The p-adic Finite Fourier Transform and Theta
Functions

G. Van Steen

A polarization on an abelian variety A induces an isogeny between A and its dual
variety A. The kernel of this isogeny is a direct sum of two isomorphic subgroups.
If A is an analytic torus over a non-archimedean valued field then it is possible to
associate with each of these subgroups a basis for a corresponding space of theta
functions, cf. [5], [6].

The relation between these bases is given by a finite Fourier transform. Similar
results hold for complex abelian varieties, cf. [3].

The field k 1is algebraically closed and complete with respect to a non-archimedean
absolute value. The residue field with respect to this absolute value is k.

1 The finite Fourier transform

In this section we consider only finite abelian groups whose order is not divisible by

char (k). - ~
For such a group A we denote by A the group of k-characters of A, ie. A =
Hom(A, k*). The vector space of k valued functions on A is denoted as V (A).

Lemr/rla 1.1 Let Ay and Ay be finite abelian groups. Then (A1/>:42) 18 isomorphic
with A1 X AQ.

Proof The map 0 : A x Ay — Amg, defined by 0(x, 7)(a1,a2) = x(a1).7(az) is
an isomorphism. n
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The vectorspace V' (A) is a banach space with respect to the norm

1£1] = maz {| f(a)| | a € A}

For each a € A the function d, € V(A) is defined by 6,(b) = 0if a # b and d,(a) = 1.
The functions (d4)eca form an orthonormal basis for V(A), i.e.

| aca Aabal| = maz {|Adl
[|0a]] =1 foralla € A

aeA}

Definition 1.1 Let m be the order of the finite group A.The finite Fourier trans-

-~

form Fy on V(A) is the linear map Fa : V(A) — V(A) defined by Fa(d.) =
(1/v/m) 2, c2x(a)dy-

Proposition 1.2 Let Ay and As be finite abelian groups and let Fy = Fa, and
Fy = Fy, be the finite Fourier transforms.

1. The map ¢ : V(A1) ® V(Az) — V(A1 x Ay), defined by ¢(6a, @ 0ay) = O(ay,a0)
is an isomorphism. Furthermore ¢(f1 @ f2)(a1,a2) = fi(a1) fa(az).

2. Let0: V(A1/>:42) — V(ﬁl X ﬁg) be the linear map induced by the homomor-
phzsm 0 : A\l X A\Q — A1 X Ag, (Cf ]])
The following diagram is then commutative :
V(A1) ® V(A) 2, V(A x Ay)

FiRF; lFAl xAg

VA V(A) SV(A xA) DS V(A x Ay)
Proof  Straightforward calculation. [

Proposition 1.3 The finite Fourier transform Fa is a unitary operator on V(A),
i.e. ||Fal| =1. Furthermore Fa(f)(7) = (1/v/M) Y e fla)T(a).

Proof For f € V(A) we have :

FA()(T) = Fa(Saea f(@)d0)(7)
= Saea F(a)((1/v/m) T 5 x(a)dy(7))
= (1/v/M) Saea fla)7(a)

The norm on Fj is defined by ||Fal| = ma:c{||FA(f)|| ‘ feV(A)and ||f]| < 1}.
Hence
1Al = maz {|[Fa(Caca Aada)ll | Aa € k and |Ag| < 1}
= maz {|(1/m)| | Saca Xy ciax (@)l | 1 2 [Aal |
< max{|)\ax(a)| ‘ X € Aja € Aand |\, < 1}
<1 since |x(a)| =1 for all x,a

Since ||Fa(d,)|| =1 we have ||Fa|| > 1. ]
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Consider now the special case that A = Z,,, = Z/mZ, (with char(k) fm).
The group k7, of points of order m in k* is a cyclic group of order m. Let £ be a
fixed generator for k.

Lemma 1.4 The map X : Zu — Zm defined by x(@)(b) = £ is an isomorphism.

Proof Fasy calculation. [

We denote xz = x(a).

Proposition 1.5 (xz)_ s an orthonormal basis for V(Zy,).
acZ

m

Proof The characters (Xa)—ez are linearly independant (standard algebra). Since
dim (V(Zm)) = m the characters form a basis.

Let 7 = Y gecz,. Aaxa with Az € k.
We have ||7|| = maz {|7’ ‘ b€ Zpn } It follows that ||xz|| = 1 and since

St (D) =mAg+ 05 Aa (X85 xa(b ))
= mAg + Yoot e (S 6)
= mAg

we find that
Xl = [mAgl < maz {|r®)] | b € Zn} = ||7]]

In a similar way we find that |\z| < ||7]| for all @ € Z,, and hence

maz {| Xzl | @ € Zm } < ||7]|
On the other hand we have

1711 < maz {[|Xaxal| | @ € Zun} = maz {

anm}

It follows that the elements yz are orthonormal. [

Let Fy : V(Zm) — V(Zy) be the finite Fourier transform.
Proposition 1.6 F,(f)(r) = (1/v/m) Zaez,, f(@)7(a).
Proof Since f = Yues f(@)dz we have

Fu(f)(7) = Yaez,, f(@)Fn(0z)(7)

= (1/v'm) Xaez,, 5)(2e ),(7))
= (1/v/m) Zzez,, [(@)7(@)
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The isomorphism  : Zy, — Z,, induces an isomorphism ¥ : V(ZAm) — V(Z,,). The
composition

Vo Fn i V(Zm) = V(Zn) = V(Zn)
is still denoted as F,.
Proposition 1.7 F,,,(dz) = (1/v/m)xz and F,,(xz) = vVmd_z
Proof For all a € Z,, is
Ful62)(B) = Funl32)(x5)

= (1/vm) Yrez,, x3(0)0a(w)
= (1/v/m)xg = 1v/mxa(b)

We also have

Fn(xa)(0) = (1/y/m) ezmxb(ﬂz%a()

= (1/vV'm) Yacz,, Xass
This last sum equals 0 if @ _|__E £ 0 and equals m if @+ b= 0.
Hence > zcz, Xz.5(@) = 6-a(b). n

Corollary 1.8 F2%(d5) =03

As a consequence of Prop 1.2 the results for Z,, can be generalized for arbitrary
abelian groups.

Let A be an abelian group which 1is isomorphic with the product
Loy X .. X Ly, .(Where char(k) fm;.) -

Let & be a generator for the group &, and let X9 i Zpn, — Zp,, be the isomorphism
defined by x®(a@)(b) = £2. Let x\) = x(a).

We have the finite Fourier transform

— —

F:V(Zpy X ... X Lpn,) = V(Lny X ... X Ly,.)
defined by

XiEZmi
The isomorphism Y : Zm, X ... X Zy. — Zumy X ... X Ly, defined by

_ 1 r
X(ala"'a ) (ngl)a--wX((zr))

induces an isomorphism
OV Ly X oo X L) =V (Lo, X ... X L,
The composition
VO F :V(Zyy X ... X Ln,) = V(Lpny X .. X Lop,.)

is still denoted as F'.
Ifa=(ai,....a,) € Zon, X ... X Zn,, define then xz € V(Zym, X ... X L, ) by

xa(®) = x201) .. 2 (6,
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Proposition 1.9

1. {(55‘66%,” x...mer} and{)@
mal bases for V (L, X ... X Ly, ).

2. F(6z) = (1//m)xz and F(xz) = (V/m)d_z where m =my...m,.

Q€ Ly X ... X Zmr} are both orthonor-

Proof  Similar calculation as for the Z,, case. [

2 The action of the theta group

Let A be a finite abelian group with order m such that char(k) fm.
The theta group G(A) is defined as G(A) = k* x A x A. The multiplication on G(A)
is defined by

(A, x)- (9, 7) = (Ar (), 2y, X7)
Proposition 2.1 The sequence
1ok 5L GA) S A1
with v(A) = (A, 1,1) and p(\, z, x) = = is ezxact.

Proof  See [2]. ]
The theta group acts on V(A) in the following way

fO#9(z2) = Ax(2) f(x2)

In a similar way we have the theta group G(A) = k* x A x A which acts on V(A) by
gt (1) = Ar(2)g(xT)

(The bidual Ais canonically identified with A.)

Lemma 2.2 (5,()’\"1’)‘) = Ax(a710)0,-1p

Proof 1t is clear that dy(ax) = d,-1,(z) and hence

5 () = Ax(2) 8y (a7 x) = Ax(a'b)Su—1p()

Proposition 2.3 The map o : G(A) — G(A) defined by
oAz, x) = (W @) x 2

is an isomorphism and for all f € V(A) and (A, a,x) € G(A) we have

pga) = p(pp (o)
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Proof 1t is clear that « is bijective and

o\ 2, ) (1, 7)) = aQpr (@), zy, x7)
= (At (@) ) (y)x " (2y), x7), 2u)
= (MW @), 6 ) (pr (), Ty)
= a(\,z, x)a(u,y,7)

We have to prove the second assertion only for the basis functions d,, (b € A).

F(5) = F(Ax(a™'b)d,-1)
= Ax(a7'b) X 57(a”"D)d,

On the other hand we have

FE)00(0) = 5,780 @3 ).
=X, a7 a)v(a™o-(xv)
=2, a7 Ha)xHa ) T(a) -1, (v)
=2 ea (b )T (b)x(a=H)'(a™1)é-(v)
= MW (a7'0) 3 5 7(a1b)0-(v)
This proves the second assertion. [ ]

The following lemma will be used in the next section.

Lemma 2.4 Let v : V(A) — V(A) be a G(A)-automorphism of V(A). Then there
exists a constant element p € k* such that v(f) = pf for all f € V(A).

Proof  Let v(04) = Y pea a0 With v, € k.

= v(00) = Mx(az™) Y Yo

beA

Furthermore we have

(v6)™ = 32 Miex (0)5:

beA

Hence x(az™")Ypa0-1 = YeaX(b) for all a,b € A and x € A. It follows that
© Y5X (D) = Yoo for all a,b € A and x € A.

:>Va c A: Ya,a = V1,1

o wax() =7b,ax(d) for all a #be Aand y € A.

=>Va#b: P, =0

Let p = y11. It follows that v(f) = pf for all f € V(A). ]



The p-adic Finite Fourier Transform and Theta Functions 545

3 Theta functions on an analytic torus

Let T'= G/A be a g-dimensional analytic torus. So G = (k*)? and A C G is a free
discrete subgroup of rank g.

Let H be the character group of G. So H is a free abelian group of rank g and each
nowhere vanishing holomorphic function on G has a unique decomposition Au with
A€ k*and v e H, (cf [1]).

The lattice A acts on O*(G) in the following way :

VyeNae O(G):a(z) = a(yz)

A cocycle £ € Z! (A, O*(G)) has a canonical decomposition

&(2) = cp(r.0(9)e()(z), vEA

with ¢ € Hom(A,k*), 0 € Hom(A, H) and p : A x H — k* a bihomomorphism such
that pZ(”y,a((S)) = 0(d)(7) and p(’y,a(é)) = p(é,a(”y)) for all v,d € A.

We assume that £ is positive and non-degenerate. This means that o is injective
and |p(7,a(7))| <1 for all v # 1.

Remark The fact that such a cocycle exists implies that T is analytically iso-
morphic with an abelian variety, (see [1]).

The cocycle £ induces an analytic morphism A¢ : G — Hom(G,k*) which is
defined by A¢(x)(7) = o(7)(x).
Let G = Hom(G, k*) and let A = {u|A ‘ u € H}. Then G 2 (k*)¢ and A is a lattice
in G.
The analytic torus T=0G /A is called the dual torus of T and T isomorphic with
the dual abelian variety of 7.
The morphism )¢ induces an isogeny g : 1" — T of degree [H : 0(A)]2. We assume

that char(k) /[H : o(A)]. This means that )z is a separable isogeny.
More details about Az can be found in [5] and [6].
If 2 € G determines an element T € Ker()g) then there exists a character u, € H
such that

VyeA:a(y)(z) = us(v)
If y € Atheny =1 and u, =o(y).
The map e : Ker(\g) x Ker(XAg) — k*, defined by e(7,y) = uy(z)/u.(y) is a non-
degenerate, anti-symmetric pairing on Ker(Az) and hence Ker(\g) = K1 ® K> where
K, and K are subgroups of order [H : o(A)] which are maximal with respect to the
condition that e is trivial on Kj.
Let £(&) be the vectorspace of holomorphic theta functions of type £. An element
h € L(&) is a holomorphic function on G which satisfies the equation

VyeA: f(z) =&(2)f(72)

The vectorspace L£(£) has dimension [H : o(A)]. Using the subgroups K; and K, it
is possible to construct two bases for this vectorspace.
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Let hr be a fixed element in £(£) and let

hr(xz)
hr(z)

G ={@ )l TeKerg, feM(T), div(f)=div( )}

where M(T) is the space of meromorphic functions on 7.
G(§) is a group for the multiplication defined by (7, f).(¥,9) = (Ty, g(zz)f(z)).
Moreover:
V@, f),(¥,9) € G(&) : (T, ]), W 9)] = e(T,9)
The sequence
1— k"% G(€) = Ker(X) — 1

with v()\) = (1, \) and u(Z, f) = T is exact. Furthermore there exist subgroups K;
and K, in G(€) such that pu : K; — K; is an isomorphism.
If 7 € K; then there exists a unique element 7 € K; such that w(z) = . It follows
that each element in G(&) has two decompositions A\ZoZ1 = AoZ1Z2 with \; € k*
and #; € K;. The relation between A\; and ), is given by

A1 = e(T1,T2) A2
Proposition 3.1 The maps «; : G(§) — G(K,),(i = 1,2), defined by
a1 (M To2q) = ()\171U_17€(5C_27 *))

as(NoZ1Z9) = ()\271U_27€(5C_17 *))
are isomorphisms of groups.

Proof  Since the pairing e is non-degenerate the map Ky, — K, defined by
T3 — e(xg, %) is an isomorphism. Hence «; is bijective. An easy calculation shows
that a; is a homomorphism.

A similar argument holds for as. [

Since K, and K; are isomorphic we have an isomorphism o : G(K;) — G(K>), (cf
lemma 2.3).

Lemma 3.2 oy ' ocaoca; = Id

Proof  Straightforward calculation. [

Let T; = T/K;,(i = 1,2). Then T; is isomorphic with an analytic torus G;/A;
and the canonical map T" — T; is induced by a surjective morphism v; : G — Gj.
Furthermore there exists a cocycle & € Z* (Ai, O*(Gi)) such that £ = ¥ (&).

The vectorspace L(&;) of holomorphic theta functions on G; is 1-dimensional.

Let h; € L(&;) be a fixed non-zero element.

For each @ € K; and b € K, we can define theta functions hg and hz by
(@) (b)
ha = (hg @) 1/}2) and hg = (hl @) 1/}1)

We proved in [4] that (ha)_ and (hg)_ are bases for L£(&).

. ae Ky ./ beRy . : . :
Using the results about the finite Fourier transform it is possible to give the relation
between these bases.
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Proposition 3.3 The maps §; : L(§) — V(K;), (i = 1,2), defined by §;(hz) = 031
are 1somorphisms and

Vh € L&) and (T, f) € G(E) : Bi( WD) = Gi(h)* ™D

If F:V(K,) — V(K)) = V(K,) is the finite Fourier transform then we have

£© B v S v = e

and

By o F o fi(ha) = (1/4/[H : o(A)] M) X e, ahg

bEKQ
Proof  For the proof of the first part we refer to [6] Furthermore we have
Byto Fopi(ha) =Py 0 F(01) = (1/y/[H : o(M)]) By (Sper, (b, @ 1))

= (L\/IH : o(N)]) Tie, © G —1>h__1
= (1/y/[H : 0(N)]) Spe, e(b.a) by

Ql

]
Since 1, F' and (5 are compatible with the actions of the theta groups we find that

V(Ky) profy oF V(K;) is a G(K7)-automorphism of V' (K7) and hence there exists a
constant element p € k* such that 4 0 B3 o F(f) = pf for all f € V(K;).
It follows that 35" o F o 31(hg) = phg for all @ € K;. We can conclude :

Theorem 3.4 (Transformation formula)

Va € Kl : pha = Z (5 d)h—

EEKQ

Remark The bases (hg)_eK', (1 =1,2), depend on the choices of the theta func-

tions h; and hs. These theta functions are unique up to multiplication with a
non-zero constant. It follows that it is not possible to get rid of the constant p in
the transformation formula.

References

[1] Gerritzen L. - On non-archimedean representations of abelian varieties. Math.
Ann. 196, 323-346 (1972).

[2] Mumford D. - On the equations defining abelian varieties I. Inv. Math, 1, 287-
354 (1966).

[3] Opolka H. - The finite Fourier transform and theta functions. Algebraic Algo-
rithms and Error Correcting Codes (Grenoble 1985), 156-166 Lecture Notes in
Comp. Sci. 229



548 G. Van Steen

[4] Van Steen G. - The isogeny theorem for non-archimedean theta functions.
Bull.Belg Math. Soc.45,1-2 (series A), 251-259 (1993)

[5] Van Steen G. - A basis for the non-archimedean holomorphic theta functions.
Bull. Belg. Math. Soc 1, 79-83 (1994)

[6] Van Steen G. - Non-archimedean analytic tori and theta functions Indag. Math
5(3), 365-374 (1994)

G. Van Steen

Universiteit Antwerpen

Departement Wiskunde en Informatica
Groenenborgerlaan 171

2020 Antwerpen, Belgie



