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Abstract

We study modules of solutions of the equation DF = F , where F is a
function in the plane with values in the quaternions and D is the Dirac oper-
ator. The functions F will belong to the Sobolev-type space of all functions
in Lp(Ω, |x|−3dx) jointly with their angular and radial derivatives, and where
Ω is the complement of the unit disk in R2. The resulting spaces are right Ba-
nach modules over the quaternions. When p = 2 we calculate the reproducing
kernel of this space and explain its reproducing properties when p 6= 2.

1 Introduction.

Much work has been done in the study of spaces of eigenfunctions of the Dirac
operator D in the context of the Clifford analysis in Rn . Some authors have studied
Hilbert modules of these functions in various domains and norms, considering the
representation of its elements and the construction of the corresponding reproducing
kernels. For example it has been considered spaces of these functions belonging to
L2(B) or L2(Rn, e−|x|

2

dx) (see [3, 4, 20]). In [1] it was studied the space of all
complex solutions of the Helmholtz equation
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∆u+ u = 0 (1)

in R2 belonging to the Sobolev-type space of all functions in Lp(Ω, |x|−3dx) jointly
with their angular and radial derivatives, and where Ω here and in the rest of the
paper is the complement of the unit disk in R2. When p = 2, this space consists
precisely of all Herglotz wave functions in the plane, namely, the image of the Fourier
transform of L2 densities in the unit circle, which coincides with the space of solutions
of (1) with far-field-pattern in L2 of the unit circle (see [8, 9, 11]).
Motivated by the decomposition of the Helmholtz operator

∆ + 1 = (1 +D)(1−D),

(see below the definition of D) we consider in this paper the quaternionic versions of
the spaces in [1]. Then we define and study the submodules of functions satisfying

DF = F, (2)

(as well as the modules of functions such that DF = −F ). In the case p = 2, we
will have a right submodule of quaternionic Herglotz wave functions in the plane.
We find a quaternionic orthonormal basis of this module and we calculate its re-
producing Bergman kernel as a submodule of the quaternionic version of Sobolev
spaces described above. Finally, we consider the case p 6= 2. The resulting spaces are
Banach right modules. We describe their basic features and study the reproducing
properties of the Bergman projection on them.

We start by recalling some notation from [1]. For 1 < p < ∞, Hp stands for
the Banach space of all measurable complex functions u in Ω such that u, ∂u

∂r
, ∂u
∂θ
∈

L1
loc(Ω) and

‖u‖Hp =

{∫
Ω

(
|u|p + |∂u

∂r
|p + |∂u

∂θ
|p
)
|x|−3dx

}1/p

<∞,

where x = (s, t) has polar coordinates (r, θ),

∂u

∂r
=
s

r

∂u

∂s
+
t

r

∂u

∂t
,

∂u

∂θ
= −t∂u

∂s
+ s

∂u

∂t
,

(the derivatives are taken in D′(Ω)) and dx = ds dt.
The Banach space of all functions u ∈ Hp which satisfy the Helmholtz equation

in R2 is denoted by Wp.
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2 Hyperholomorphic functions and solutions of the Helmholtz

equation in R2.

Let H stand for the usual real quaternions. An element q ∈ H will be written as

q = q0 + q1e1 + q2e2 + q3e3

with qi ∈ R, i = 0, . . . , 3, and the quaternionic imaginary units {ei} satisfy the
relations:

e1e2 = e3, e2e3 = e1, e3e1 = e2, eiej = −ejei.

We will provide H with the Euclidean norm |·| of R4. The conjugate q̄ of q, is
given by

q̄ = q0 − q1e1 − q2e2 − q3e3

and qq̄ = |q|2. We denote Re q = q0. H has the structure of a real non-commutative,
associative algebra without zero divisors.

Consider now H-valued functions defined in R2. On the bi-H-module C2(R2,H),
the two-dimensional Helmholtz operator (1) with the wave number 1, ∆ + 1, acts
componentwise, namely, if u ∈ C2(R2,H), u =

∑3
k=0 ukek, (e0 = 1) then

(∆ + 1)[u] = ∆[u] + u =
3∑

k=0

(∆[uk] + uk) ek,

where ∆ = ∂2
s + ∂2

t , ∂s = ∂
∂s
, ∂t = ∂

∂t
and (s, t) ∈ R2.

Consider the following partial differential operators with quaternionic coefficients:

D = e1∂s + e2∂t and Dr = ∂s ◦M e1 + ∂t ◦M e2

called the left and the right Dirac operators; where for a ∈ H we denote Ma the
operator of the multiplication by a on the right-hand side. Both operators D and
Dr are square roots of the negative Laplace operator:

−∆ = D2 = D2
r . (3)

They are defined on the bi-H-module C1(R2,H), there equality (3) holds. The
operator D is right-linear while Dr is left-linear. The equality (3) implies that the
following decompositions of the Helmholtz operator hold:

∆ + 1 = (1 +D)(1−D) = (1−D)(1 +D) =

(1 +Dr)(1−Dr) = (1−Dr)(1 +Dr).

Since a similar decomposition of the Laplace operator is crucial in the definition of
the usual holomorphic functions, let us consider, by analogy, the following.

Definition 2.1. A function u ∈ C1(R2,H) is called 1-hyperholomorphic (or simply
hyperholomorphic in this paper) if (1−D)[u] = u−D[u] = 0 in R2.
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Remark 2.2. More precisely hyperholomorphic functions should be called, left-
hyperholomorphic since there is a “symmetric” definition for 1 − Dr, as well as
for 1 +D and 1 +Dr.

We denote then

M = ker(1−D); M̃ = ker(1 +D),

We can also define

Mr = ker(1−Dr); M̃r = ker(1 +Dr).

Note that both M and M̃ have a natural structure of a right H-module, while Mr

and M̃r are left H-modules.

The above definitions are particular cases of the more general situation consid-
ered in [15] where the operator D acting on functions defined in a domain U ⊂ R2

is allowed to be perturbed not only by a real constant 1, but by an arbitrary com-
plex number α: a quaternion-valued function u is called (left)-α-hyperholomorphic
if αu+D[u] = 0. This idea can be extended to quaternionic values of α as well, but
one has to choose if the multiplication is on the left or on the right. In [15] some
essential properties of such functions were established. Main integral formulas for
α-hyperholomorphic functions were constructed in [16]. All the proofs and details
can be found in those papers, see also [10, Appendix 4]. Some developments of the
topic are presented in [14] and [7]. The exact relation between α-hyperholomorphic
function and solutions to the corresponding Helmholtz equation can be found in
[15, 16], see also [10, Chap. 2 ].

On C1(R2,H) set π = 1
2
(1 +D), π̃ = 1

2
(1−D), and let Π and Π̃ be their restric-

tions onto ker(1 + ∆) respectively: Π = π|ker(1+∆), Π̃ = π̃|ker(1+∆). These operators
have the following properties that can be easily verified:

i) Π2 = Π; Π̃2 = Π̃,

ii) Π ◦ Π̃ = Π̃ ◦ Π = O, the zero operator,

iii) Π + Π̃ = I, the identity operator,

iv) Range(Π) = ker(π̃|C2(R2,H)), Range(Π̃) = ker(π|C2(R2,H)).

Since ker π̃ = M and kerπ = M̃r we may conclude that

ker(1 + ∆) = M⊕ M̃,

in other words, given u ∈ ker(1 + ∆), there exist two hyperholomorphic functions
f ∈ M and g ∈ M̃ such that

u = f + g,



Modules of solutions of the Helmholtz equation 179

moreover, f = 1
2
(1 +D)[u], g = 1

2
(1−D)[u], and the decomposition of u is unique.

This is an analogue of the fact that each harmonic function of two real variables is
a (non-unique!) sum of a holomorphic and an anti-holomorphic function.

Let (r, θ) be the polar coordinates of a x ∈ R2, x 6= 0. Then we can write the
Dirac operator D as (see [3]) :

D = w(
∂

∂r
+

1

r
Γ) (4)

where Γ = −e3 ∂
∂θ

and w = cos(θ)e1 + sin(θ)e2. The following functions called spher-
ical monogenics (see [3]) are of a special importance to us:

pn(θ) = cos(nθ)e1 − sin(nθ)e2,

qn(θ) = cos(nθ)e1 + sin(nθ)e2.

Also define
En(θ) = cos(nθ) + sin(nθ)e3.

Then we have the following identities:

1. pn(θ) = E−n(θ)e1,

2. qn(θ) = En(θ)e1,

3. wpn = qn+1e1,

4. wqn+1 = pne1.

Moreover,

Γpn = −npn (5)

Γqn = nqn.

We will be using the following properties of the Bessel functions. For every
integer n, the Bessel function Jn(r) can be defined (see [18, p. 20]) by

Jn(r) =
∫ 2π

0
ei(r sin θ−nθ) dθ

2π
.

For every n ≥ 1 (see [1, 18]),∫ ∞

1
J2
n(r)

dr

r2
=

1

π

1

n2 − 1/4
+ o

(
1

n!2n

)
. (6)

The Bessel functions Jn satisfy the recurrence relations

2J ′n(r) = Jn−1(r)− Jn+1(r), (7)

−rJn+1(r) = rJ ′n(r)− nJn(r). (8)
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We have the estimate

|Jn(r)| ≤
rn

n!2n
er

2/4. (9)

Throughout this paper C will denote a positive generic constant that might change
on each occurrence. Points x and y in R2 will always have polar coordinates (r, θ)
and (ρ, ϕ) respectively. T will denote the unit circle in R2.

3 Function modules of H-valued functions.

Let Hp
R and Wp

R be the spaces consisting of all real functions in Hp and Wp respec-
tively. Then we define the quaternionic modules

Hp
H = Hp

R ⊗H,
Wp

H = Wp
R ⊗H.

As expected,
Hp

H = {F : Ω ⊂ R2 → H : ‖F‖Hp
H
<∞},

where

‖F‖Hp
H

=

{∫
Ω
(|F |p + |∂F

∂r
|p + |∂F

∂θ
|p)|x|−3dx

}1/p

,

and
Wp

H = {F ∈ Hp
H : ∆F + F = 0 in R2}.

Formally, such tensor products are real spaces but of course we can endow them with
a structure of quaternionic modules, more exactly, both are quaternionic bi-modules
although we will consider each of them if necessary, as a right module or as a left
module. Since Hp and Wp are Banach spaces, it easily follows that Hp

H and Wp
H are

quaternionic Banach bi-modules.
Next we introduce the spaces of main interest to us. These are modules of hyper-
holomorphic functions in the plane whose restrictions to Ω belong to Hp

H.

Definition 3.1. For 1 < p <∞, we define

Mp = Hp
H ∩M,

M̃p = Hp
H ∩ M̃.

Clearly Mp and M̃p are right H-modules.

Remark 3.2. a) With obvious modifications we can define the left modules Mp
rand

M̃p
r.
b) The rest of the paper will be focused on Mp but all the presented results are

valid for each of the modules defined above with the ad-hoc modifications.
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In the proof of [1, Th.2] it is shown that the convergence of {uk} to u in Wp

implies convergence in C∞(R2) (every partial derivative of uk converges to the cor-
responding derivative of u uniformly on compact subsets of R2). The same will
happen if uk and u belong to Wp

H. In particular Mp is closed in Wp
H, hence Mp is a

Banach right module for every 1 < p <∞.
As mentioned before, Hp

H is a bi-module. We shall study now the case p = 2.
Let first H2

H be considered as a right H-module, then the formula

〈F,G〉 =
∫
Ω
(FG+

∂F

∂r

∂G

∂r
+
∂F

∂θ

∂G

∂θ
)
dx

|x|3

define a quaternionic inner product converting H2
H into a quaternionic right Hilbert

module. Analogously for H2
H as a left H-module the formula

〈F,G〉l :=
∫
Ω
(FG+

∂F

∂r

∂G

∂r
+
∂F

∂θ

∂G

∂θ
)
dx

|x|3

plays the same role, and H2
H becomes a left Hilbert module.

The following decomposition is similar to those introduced in [4, 20].

Theorem 3.3. Let F be a function from the plane to the quaternions. Then F ∈
M2 if and only if F can be written as

F (r, θ) =
∞∑
n=0

Gn(r, θ)λn, (10)

where Gn(r, θ) = (Jn(r) − wJn+1(r))pn(θ), λn ∈ H and
∑∞
n=o |λn|2 < ∞. Further-

more,
∞∑
n=o

|λn|2 ∼ ‖F‖2
H2

H
.

Proof. Let F ∈ M2. Since M ⊂ C∞(R2,H), then for each r > 0 we can express F
as its Fourier series

F (r, θ) =
∞∑
n=0

cos(nθ)an(r) + sin(nθ)bn(r).

We can write this series in terms of the spherical monogenics pn(θ) and qn(θ) to
obtain

F (r, θ) =
∞∑
n=0

pn(θ)An(r) + qn(θ)Bn(r)

The smoothness of F implies that the series converges absolutely for each (r, θ)
and uniformly in each compact subset and it can be differentiated term by term.
From (4) and (5) we get that

D(pn(θ)An(r)) = qn+1(θ)e1(A
′
n(r)−

n

r
An(r)),

and
D(qn(θ)Bn(r)) = pn−1(θ)e1(B

′
n(r) +

n

r
Bn(r)).
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Since DF = F, the uniqueness of the coefficients in the Fourier series expansion
implies that

Bn(r) = e1(A
′
n−1(r)−

n− 1

r
An−1(r)), (11)

and

An(r) = e1(B
′
n+1(r) +

n+ 1

r
Bn+1(r)). (12)

It follows that An(r) satisfies Bessel’s equation of order n,

An(r)
′′ +

1

r
An(r)

′ +
r2 − n2

r2
An(r) = 0.

Therefore An(r) = Jn(r)λn +Nn(r)βn, where Nn(r) is the Neumann function of
order n ([18]). Since Nn has a singularity at r = 0 and An(r) is regular at that
point, it follows that βn = 0 for all n. From (8) and (11) we obtain that

Bn(r) = −e1Jn(r)λn−1, n > 1.

Then we have

F (r, θ) =
∞∑
n=0

(Jn(r)− wJn+1(r))pn(θ)λn.

Now we will see that
∑∞
n=0 |λn|2 <∞. From the last decomposition we find that

∂

∂θ
F (r, θ) =

∞∑
n=0

pn(θ)nJn(r)e3λn +
∞∑
n=1

qn(θ)nJn(r)e2λn−1.

Then by Bessel’s inequality we have that

∫ 2π

0
| ∂
∂θ
F (r, θ)|2dθ ≥

∞∑
n=0

n2Jn(r)
2|λn|2.

From (6), there is a constant C > 0 such that for every N

N∑
n=0

|λn|2 ≤ C
N∑
n=0

|λn|2
∫ ∞

1
n2J2

n(r)
dr

r2
=

= C
∫ ∞

1

N∑
n=0

|λn|2n2J2
n(r)

dr

r2

≤ C
∫ ∞

1

∫ 2π

0
| ∂
∂θ

F (r, θ)|2dθdr
r2
≤ C‖F‖2.

To prove the converse, let F satisfy (10) with
∑∞
n=o |λn|2 <∞. Then it is easy to

see that the series converges in W2
H which is continuously embedded in C∞(R2,H).

Hence DF = F, since every term of the series satisfies this equation. �
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Remark 3.4. a) Series of the form∑
anJn(r),

with complex coefficients, called Neumann series have properties of convergence sim-
ilar to power series (see [18]). In particular they have radius of uniform convergence
in compact sets. Then we see that the expansion (10) is also valid for F ∈ M with
uniform and absolute convergence in compact subsets of R2, as well as the series of
every partial derivative of F .

b)We can write any quaternionic solution of the Helmholtz equation (1) as

F (r, θ) =
∞∑
n=0

cos(nθ)Jn(r)an +
∞∑
n=1

sin(nθ)Jn(r)bn

=
∞∑

n=−∞
Jn(r)En(θ)λn,

where an, bn, λn ∈ H. Noticing that the function Gn in (10) can be written as
Gn(r, θ) = E−n(θ)Jn(r)e1 + En+1(θ)Jn+1(r), we conclude that F belongs to M if
and only if

e1λn+1 − λ−n = 0, n ≥ 1.

This distinguishes the elements of M in the module of solutions of the Helmholtz
equation in R2, resembling the fact that holomorphic functions in the disk centered
at zero are those harmonic functions with zero Fourier coefficients in θ for n < 0.

Proposition 3.5. The family {Gn}n∈N is orthogonal in M2. Moreover there exists
a constant κ > 0 such that

γn = ‖Gn‖H2
H

= κ+O(1/n). (13)

Hence {Gn/γn}n∈N is a basis for M2.

Proof. For any n and m we have that

〈Gn, Gm〉 =
∫
Ω
Gn(x)Gm(x)|x|−3dx+

∫
Ω

∂Gn(x)

∂r

∂Gm(x)

∂r
|x|−3dx+

∫
Ω

∂Gn(x)

∂θ

∂Gm(x)

∂θ
|x|−3dx

= I1 + I2 + I3.

Now, from

GnGm = −pnpm(JnJm + Jn+1Jm+1) + pnqm+1e1(JnJm+1 − Jn+1Jm)
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and from the orthogonality of the spherical monogenics, it follows that

I1 = δnmβn,

with βn =
∫∞
1 (J2

n(r) + J2
n+1(r))

dr
r2
, and where δnm is the Kronecker delta. Similarly

we obtain that
I2 = δnmβ

′
n,

with β′n =
∫∞
1 (J ′n

2(r) + J ′n+1
2(r))dr

r2
.

For I3 we integrate by parts to obtain

I3 = −
∫
Ω
Gn

∂2Gm

∂θ2
|x|−3dx.

A computation shows that

∂2Gm

∂2θ
= −n2Gn + (2n+ 1)Jn+1(r)qn+1(θ)e1,

then

Gn
∂2Gm

∂2θ
= −n2GnGm−

(pnqm+1e1JnJm+1 + pnpmJn+1Jm+1) (2n+ 1).

Thus we have as before that

I3 = δnm(n2βn + αn),

with αn = (2n+ 1)
∫∞
1 J2

n+1(r)
dr
r2
.

Hence
γ2
n = βn(n

2 + 1) + β′n + αn

and from (6), it follows that there is a κ > 0 such that γn = κ+O(1/n). �

Now we proceed to the basic properties of Mp for 1 < p <∞.

Theorem 3.6. Let 1 < p <∞ and F ∈ Mp such that

F (x) =
∞∑
n=0

Gn(x)λn,

with {λn} ∈ H. Then the series converges in Mp.

Proof. Consider the Dirichlet kernel

Dn(ϕ) =
sin(n+ 1/2)ϕ

sin(ϕ/2)
=

n∑
j=−n

eijϕ,
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where ϕ ∈ [0, 2π], i is the imaginary unit of the complex numbers, and the partial
sum operators

Sng(θ) = Dn ∗ g(θ) =
n∑

j=−n
eijϕan

are defined for any complex function g ∈ L1(T ) with Fourier series Sg =
∑
n e

ijϕan.
Recall that if g ∈ Lp(T ), with p > 1, then Sng converges to g in Lp(T ) and there
exists a constant C > 0 such that

‖Sng‖Lp(T ) ≤ C ‖g‖Lp(T ) , for g ∈ Lp(T ). (14)

We can obviously replace the complex numbers in the statements above by quater-
nions of the form q0 + q3e3 and obtain the same results for g ∈ LpH(T ) with Fourier
series

∑
nEn(ϕ)an, an ∈ H. Let F =

∑
Gnλn ∈ Mp and let SNF (r, θ) = SNF (r, ·)(θ).

Then SNF converges to F in Hp
H. In fact, let

ψN(r) = ‖SNF (r, ·)− F (r, ·)‖pLp(T ) .

Then ψN(r) converges to zero pointwise, and (14) implies that ψN(r) ≤ C ‖F (r, ·)‖pLp(T ) .
Then by the dominated convergence theorem

lim
N→∞

‖SNF − F‖p
Lp(Ω,|x|−3dx)

= lim
N→∞

∫
Ω
ψN(r)

dr

r2
= 0.

Also

lim
N→∞

∥∥∥∥∥ ∂∂r (SNF − F )

∥∥∥∥∥
p

Lp(Ω,|x|−3dx)

= lim
N→∞

∥∥∥∥∥ ∂∂θ (SNF − F )

∥∥∥∥∥
p

Lp(Ω,|x|−3dx)

= 0

follows with the same argument, since

∂

∂r
SNF = SN

(
∂

∂r
F

)
and

∂

∂θ
SNF = SN

(
∂

∂θ
F

)
.

If we write

Gn(r, θ) = E−n(θ)Jn(r)e1 + En+1(θ)Jn+1(r),

then

SNF (r, θ) =
N∑
n=0

Gn(r, θ)λn − E(N+1)(θ)J(N+1)(r)λN .

=
N∑
n=0

Gn(r, θ)λn −RN+1(r, θ),

where Rn(r, θ) = En(θ)Jn(r)λn−1.
Since ∥∥∥∥∥F −

N∑
n=0

Gn(x)λn

∥∥∥∥∥
Hp

H

≤ ‖F − SNF‖Hp
H

+ ‖RN+1‖Hp
H
,
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then the proof will be complete if we can prove that ‖RN‖Hp
H

tends to zero as N

tends to ∞. To this end, write

RN(r, θ) = EN ∗ F (r, ·)(θ). (15)

By the Riemann-Lebesgue theorem, RN tends to zero pointwise. Young’s in-
equality implies that

‖RN(r, ·)‖Lp(T ) ≤ ‖F (r, ·)‖Lp(T ) .

Then a dominated convergence argument can be used to show that RN converges
to zero in Lp(Ω, |x|−3 dx). Once again, taking ∂

∂θ
and ∂

∂r
inside the convolution (15)

and repeating the previous argument we conclude that ‖RN‖Hp
H

converges to zero.
�

4 The Reproducing kernel.

We proceed now to construct the reproducing kernel for M2 as a submodule of H2
H.

Let

K(x, y) =
∞∑
n=0

Gn(x)Gn(y)

γ2
n

(16)

From (13) and (see [5])
∑
n∈Z Jn(r)

2 = 1, it follows that this series converges ab-
solutely and uniformly on compact subsets of R2 × R2 as well as the series of any
partial derivative of K(x, y). Also by Theorem 3.3, K(·, y) ∈ M2 for each y ∈ R2

and

K(·, y) =
∞∑
n=0

Gn(·)Gn(y)

γ2
n

(17)

with convergence in M2. We define for every F ∈ H2
H,

P [F ](y) = 〈K(·, y), F 〉 . (18)

Theorem 4.1. The operator P is a continuous right H- linear projection of H2
H

onto M2. For any F ∈ H2
H and y ∈ Ω we have that

PF (y) =
∞∑
n=0

Gn(y)

γ2
n

< Gn, F >,

with uniform and absolute convergence on compact subsets of R2.

Proof. The proposition follows from (17). That the convergence is uniform on com-
pact sets is a consequence of the estimate (9) and the orthonormality of γ−1

n Gn and
(13). �
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Now we study the action of the projection P on Hp
H. The uniform estimate ([6,

Lemma 3.4])
|Jn(r)| ≤ Cr−1/3,

valid for r ≥ 1, together with the recurrence formula (7) and the estimate (9) imply
that

PF (y) = 〈K(·, y), F 〉 =∫
Ω
K(x, y)F (x)

dx

r3
+
∫
Ω

∂

∂r
K(x, y)

∂

∂r
F (x)

dx

r3
+
∫
Ω

∂

∂θ
K(x, y)

∂

∂θ
F (x)

dx

r3

is well defined for F ∈ Hp
H, that is, the integrals exist for every y ∈ R2. Moreover,

we can differentiate ∂
∂ρ
PF and ∂

∂θ
PF inside the integral to conclude that PF ∈ M

for every F ∈ Hp
H. Also, the estimates for the Bessel functions above imply that the

expansion

PF (y) =
∞∑
n=0

Gn(y)

γ2
n

〈Gn, F 〉 (19)

is valid for such F .

Proposition 4.2. For every 1 < p <∞, the operator P can be extended as bounded
operator from Hp

H into LpH(Ω, |x|−3 dx), both seen as right modules or left modules.

Proof. Let F ∈ Hp
H, then

PF (y) =
∞∑
n=0

Gn(y)

γ2
n

〈Gn, F 〉

=
∞∑
n=0

E−n(ϕ)
Jn(r)e1
γ2
n

〈Gn, F 〉

+
∞∑
n=0

En+1(ϕ)
Jn+1(r)

γ2
n

〈Gn, F 〉 .

Let cn = γ2
n−1 if n > 0 and cn = γ2

−n for n ≤ 0, and consider the Fourier
multiplier operator

M
( ∞∑
n=−∞

einθan

)
=

∞∑
n=−∞

cne
inθan

acting on complex functions with Fourier series
∑∞
n=−∞ ane

inθ.
Then by (13) M and M−1 are continuous in Lp(T ) (see [17, Prop. 4.1, Ch 5]).

If we let M act on quaternionic expansions

∞∑
n=−∞

En(ϕ)an, an ∈ H,

we see that M and M−1 are continuous in LpH(T ) also. Define P̃ = M◦P . Then
from (19),

P̃F (y) =
〈
K̃(·, y), F

〉
,
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with

K̃(x, y) =
∞∑
n=0

Gn(x)Gn(y)

=
∞∑
n=0

(Jn(r)− wJn+1(r))En(ϕ− θ)(Jn(ρ) + w′Jn+1(ρ)), (20)

where w′ = cos(ϕ)e1 + sin(ϕ)e2. Then by the continuity of M and M−1, the
proposition is equivalent to proving the same statement for P̃ . From the expression
(20) for K̃ , it is clear that the proof will be complete if we can prove that for
every k, l ∈ Z, the integral operators acting in Ω with respect to |x|−3 dx and with

kernels N(x, y), ∂N
∂r

(x, y) ,∂N
∂θ

(x, y) (multiplying in the left) define bounded operators

in LpH(Ω, |x|−3 dx), where

N(x, y) =
∞∑
n=l

Jn(ρ)Jn+k(r)En(ϕ− θ).

This is proved in Proposition 5.2 of the appendix. �

Now we are ready to prove that the projection P is reproducing for Mp.

Theorem 4.3. Let 1 < p <∞ and F ∈ Hp
H. Then F ∈ Mp if and only of PF = F.

Proof. Let F ∈ Hp
H. We already know that PF ∈ M, then clearly PF = F implies

that F ∈ Mp. To prove the converse, let F ∈ Mp. By Theorem 3.6 there exists a
sequence of functions Fn ∈ Mp∩M2 converging to F in Mp. Since P is a projection
in M2 we have by Proposition 4.2 that in LpH(Ω, |x|−3 dx),

PF = lim
n→∞

PFn = lim
n→∞

Fn = F.

�

5 Appendix.

In this section we turn to the notation of the complex numbers , namely x = reiθ,
y = ρeiϕ, x · y will denote the dot product of x and y.

Let k ∈ Z and

N1(x, y) =
∞∑

n=−∞
Jn(r)Jn+k(ρ)e

in(ϕ−θ),

N2(x, y) =
∞∑
n=l

Jn(r)Jn+k(ρ)e
in(ϕ−θ).

By the summation theorems for the Bessel functions [5, 8.53], we have that
N1(x, y) = eikψJk (|x− y|) , provided that x and y form a triangle with sides r, ρ and
R = |x− y| , where 0 < ψ < π/2 is the angle opposite to ρ if ρ < r and is the angle
opposite to r if r < ρ.
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Lemma 5.1. Let ψ be defined as above, with x, y ∈ Ω. Then∣∣∣∣∣∂ψ∂r
∣∣∣∣∣ ,
∣∣∣∣∣∂ψ∂θ

∣∣∣∣∣ ≤ 4
rρ

R2
.

Proof. Assume that ρ < r and θ 6= ϕ. Then

sinψ =
ρ

R
sin(θ − ϕ)

so that

∂ψ

∂r
cosψ = ρ sin(θ − ϕ)

∂

∂r

1

R
,

∂ψ

∂θ
cosψ = ρ sin(θ − ϕ)

∂

∂θ

1

R
+
ρ

R
cos(θ − ϕ).

From the cosine law

cosψ =
r2 +R2 − ρ2

2rR
,

also

∂

∂r

1

R
= −(x− y)

R3
· x
r
,

∂

∂θ

1

R
= −(x− y)

R3
· ix.

Then we have
∂ψ

∂r
= − 2ρ(x− y) · x

(r2 +R2 − ρ2)R2
sin(θ − ϕ),

and

∂ψ

∂θ
= − 2ρr(x− y) · ix

(r2 +R2 − ρ2)R2
sin(θ − ϕ)+

2ρr

(r2 +R2 − ρ2)
cos(θ − ϕ).

Since r > 1 and |r sin(θ − ϕ)| ≤ R we obtain∣∣∣∣∣∂ψ∂r
∣∣∣∣∣ ≤ 2ρ

R2
≤ 2ρr

R2∣∣∣∣∣∂ψ∂θ
∣∣∣∣∣ ≤ 4ρr

R2
.

The proof in the case r < ρ is analogous. �

Proposition 5.2. The integral operators acting in Ω with respect to |x|−3 dx and
with kernels Ni(x, y),

∂Ni

∂r
(x, y), ∂Ni

∂θ
(x, y) define bounded operators in Lp(Ω, |x|−3 dx),

for i = 1, 2, and 1 < p <∞.
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Proof. If Ml is the projection defined in trigonometric polynomials

Ml(
∑

ane
inθ) =

∑
n≥l

ane
inθ,

then Ml can be extended as a continuous operator in Lp(S1) for every 1 < p < ∞
(this follows from the continuity of the conjugate function, see [17]). Then it is
enough to prove the proposition for i = 1. In fact,

Ml

(∫
Ω
N1(x, y)f(x) |x|−3 dx

)
=
∫
Ω
N2(x, y)f(x) |x|−3 dx,

and we deal with the other kernels in the same way (Ml is acting in θ). Now we
prove that the operator

Tf(y) =
∫
Ω

∂

∂θ
N1(x, y)f(x) |x|−3 dx

is bounded in Lp(Ω, |x|−3 dx). The kernels N1(x, y),
∂
∂r
N1(x, y) are treated in a sim-

ilar way (easier since they are less singular).
The case k = 0 was proved in [1]. So we assume k 6= 0.
By (7) we write

∂θN1(x, y) = ikψeikψ
∂ψ

∂θ
Jk (|x− y|) +

eikψ

2
(Jk−1 (|x− y|)− Jk+1 (|x− y|)) x− y

|x− y|
· ix

= I1 + I2.

Since Jk(0) = 0 and from the fact that |Jn(t)| ≤ Cnt
−1/2 for t large , it follows that

|I1| is bounded by Crρ/R if R < 1/2 and by Crρ/R3/2 for R ≥ 1/2. Since x · ix = 0
we have

(x− y) · ix = −y · ix = − (x− y) · iy.

Hence |I2| is bounded by min(r, ρ) if R < 1/2 and by rρ/R3/2 for R ≥ 1/2. We
conclude that ∣∣∣∣∣ ∂∂θN1(x, y)

∣∣∣∣∣ ≤
χR<1/2(x, y) (min(r, ρ) + rρ/R) +

rρ

(1 +R)3/2

= K1(x, y) +K2(x, y).

An easy calculation shows that there exists C > 0 such
∫
ΩK1(x, y) |x|−3 dx ≤ C for

every y ∈ Ω. Then by the Shur’s test (see [19]) K1 defines a bounded operator in
Lp(Ω, |x|−3 dx). The kernel K2 also defines a bounded operator on Lp(Ω, |x|−3 dx),
this is included in the proof of [1, Prop. 1]. �
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emilio@matcuer.unam.mx
salvador@matcuer.unam.mx

Michael Shapiro
Departamento de Matemáticas
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