ideal I ⊂ A,

we have

I = (I ∩B)A

since x =
∑

i e(rixe
1
i )e

2
i for x ∈ I and H-separability system {ei, ri}; but e(rixe

1
i ) ∈

I ∩B by Proposition 6.2(2). Then B simple implies I = 0, whence A is simple.
Clearly, B ⊆ CA(R) where R = CA(B). Let v ∈ CA(R) and φ denote the

isomorphism in Proposition 6.2(4). Then φ(v⊗ 1)(r) = φ(1⊗ v)(r) for every r ∈ R,
whence 1⊗v = v⊗1 in A⊗BA. Applying the projection e, we arrive at v = e(v) ∈ B,
whence B = CA(R).

Since AB is a progenerator, EndAB is also a simple ring by Morita theorems.
Then A ⊗Z R is simple. Since Z is a field by Schur’s lemma, it follows that R is a
simple (finite dimensional) Z-algebra.

(⇐) The map in Proposition 6.2(2), call it ψ, always exists although it may
not be an isomorphism. By conditions (1) and (3) however, ψ is a monomorphism
from Λ := A ⊗Z R into EndAB. It suffices to show that ψ is an isomorphism and
AB is f.g. projective by the converse in Proposition 6.2. If C is the center of R, it
follows from C ⊗Z C being a Kasch ring and R being a C-separable algebra that
Hom (ΛA, ΛΛ) 6= 0 [29], whence ΛA is a left generator, therefore right End ΛA-f.g.
projective. But End ΛA = HomA−R (A,A) ∼= CA(R) = B, so AB is f.g. projective.
Again, B is simple and Hom (AB, BB) 6= 0 implies that AB is also a generator. It
follows from Morita theorems applied to ΛAB that Λ ∼= EndAB via ψ.

In [15] a (right) HS-separable extension A|B is defined to be H-separable such
that the natural module AB is a progenerator. What we have then seen above is that
a right f.g. projective H-separable extension A|B, where B is simple, is HS-separable.

Theorem 6.5 (Sugano [29, 30]). Suppose A is an HS-separable extension of a
simple ring B. Then the class of simple Z-subalgebras V of the centralizer R is in
one-to-one correspondence with the class of intermediate simple subrings B ⊆ D ⊆ A
where AD is f.g. projective, via the centralizer in A: D 7→ CA(D) with inverse
V 7→ CA(V ). Moreover, A over each such intermediate simple ring D is an HS-
separable extension.
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Proof. Of course, A is a simple ring by proposition. Given D as in the theorem, we
show D is a right relatively separable extension of B in A, i.e., the multiplication
mapping µ : A⊗B D → A is split as an A-D-bimodule epi. For then

A⊗D A⊕ ∗ ∼= A⊗B D ⊗D A = A⊗B A,

as A-A-bimodules, the latter being isomorphic itself to a direct summand of A ⊕
· · ·⊕A; whence A|D is H-separable, in fact HS-separable since D is simple. It follows
from the proposition then that CA(D) is a simple Z-algebra with CA(CA(D)) = D,
which yields half of the theorem.

To show that D is right relatively separable extension of B in A, [30] shows by
other means from the hypotheses that A|D is H-separable, hence CA(D) is simple:
not surprisingly then, R is a Frobenius extension of CA(D), so D is a Frobenius
extension of B via an isomorphism, say η, given in Proposition 6.2(4) [30, Theorem
3]. Let {E : D → B, xi, yi} be a Frobenius system for D|B. Consider the two-sided
ideal I :=

∑
i xiRyi in CA(D). If I = 0, then by Proposition 6.2(4)

∑
i xi ⊗ yi = 0

in A ⊗B A, whence in D ⊗B D since AB and BD are flat modules. It follows
that

∑
iE(xi)yi = 0, which contradicts

∑
iE(dxi)yi = d for all d ∈ D. Then

=
∑

i xiRyi = CA(D). It follows that there is r ∈ R such that
∑

i xir⊗ yi ∈ A⊗B D
is a right relative separability element which yields a splitting for µ.

The other half of the theorem depends on showing that CA(V ) = D′ is a simple
ring, which clearly is intermediate to subring B and over-ring A, and furthermore
CA(D′) = V as well as AD′ being f.g. projective. Since A is a right B-generator, A
is left-f.g. projective over EndAB

∼= A ⊗Z R. But R is a f.g. projective V -module,
whence A is f.g. projective left Ω := A⊗Z V -module. Since Ω is a simple ring, ΩA is
also a generator, so AD′ is a progenerator module and D′ is a simple ring by Morita
theorems, since End ΩA ∼= CA(V ) via f 7→ f(1).

Now let V ′ := CA(D′) ⊇ V . Clearly there is a mapping A⊗Z V
′ → EndAD′ as in

Proposition 6.2(2), which forms commutative squares with two other such mappings

A⊗Z V
∼=→ EndAD′ and A⊗Z R

∼=→ EndAB. These squares are joined by inclusions,
which forces ψ to be an isomorphism and A⊗ V = A⊗ V ′ over the field Z, whence
V = V ′. Then A|D′ is HS-separable and the correspondence in the theorem is
one-to-one.

We are now in a position to establish a Galois correspondence between interme-
diate simple rings of A|B and Hopf subalgebroids of S over simple subalgebras of R.
The one-to-one correspondence below bears a resemblance to the Jacobson-Bourbaki
correspondence for division rings.

Theorem 6.6. Given an HS-separable extension of simple rings A|B, there is a
one-to-one correspondence between intermediate simple rings D such that AD is f.g.
projective and Hopf subalgebroids H of S minimal over simple subalgebras V ⊆ R.
The Galois correspondence is given by D 7→ End DAD, a Hopf algebroid over CA(D),
with inverse given by H 7→ AH , the fixed points under the canonical action of H.

Proof. Given a simple intermediate ring D such that AD is finite projective, we
have seen that A|D is an HS-separable extension, hence a depth two right balanced
extension of the type considered in [18, Section 4]. It follows that H := End DAD is
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a left bialgebroid over CA(D) such that AH = D under the action given in Eq. 12;
with antipode and Lu Hopf algebroid structure [16] from Proposition 6.2(3). There
are clearly inclusions H ⊆ S and another CA(D) ⊆ R which together show H to
be a Hopf subalgebroid of S minimal over CA(D). Of course, CA(D) is a simple
Z-algebra and CA(CA(D)) = D by Proposition 6.4.

Conversely, given a Hopf subalgebroid H of S minimal over a simple subalgebra
V ⊆ R, we let D′ = CA(V ), an intermediate ring between B and A which is
simple with A|D′ an HS-separable extension by the previous theorem. Now under
identification of S with R ⊗Z R

op, we note that V ⊗Z V
op ⊆ H since s(v) = v ⊗ 1

and t(v′) = 1⊗ v′ for v, v′ ∈ V , while s(v)t(v′) = v ⊗ v′ ∈ H as well. Since V ⊗ V op

is a V -bialgebroid and obviously a subbialgebroid of H , the minimality condition
forces H = V ⊗ V op. Since End D′AD′ = V ⊗ V op = H and A|D′ is depth two right
balanced, it follows from [18] that AH = D′. Therefore the correspondence in the
theorem is one-to-one.
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[1] G. Böhm and K. Szlachányi, Hopf algebroids with bijective antipodes: axioms,
integrals and duals, J. Algebra 274 (2004), 708–750.

[2] G. Böhm and K. Szlachányi, A coassociative C∗-quantum group with nonin-
tegral dimensions, Lett. Math. Phys. 35 (1996), 437–456.
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