All 2-(21,7,3) designs are residual

Edward Spence

Abstract

In a previous classification of symmetric $2-(31,10,3)$ designs it was discovered that the 151 pairwise non-isomorphic designs found yielded a total of 3809 residual $2-(21,7,3)$ designs that were pairwise non-isomorphic. Here we report on a computer search for all $2-(21,7,3)$ designs which showed that the 3809 obtained above constitute the complete set.

1 Introduction

By a $2-(v, k, \lambda)$ design we mean a pair $\mathcal{D}=(\mathcal{X}, \mathcal{B})$, where \mathcal{X} is a set of v 'points' and \mathcal{B} is a collection of b 'blocks' together with an incidence relation that satisfies the following conditions: each block is incident with k points and each pair of distinct points is incident with λ blocks. For more details and basic facts concerning these $2-(v, k, \lambda)$ designs see [1] and [5]. From a given symmetric $(b=v) 2-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{X}, \mathcal{B})$ there is a way of constructing its residual design. This is obtained by fixing a block $B \in \mathcal{B}$ and taking $\mathcal{D}^{\prime}=\left(\mathcal{X} \backslash B, \mathcal{B}^{\prime}\right)$, where $\mathcal{B}^{\prime}=\left\{B^{\prime} \backslash B: B^{\prime} \in \mathcal{B}, B^{\prime} \neq B\right\}$, and the incidence relation is that induced from \mathcal{D}. The parameters of the residual design are $(v-k, k-\lambda, \lambda)$. Any design with the parameters of a residual design is called quasi-residual. It is well-known [5, Theorem 16.1.3] that any quasi-residual design with $\lambda=1$ or 2 is in fact residual, but when $\lambda>2$ the situation is somewhat different. There is a $2-(16,6,3)$ design, whose construction is due to Bhattacharya [2], and which is not the residual of a $2-(25,9,3)$ design since it has two blocks that intersect in four points. In the Tables of [7] the three 'smallest' sets of parameters of 2-designs with $\lambda=3$ that are quasi-residual designs are 2-($8,4,3$) (number 15), 2-($16,6,3$) (number 35)

[^0]and $2-(21,7,3)$ (number 49). In the first of these cases all designs are in fact residual, and this is perhaps not surprising since they are relatively few in number. A computer investigation by the author in 1994 (unpublished) showed that the number of non-isomorphic $2-(16,6,3)$ designs is 18,920 and of these only 1305 are the residuals of the 78 symmetric $2-(25,9,3)$ designs found by Denniston [4]. It turns out that 5,397 of the 18,920 designs discovered have two blocks that meet in four points, a property shared by the design discovered by Bhattacharya. The remaining 13, 523 designs all have maximum intersection number 3 , and as we have pointed out, the majority of these are non-embeddable.

Without going into details we simply note that the method that the author used successfully on several different occasions [8], [9], [10] was able to cope with the $2-(21,7,3)$ case, and yielded the astonishing (to the author) result that the figure of 3809 mentioned above was in fact the correct number. All quasi-residual 2-(21, 7,3$)$ designs are residual. The figure of 3809 given in [7] was, at the time it was printed, not known to be true. It was taken from the author's paper [8] where it was quoted as a lower bound. It was the total number of residual designs that came from the complete classification of symmetric 2-(31, 10, 3) designs.

With the knowledge of this discovery it surely would not be too long before a computer-free proof would be obtained, or so the author thought. However, despite spending a considerable amount of time on the problem he has been unable to establish a proof. He hopes that by bringing this problem to the attention of others, one of the readers might discover a solution to the problem.

In the next section we list a few of the elementary results that the author has been able to establish and which might be of use.

2 Some properties of $2-(21,7,3)$ designs

The aim of this section is to prove that two distinct blocks of a $2-(21,7,3)$ design meet in at most three points. As a first step in this direction we use the following result.

Proposition 1

Two distinct blocks of a 2-(21, 7,3$)$ design meet in at most four points.
Proof. Following Connor [3, Cor. 3.1], if two distinct blocks of a $2-(v, k, \lambda)$ design meet in μ points then, in the usual notation,

$$
\mu \leq(2 \lambda k+r(r-\lambda-k)) / r
$$

From this it is seen that $\mu \leq(2 \times 3 \times 7+10 \times 0) / 10=4.2$, and the stated result immediately follows.

Proposition 2

Let B be a fixed block of a $2-(21,7,3)$ design and for $i=0,1, \ldots, 4$ let n_{i} denote the number of other blocks that meet B in i points. Then the intersection numbers $\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)$ take one of the four possible sets of values shown in TABLE I.

Proof. A simple counting argument gives

$$
\sum_{i=0}^{4} n_{i}=29, \sum_{i=0}^{4} i n_{i}=63, \sum_{i=0}^{4}\binom{i}{2} n_{i}=42
$$

and combining these suitably yields $3 n_{0}+n_{1}+n_{4}=3$. Thus $n_{0}=0$ or 1 and the stated result follows immediately.

TABLE I

n_{0}	n_{1}	n_{2}	n_{3}	n_{4}
0	1	24	2	2
0	2	21	5	1
0	3	18	8	0
1	0	21	7	0

Although Proposition 1 allows the possibility that $n_{4} \neq 0$, we can show quite simply that this cannot in fact happen. For this we follow an argument of Hamada and Kobayashi [6].

Let $B_{1}, B_{2}, \ldots, B_{b}$ be the blocks of a $2-(v, k, \lambda)$ design and let S denote the incidence matrix of these blocks. Then S is a $(0,1)$ matrix of size $v \times b$ whose (i, j) th entry is 1 if the i th element is in the block B_{j} and 0 otherwise. It is clearly the case that $S S^{t}=(r-\lambda) I+\lambda J$, where, as usual, I and J are the identity matrix and the all-one matrix, respectively, of order v. Now define $C=S^{t} S$, so that C is of size $b \times b$ and satisfies the relations $C \mathbf{j}=r k \mathbf{j}(\mathbf{j}$ is the all-one vector) and $C^{2}=(r-\lambda) C+\lambda k^{2} J$. Since $C_{r s}=\left|B_{r} \cap B_{s}\right|$, the following identity is easily established.

$$
\sum_{i \neq r, s}\left(C_{i r}-2\right)\left(C_{i s}-2\right)=\lambda k^{2}+4 k+4 b-4 r k-8-(2 k+\lambda-r-4) C_{r s} .
$$

Suppose now that the blocks B_{r} and B_{s} of a 2- $(21,7,3)$ design meet in four points. For these two blocks we should then have

$$
\sum_{i \neq r, s}\left(C_{i r}-2\right)\left(C_{i s}-2\right)=-5
$$

but examination of the entries in TABLE I shows that in the two possible cases in question, $\sum_{i \neq r, s}\left(C_{i r}-2\right)\left(C_{i s}-2\right) \geq-4$. Thus we have proved:

Theorem 1

Two distinct blocks of a $2-(21,7,3)$ design can have at most three points in common.

2.1 Case $\left(n_{0}, n_{1}, n_{2}, n_{3}\right) \equiv(1,0,21,7)$

Consider a fixed block, B_{0} say, of a $2-(21,7,3)$ design having intersection numbers $(1,0,21,7)$. This induces a sub-design on the seven points of B_{0} in which there are 21 blocks of size 2 and 7 blocks of size 3 , and each pair of points occurs twice among the blocks. An easy counting argument shows
that each point lies in six of the blocks of size 2 and one of the blocks of size 3. Thus the blocks of each size form 1-designs. The same argument can be repeated for the set of seven points belonging to the (unique) block, B_{1} say, disjoint from B_{0}. We immediately see that the intersection numbers of the 28 blocks (all blocks except B_{0} and B_{1}) with the fourteen points belonging to the union of B_{0} and B_{1}, must be 4,5 or 6 . However, closer examination along the lines of Proposition 2 shows that only 4 and 6 are possible. It follows that the intersections of the same 28 blocks with the seven points in neither B_{0} nor B_{1} are 3 and 1. It is clear that the 21 blocks of size three on these seven points form a $2-(7,3,3)$ design, of which there are $10[7]$. Thus the points and blocks of the 2- $(21,7,3)$ design can be permuted so that the incidence matrix takes the form

$$
\left[\begin{array}{llll}
\mathbf{j} & \mathbf{0} & A & B \tag{1}\\
\mathbf{0} & \mathbf{j} & C & D \\
\mathbf{0} & \mathbf{0} & I & E
\end{array}\right],
$$

where \mathbf{j} and $\mathbf{0}$ are the all-one vector and the all-zero vector of size 7 respectively, and A, B, C, D are the incidence matrices of one-designs on 7 points, with the respective block sizes $3,2,3,2$. Further, E is the incidence matrix of a $2-(7,3,3)$ design and I is the identity matrix of order 7 . It would seem plausible that the one-designs above are in fact 2-designs, and indeed this is sometimes so, as the example below shows.

Example Let B_{1}, B_{2}, B_{3} be the cyclic zero-one matrices of order 7 which are defined in terms of their first rows: $B_{1}=\operatorname{cycl}(0001100), B_{2}=\operatorname{cycl}(0010010)$, $B_{3}=\operatorname{cycl}(0100001)$. Then B_{1}, B_{2}, B_{3} are symmetric, commute in pairs and satisfy $B_{1}+B_{2}+B_{3}=J-I$. Also, the matrix $B=\left[\begin{array}{lll}B_{1} & B_{2} & B_{3}\end{array}\right]$ is the incidence matrix of a $2-(7,2,2)$ design. Further, let A denote the cyclic incidence matrix of a finite projective plane of order 2. It is now a straightforward matter to verify that the matrix

$$
\left[\begin{array}{cccccc}
\mathbf{j} & \mathbf{0} & A & B_{1} & B_{2} & B_{3} \\
\mathbf{0} & \mathbf{j} & A & B_{3} & B_{1} & B_{2} \\
\mathbf{0} & \mathbf{0} & I & A^{t} & A^{t} & A^{t}
\end{array}\right]
$$

is the incidence matrix of a $2-(21,7,3)$ design. Its full automorphism group has order 21. Moreover, it is also easy to see that it is residual, as the following matrix shows.

$$
\left[\begin{array}{ccccccc}
\mathbf{j} & \mathbf{0} & A & B_{1} & B_{2} & B_{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{j} & A & B_{3} & B_{1} & B_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & I & A^{t} & A^{t} & A^{t} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & A & B_{2} & B_{3} & B_{1} & \mathbf{j} \\
1 & 1 & \mathbf{0} & \mathbf{j}^{t} & \mathbf{0} & \mathbf{0} & 1 \\
1 & 1 & \mathbf{0} & \mathbf{0} & \mathbf{j}^{t} & \mathbf{0} & 1 \\
1 & 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}^{t} & 1
\end{array}\right] .
$$

This illustration is by no means typical. In fact, there are $8542-(21,7,3)$ designs that have a pair of disjoint blocks and in 755 of these none of the one-designs mentioned above is a 2-design. The matrices A and C referred to above in (1) have row and column sums 3 and have the property that the inner product of any two distinct rows is 0,1 or 2 . There are exactly

10 such one-designs that are pairwise non-isomorphic and all but one of them appear amongst the 854 designs. Moreover, the matrices B and D are uniquely determined up to column permutations by A and C, respectively. It is perhaps also worthwhile pointing out that all ten $2-(7,3,3)$ designs do in fact occur as sub-designs with incidence matrix E.

2.2 Case $\left(n_{0}, n_{1}, n_{2}, n_{3}\right) \equiv(0,3,18,8)$

If the design does not have a pair of disjoint blocks, then clearly all blocks have the same intersection array, namely $(0,3,18,8)$. Thus we may assume that the design has just three intersection numbers, 1,2 or 3 . In the literature there seems to be very little known about such designs unless one of the intersection numbers is $k-r+\lambda$, which is not the case here.

References

[1] T. Beth, D. Jungnickel, and H. Lenz. Design Theory. Cambridge University Press, London, 1986.
[2] K. N. Bhattacharya. A new balanced incomplete block design. Science and Culture, 9:423-424, 1944.
[3] W. S. Connor. On the structure of balanced incomplete block designs. Ann. Math. Stat., 23:57-71, 1952.
[4] R. H. Denniston. Enumeration of symmetric designs (25,9,3). Ann. Discrete Math., 15:112-117, 1982.
[5] Marshall Hall, Jr. Combinatorial Theory. Blaisdell, Waltham, Mass., 1967.
[6] N. Hamada and Y. Kobayashi. On the block structure of BIB designs with parmeters $v=22, b=33, r=12, k=8$ and $\lambda=4$. J. Combin. Theory (A), 24:75-83, 1978.
[7] R. Mathon and A. Rosa. (v, k, λ) designs of small order. In The $C R C$ Handbook of Combinatorial Designs, pages 3-41. CRC Press, 1996.
[8] E. Spence. A complete classification of symmetric (31, 10, 3) designs. Des. Codes Crypt., 2:127-136, 1992.
[9] E. Spence. Classification of Hadamard matrices of order 24 and 28. Discrete Math., 140:185-243, 1995.
[10] E. Spence. The complete classification of Steiner systems $\mathrm{S}(2,4,25)$. J. Combin. Des., 4:295-300, 1996.

Edward Spence
Department of Mathematics
University of Glasgow
Glasgow G12 8QQ
Scotland.
e-mail: ted@maths.gla.ac.uk

[^0]: Received by the editors July 1997.
 Communicated by Jean Doyen.
 1991 Mathematics Subject Classification. 05B05.
 Key words and phrases. 2-designs, quasi-residual, classification.

