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Abstract

It is proved in this paper that there exists a labeled almost resolvable 3–
fold block design of order v and block size 4 if and only if v ≡ 1 (mod 4), and
that there exists a labeled resolvable 3–fold block design of order v and block
size 4 if and only if v ≡ 0 (mod 4) with 22 possible exceptions.

1 Introduction

A λ–fold balanced incomplete block design of order v and block size k, denoted by
B(k, λ; v), is a pair (X,B) where X is a v–set and B is a collection of k–subsets
(called blocks) of X such that each pair of distinct elements of X is contained in
exactly λ blocks.

For brevity, a balanced incomplete block design is also called a block design or
BIB design.

Let (X,B) be aB(k, λ; v). A subset P of B is called a parallel class if P partitions
X. A B(k, λ; v) is called resolvable and denoted by RB(k, λ; v) if all the blocks can
be partitioned into parallel classes.

The existence of resolvable block designs has been studied extensively, the inter-
ested reader may refer to [3]. In this paper, we study a special class of resolvable
block designs — labeled resolvable block designs.

Let (X,B) be a B(k, λ; v) where X = {a1, a2, · · · , av} is a totally ordered v–set
with ordering a1 < a2 < · · · < av. For each block B = {x1, x2, · · · , xk}, we may
suppose that

x1 < x2 < · · · < xk.
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Let

φ : B→ Z

(
k
2

)
λ

be a mapping where for each B = {x1, x2, · · · , xk} ∈ B,

φ(B) = (φ(x1, x2), · · · , φ(x1, xk), φ(x2, x3), · · · , φ(xk−1, xk)),
φ(xi, xj) ∈ Zλ, ∀1 ≤ i < j ≤ k.

If there exists a mapping φ satisfying the following two conditions:

(i) For each pair {x, y} ⊂ X with x < y, let B1, B2, · · · , Bλ be the λ blocks
containing {x, y} and let φ(x, y)i be the value of φ(x, y) corresponding to Bi,
1 ≤ i ≤ λ. Then for 1 ≤ i, j ≤ λ,

φ(x, y)i ≡ φ(x, y)j (mod λ)

if and only if i = j.

(ii) For each block B = {x1, x2, · · · , xk}, we have

φ(xr, xs) + φ(xs, xt) ≡ φ(xr, xt) (mod λ), ∀1 ≤ r < s < t ≤ k.

ThenB(k, λ; v) is called a labeled block design and denoted by LB(k, λ; v); its blocks
will be denoted in the following form:

(x1, x2, · · · , xk;φ(x1, x2), · · · , φ(x1, xk), φ(x2, x3), · · · , φ(xk−1, xk)).

A labeled RB(k, λ; v) is denoted by LRB(k, λ; v). Here is for example an
LRB(4, 3; 8):

X = {0, 1, 2, · · · , 7},
B : (0, 1, 3, 6; 0, 0, 1, 0, 1, 1), (2, 4, 5, 7; 1, 2, 0, 1, 2, 1);

(0, 1, 2, 4; 2, 2, 2, 0, 0, 0), (3, 5, 6, 7; 1, 2, 0, 1, 2, 1);

(1, 2, 3, 5; 2, 2, 2, 0, 0, 0), (0, 4, 6, 7; 1, 2, 1, 1, 0, 2);

(2, 3, 4, 6; 2, 2, 2, 0, 0, 0), (0, 1, 5, 7; 1, 2, 2, 1, 1, 0);

(0, 3, 4, 5; 1, 0, 0, 2, 2, 0), (1, 2, 6, 7; 1, 2, 2, 1, 1, 0);

(1, 4, 5, 6; 1, 0, 0, 2, 2, 0), (0, 2, 3, 7; 1, 2, 0, 1, 2, 1);

(0, 2, 5, 6; 0, 1, 0, 1, 0, 2), (1, 3, 4, 7; 1, 2, 0, 1, 2, 1).

The concept of labeled resolvable block design was introduced in [6] and further
studied in [8, 9]. It provides a powerful technique in the construction of resolvable
group divisible designs.

Let v and λ be two given positive integers and K and M two sets of positive
integers. A group divisible design GD(K, λ,M ; v) is a triple (X,G,A) where X is
a v–set, G is a set of subsets of X (called groups) forming a partition of X, and A
is a collection of subsets of X (called blocks) such that

(i) |B| ∈ K, ∀B ∈ A,
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(ii) |G| ∈M , ∀G ∈ G,

(iii) |B ∩ G| ≤ 1, ∀B ∈ A, G ∈ G,

(iv) Each pair of elements of X from distinct groups is contained in precisely λ
blocks.

If K = {k} and M = {m}, then a GD({k}, λ, {m}; v) is called uniform and
simply denoted by GD(k, λ,m; v).

A GD(K, λ,M ; v) is called resolvable and denoted by RGD(K, λ,M ; v) if the
set of blocks can be partitioned into parallel classes.

For the application of labeled resolvable block designs in the construction of
resolvable group divisible designs, we have the following theorem:

Theorem 1 ([8])
If there exists an LRB(k, λ; v) with λ = m, then there exists an RGD(k, 1, m;mv).

Example 1
By Theorem 1, since an LRB(4, 3; 8) is constructed in the example above, then there
exists an RGD(4, 1, 3; 24).

In fact, labeled resolvable block designs played an important role in the construc-
tion of RGD(4, 1, 3; v)s [9]. We also note that, for quite a long time, not a single
example of an RGD(4, 1, 2; v) was known [7]. The first example, an RGD(4, 1, 2; 32),
was constructed from an LRB(4, 2; 16) [10].

In the rest of this paper, we will give several direct and recursive constructions
for LRB(4, 3; v)s. It can be easily seen that if an LRB(4, 3; v) exists, then

v ≡ 0 (mod 4), v ≥ 8. (1)

Our main purpose is to prove that (1) is also sufficient for the existence of an
LRB(4, 3; v), with at most 22 possible exceptions.

2 Labeled almost resolvable block designs

Let (X,B) be a B(k, λ; v). A subset P of B is called an almost parallel class if P
forms a partition of X \{x} for some x ∈ X. A B(k, λ; v) is called almost resolvable
and denoted by ARB(k, λ; v) if B can be partitioned into almost parallel classes.

A labeled ARB(k, λ; v) is denoted by LARB(k, λ; v).
Labeled almost resolvable block designs will be used later in the construction of

labeled resolvable block designs. In this section we will completely determine the
existence of LARB(4, 3; v).

Lemma 1 ([8])
If there exists an LARB(4, 3; v), then

v ≡ 1 (mod 4). (2)
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To prove that (2) is also sufficient for the existence of an LARB(4, 3; v), we need
the concept of pairwise balanced design (briefly PBD).

Let v and λ be given positive integers and K be a set of positive integers, a
pairwise balanced design B(K, λ; v) is a pair (X,B) where X is a v–set and B is
a collection of subsets (called blocks) of X such that |B| ∈ K for each B ∈ B and
each pair of distinct elements of X is contained in precisely λ blocks.

In this paper, we only need PBD designs with λ = 1.
For a given set K of positive integers, let

B(K) = {v | ∃ a B(K, 1; v)}.
K is called PBD–closed if B(K) = K.

Let
LAB∗(4, 3) = {v | ∃ an LARB(4, 3; v)}.

Lemma 2 ([8])
LAB∗(4, 3) is a PBD–closed set.

Lemma 3 ([5])
Let

H4 = {n | n ≡ 1 (mod 4)},
then H4 is a PBD–closed set and

H4 = B({5, 9, 13, 17, 29, 33}).
Lemma 4 ([8])
If q ≡ 1 (mod 4) and q is a prime power, then q ∈ LAB∗(4, 3).

Theorem 2
There exists an LARB(4, 3; v) if and only if

v ≡ 1 (mod 4).

Proof. By Lemma 1, It is equivalent to prove that

LAB∗(4, 3) = H4. (3)

Since LAB∗(4, 3) and H4 are PBD–closed sets and H4 = B({5, 9, 13, 17, 29, 33}),
then it is sufficient to prove that

{5, 9, 13, 17, 29, 33} ⊂ LAB∗(4, 3).

By Lemma 4, there exists an LARB(4, 3; v) for v = 5, 9 13, 17 and 29. We form
an LARB(4, 3; 33) below. Let X = Z33 with ordering 0 < 1 < · · · < 32.

B : (i+ 1, i + 8, i + 18, i + 19; 1, 0, 0, 2, 2, 0),
(i+ 2, i + 3, i + 24, i + 31; 1, 2, 2, 1, 1, 0),
(i+ 4, i + 13, i + 21, i + 23; 2, 1, 0, 2, 1, 2),
(i+ 5, i + 11, i + 17, i + 20; 1, 0, 2, 2, 1, 2),
(i+ 6, i + 10, i + 26, i + 29; 2, 0, 0, 1, 1, 0),
(i+ 7, i + 12, i + 15, i + 16; 0, 1, 0, 1, 0, 2),
(i+ 9, i + 22, i + 28, i + 30; 2, 2, 2, 0, 0, 0),
(i+ 14, i + 25, i + 27, i + 32; 0, 1, 2, 1, 2, 1).


i ∈ Z33

This completes the proof. �
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3 Labeled resolvable transversal designs

AGD(k, λ,m; v) with v = km is called a transversal design and denoted by TD(k, λ,m).
A resolvable TD(k, λ,m) is denoted by RTD(k, λ,m). It is well known that the ex-
istence of a TD(k, 1, m) is equivalent to the existence of an RTD(k − 1, 1, m) and
equivalent to the existence of k − 2 mutually orthogonal latin squares of order m.

As for labeled resolvable block designs, we may also give labelings to the blocks of
a resolvable transversal design and define the concept of labeled transversal design.

Let (X,G,B) be an RTD(k, λ,m) with G = {Gi | 1 ≤ i ≤ k} and X =
⋃k
i=1Gi

be a partially ordered set such that for any x, y ∈ X, x < y if and only if x ∈ Gi

and y ∈ Gj , 1 ≤ i < j ≤ k. If there exists a mapping

φ : B→ Z

(
k
2

)
λ

satisfying the two conditions in the definition of labeled block designs, then the
RTD(k, λ,m) is called a labeled resolvable transversal design and denoted by
LRTD(k, λ,m).

What we need in this paper are labeled resolvable transversal designs with block
size 4 and λ = 3. First we form an LRTD(4, 3, m) for each m ∈ {3, 5, 8}.

Lemma 5
There exists an LRTD(4, 3, 3).

Proof. Let X =
⋃

1≤i≤4 Gi, G = {G1, G2, G3, G4}, where

Gi = {(i, j) | j ∈ Z3}, i = 1, 2, 3, 4.

Let B be the union of the following 9 parallel classes:

{((1, j), (2, j), (3, j), (4, j); 1, 2, 0, 1, 2, 1) | j ∈ Z3};
{((1, j), (2, j), (3, j + 1), (4, j + 1); 2, 2, 2, 0, 0, 0) | j ∈ Z3};
{((1, j), (2, j), (3, j + 2), (4, j + 2); 0, 2, 1, 2, 1, 2) | j ∈ Z3};
{((1, j), (2, j + 1), (3, j), (4, j + 1); 0, 0, 0, 0, 0, 0) | j ∈ Z3};
{((1, j), (2, j + 1), (3, j + 1), (4, j + 2); 1, 0, 2, 2, 1, 2) | j ∈ Z3};
{((1, j), (2, j + 1), (3, j + 2), (4, j); 2, 0, 1, 1, 2, 1) | j ∈ Z3};
{((1, j), (2, j + 2), (3, j), (4, j + 2); 2, 1, 0, 2, 1, 2) | j ∈ Z3};
{((1, j), (2, j + 2), (3, j + 1), (4, j); 0, 1, 2, 1, 2, 1) | j ∈ Z3};
{((1, j), (2, j + 2), (3, j + 2), (4, j + 1); 1, 1, 1, 0, 0, 0) | j ∈ Z3}.

Then (X,G,B) is an LRTD(4, 3, 3). �

Lemma 6
There exists an LRTD(4, 3, 5).

Proof. Let X =
⋃

1≤i≤4 Gi, G = {G1, G2, G3, G4}, where

Gi = {(i, j) | j ∈ Z5}, i = 1, 2, 3, 4.
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Let B be the union of the following 15 parallel classes:

{((1, j), (2, j), (3, j), (4, j); 2, 0, 0, 1, 1, 0) | j ∈ Z5};
{((1, j), (2, j + 1), (3, j + 2), (4, j + 3); 0, 2, 1, 2, 1, 2) | j ∈ Z5};
{((1, j), (2, j + 2), (3, j + 4), (4, j + 1); 0, 0, 0, 0, 0, 0) | j ∈ Z5};
{((1, j), (2, j + 3), (3, j + 1), (4, j + 4); 2, 0, 2, 1, 0, 2) | j ∈ Z5};
{((1, j), (2, j + 4), (3, j + 3), (4, j + 2); 1, 1, 1, 0, 0, 0) | j ∈ Z5};
{((1, j), (2, j), (3, j), (4, j + 2); 1, 1, 0, 0, 2, 2) | j ∈ Z5};
{((1, j), (2, j + 1), (3, j + 2), (4, j); 1, 1, 2, 0, 1, 1) | j ∈ Z5};
{((1, j), (2, j + 2), (3, j + 4), (4, j + 3); 2, 1, 0, 2, 1, 2) | j ∈ Z5};
{((1, j), (2, j + 4), (3, j + 3), (4, j + 4); 0, 2, 0, 2, 0, 1) | j ∈ Z5};
{((1, j), (2, j + 3), (3, j + 1), (4, j + 1); 1, 1, 2, 0, 1, 1) | j ∈ Z5};
{((1, j), (2, j), (3, j), (4, j + 3); 0, 2, 2, 2, 2, 0) | j ∈ Z5};
{((1, j), (2, j + 1), (3, j + 2), (4, j + 1); 2, 0, 1, 1, 2, 1) | j ∈ Z5};
{((1, j), (2, j + 2), (3, j + 4), (4, j + 4); 1, 2, 1, 1, 0, 2) | j ∈ Z5};
{((1, j), (2, j + 3), (3, j + 1), (4, j + 2); 0, 2, 2, 2, 2, 0) | j ∈ Z5};
{((1, j), (2, j + 4), (3, j + 3), (4, j); 2, 0, 1, 1, 2, 1) | j ∈ Z5}.

Then (X,G,B) is an LRTD(4, 3, 5). �

Lemma 7
There exists an LRTD(4, 3, 8).

Proof. Let X =
⋃

1≤i≤4 Gi, G = {G1, G2, G3, G4}, where

Gi = {(i, j) | j ∈ Z8}, i = 1, 2, 3, 4.

For 0 ≤ t ≤ 7, let πt be the following permutations on Z8:

i 0 1 2 3 4 5 6 7
π0(i) 0 1 2 3 4 5 6 7
π1(i) 1 0 4 7 2 6 5 3
π2(i) 2 4 0 5 1 3 7 6
π3(i) 3 7 5 0 6 2 4 1
π4(i) 4 2 1 6 0 7 3 5
π5(i) 5 6 3 2 7 0 1 4
π6(i) 6 5 7 4 3 1 0 2
π7(i) 7 3 6 1 5 4 2 0

Let B be the union of the following 24 parallel classes:
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{((1, j), (2, π0(j)), (3, π0(j)), (4, π0(j)); 2, 1, 0, 2, 1, 2) | j ∈ Z8};
{((1, j), (2, π1(j)), (3, π2(j)), (4, π3(j)); 2, 1, 0, 2, 1, 2) | j ∈ Z8};
{((1, j), (2, π2(j)), (3, π3(j)), (4, π4(j)); 2, 0, 1, 1, 2, 1) | j ∈ Z8};
{((1, j), (2, π3(j)), (3, π4(j)), (4, π5(j)); 2, 2, 1, 0, 2, 2) | j ∈ Z8};
{((1, j), (2, π0(j)), (3, π0(j)), (4, π1(j)); 0, 0, 1, 0, 1, 1) | j ∈ Z8};
{((1, j), (2, π1(j)), (3, π2(j)), (4, π7(j)); 0, 0, 2, 0, 2, 2) | j ∈ Z8};
{((1, j), (2, π2(j)), (3, π3(j)), (4, π2(j)); 0, 2, 0, 2, 0, 1) | j ∈ Z8};
{((1, j), (2, π3(j)), (3, π4(j)), (4, π6(j)); 0, 1, 0, 1, 0, 2) | j ∈ Z8};
{((1, j), (2, π0(j)), (3, π0(j)), (4, π5(j)); 1, 2, 2, 1, 1, 0) | j ∈ Z8};
{((1, j), (2, π1(j)), (3, π2(j)), (4, π2(j)); 1, 2, 2, 1, 1, 0) | j ∈ Z8};
{((1, j), (2, π2(j)), (3, π3(j)), (4, π7(j)); 1, 1, 0, 0, 2, 2) | j ∈ Z8};
{((1, j), (2, π3(j)), (3, π4(j)), (4, π0(j)); 1, 0, 2, 2, 1, 2) | j ∈ Z8};
{((1, j), (2, π4(j)), (3, π5(j)), (4, π6(j)); 1, 1, 1, 0, 0, 0) | j ∈ Z8};
{((1, j), (2, π5(j)), (3, π6(j)), (4, π7(j)); 2, 2, 1, 0, 2, 2) | j ∈ Z8};
{((1, j), (2, π6(j)), (3, π7(j)), (4, π1(j)); 2, 2, 2, 0, 0, 0) | j ∈ Z8};
{((1, j), (2, π7(j)), (3, π1(j)), (4, π2(j)); 0, 1, 1, 1, 1, 0) | j ∈ Z8};
{((1, j), (2, π4(j)), (3, π5(j)), (4, π5(j)); 0, 2, 0, 2, 0, 1) | j ∈ Z8};
{((1, j), (2, π5(j)), (3, π6(j)), (4, π3(j)); 1, 0, 1, 2, 0, 1) | j ∈ Z8};
{((1, j), (2, π6(j)), (3, π7(j)), (4, π0(j)); 1, 0, 1, 2, 0, 1) | j ∈ Z8};
{((1, j), (2, π7(j)), (3, π1(j)), (4, π4(j)); 1, 0, 0, 2, 2, 0) | j ∈ Z8};
{((1, j), (2, π4(j)), (3, π5(j)), (4, π1(j)); 2, 0, 0, 1, 1, 0) | j ∈ Z8};
{((1, j), (2, π5(j)), (3, π6(j)), (4, π4(j)); 0, 1, 2, 1, 2, 1) | j ∈ Z8};
{((1, j), (2, π6(j)), (3, π7(j)), (4, π6(j)); 0, 1, 2, 1, 2, 1) | j ∈ Z8};
{((1, j), (2, π7(j)), (3, π1(j)), (4, π3(j)); 2, 2, 2, 0, 0, 0) | j ∈ Z8}.

Then (X,G,B) is an LRTD(4, 3, 8). �

For the application of labeled resolvable transversal designs in the construction
of LRB(4, 3; v)s, we have the following theorem:

Theorem 3
If there exists an RGD(4, 1, m; v), an LRTD(4, 3, t) and an
LRB(4, 3; tm), then there exists an LRB(4, 3; tv).

Proof. Let (X,G,A) be an RGD(4, 1, m; v). Assign to each point x ∈ X weight
t, i.e., x may be considered as a t–set x = {x1, x2, · · · , xt}. Let P be an ar-
bitrary parallel class of the RGD(4, 1, m; v). Let B = {x, y, z, w} be a block
of P. Form an LRTD(4, 3, t) with {x1, · · · , xt}, {y1, · · · , yt}, {z1, · · · , zt} and
{w1, · · · , wt} as groups, and let Q1(B), Q2(B), · · · , Q3t(B) be the parallel classes
of the LRTD(4, 3, t). Let

Qi(P) =
⋃
B∈P

Qi(B), 1 ≤ i ≤ 3t.

Then each Qi(P) is a parallel class of the desired LRB(4, 3; tv). Let B1 be the union
of all such parallel classes.

For each group G ∈ G, form an LRB(4, 3; tm) on the set⋃
x∈G
{x1, x2, · · · , xt}
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Let R1(G),R2(G), · · · ,Rtm−1(G) be the parallel classes of the LRB(4, 3; tm). Let

Ri =
⋃
G∈G

Ri(G), 1 ≤ i ≤ tm− 1

Then each Ri is also a parallel class of the desired LRB(4, 3; tm). Let

B2 =
tm−1⋃
i=1

Ri, B = B1 ∪B2,

and let

Y =
⋃
x∈X
{x1, x2, · · · , xt},

then (Y,B) is an LRB(4, 3; tv). This completes the proof. �

Theorem 4
If there exist an RGD(4, 1, m; v), an LRTD(4, 3, t) and an LARB(4, 3; tm), then
there exists an LRB(4, 3; tv) .

Proof. Let (X,G,A) be an RGD(4, 1, m; v). Assign to each point weight t. We
may form the set B1, which can be partitioned into parallel classes, as in Theorem
3.

For each group G ∈ G, let (S(G),B(G)) be an LARB(4, 3; tm) where

S(G) =
⋃
x∈G
{x1, x2, · · · , xt}.

For each a ∈ S(G), let Ra(G) be the almost parallel class missing a.
Let Q0 be a fixed parallel class of B1. For an arbitrary block B = {a, b, c, d} ∈

Q0, if a ∈ S(G1), b ∈ S(G2), c ∈ S(G3), d ∈ S(G4), let

R(B) = Ra(G1) ∪ Rb(G2) ∪Rc(G3) ∪Rd(G4) ∪B.

Let

B2 = Q0 ∪ {
⋃
G∈G

B(G),

then B2 can also be partitioned into parallel classes. Now let

Y =
⋃
x∈X
{x1, x2, · · · , xt},

B = B2 ∪ {B1 \Q0},

then (Y,B) is an LRB(4, 3; tv) as required. This completes the proof. �

4 Further recursive constructions

To prove our main theorem, we also need the following constructions for labeled
resolvable designs.
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Theorem 5
If there is anRGD(k, 1, m; v) such that there exist an LRB(4, 3; k) and an LRB(4, 3;m),
then there exists an LRB(4, 3; v).

Proof. Let (X,G,A) be an RGD(k, 1, m; v) and let P be an arbitrary paral-
lel class. For each block B ∈ P, form an LRB(4, 3; k) on the k–set B and let
Q1(B), · · · ,Qk−1(B) be the parallel classes. Let

Qi(P) =
⋃
B∈P

Qi(B), 1 ≤ i ≤ k − 1.

Then each Qi(P) is a parallel class of the desired LRB(4, 3; v).
For each group G ∈ G, form an LRB(4, 3;m) on the m–set G and let R1(G), · · · ,

Rm−1(G) be the parallel classes. Let

Ri =
⋃
G∈G

Ri(G), 1 ≤ i ≤ m− 1.

Then each Ri is also a parallel class. Now let B be the union of all the parallel
classes Ri, 1 ≤ i ≤ m − 1, and all the parallel classes Qi(P), 1 ≤ i ≤ k − 1, for
all P. It can be easily verified that (X,B) is an LRB(4, 3; v). This completes the
proof. �

Similarly, using the technique in the proof of Theorem 4, we have the following
constructions.

Theorem 6
If there is anRGD(k, 1, m; v) such that there exist an LRB(4, 3; k) and an LARB(4, 3;m),
then there exists an LRB(4, 3; v).

Theorem 7
If there is an RTD(5, 1, m) such that there exists an LRB(4, 3;m), then there exists
an LRB(4, 3; 5m).

Theorem 8 ([9])
If there is a GD(K, 1,M ; v) such that there exist an LARB(4, 3; k) for each k ∈ K,
and an LRB(4, 3;m+v0) containing an LRB(4, 3; v0) as a subdesign for eachm ∈M ,
then there exists an LRB(4, 3; v + v0).

5 Main results

The following lemmas will be used in proving our main theorem.

Lemma 8
There exists an LRB(4, 3; v) for each v ∈ {8, 12, 16, 20, 24, 28, 32}.

Proof. The existence of an LRB(4, 3; v) for v ∈ {8, 12, 24} was proved in [9]. An
LRB(4, 3; 28) was constructed in [10]. Form an LRB(4, 3; 8) on each group of the
LRTD(4, 3; 8) in Lemma 7, this gives an LRB(4, 3; 32). Form an LARB(4, 3; 5) on
each group of the LRTD(4, 3, 5) given in Lemma 6 and use the technique in the
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proof of Theorem 4, we get an LRB(4, 3; 20). Finally, we form an LRB(4, 3; 16) on
X = Z15 ∪ {∞} as follows:

{i, 2 + i, 3 + i, 8 + i; 2, 2, 2, 0, 0, 0}
{7 + i, 11 + i, 12 + i, 14 + i; 1, 2, 2, 1, 1, 0}
{4 + i, 6 + i, 10 + i, 13 + i; 1, 1, 1, 0, 0, 0}

{1 + i, 5 + i, 6 + i,∞; 2, 1, 0, 2, 1, 2}

 i ∈ Z15.

�

Lemma 9
There exists an LRB(4, 3; 36t + 12) for each t ≥ 1.

Proof. It is well known [4] that there is an RGD(4, 1, 4; 12t + 4) for each t ≥ 1.
Since there exist an LRTD(4, 3, 3) by Lemma 5 and an LRB(4, 3; 12) by Lemma 8,
then the conclusion follows from Theorem 3. �

Similarly, the following two results follow from the existence of an LRTD(4, 3, 5)
and an LRB(4, 3; 20), or an LRTD(4, 3, 8) and an LRB(4, 3; 32).

Lemma 10
There exists an LRB(4, 3; 60t + 20) for each t ≥ 1.

Lemma 11
There exists an LRB(4, 3; 96t + 32) for each t ≥ 1.

Lemma 12
If there exists an LRB(4, 3; v), then there exists an LRB(4, 3; 9v).

Proof. By Theorem 1, if there is an LRB(4, 3; v), then there exists anRGD(4, 1, 3; 3v).
Since there exist an LRTD(4, 3, 3) and an LARB(4, 3; 9), the conclusion then follows
from Theorem 4. �

Lemma 13
If there is anRTD(k, 1, m) such that there exist an LRB(4, 3; k) and an LRB(4, 3;m)
(or LARB(4, 3;m)), then there exists an LRB(4, 3; km).

Proof. These are special cases of Theorem 5 and Theorem 6. �

Lemma 14
If there is a TD(k, 1, m), an LARB(4, 3; k) and an LRB(4, 3;m + 1), then there
exists an LRB(4, 3; km + 1).

Proof. This is a special case of Theorem 8. �

Let E be the following set of 22 integers:

44, 52, 68, 88, 92, 112, 124, 132, 152, 164,
184, 188, 208, 212, 220, 268, 284, 292, 304, 308,
312, 788.
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Lemma 15
There exists an LRB(4, 3; v) if v ≡ 0 (mod 4), 8 ≤ v ≤ 320, v /∈ E, or v ∈
{772, 780, 784, 792, 796, 804}.

Proof. Let
LRB(4, 3) = {v | ∃ an LRB(4, 3; v)}.

By Lemmas 9–11, we have

{48, 84, 120, 156, 192, 228, 264, 300, 804, 80, 140, 200, 260,
320, 128, 224} ⊂ LRB(4, 3).

By Lemma 12, we have

{72, 108, 144, 180, 216, 252, 288} ⊂ LRB(4, 3).

In Lemma 13, let k = 8, then we have

{64, 104, 136, 232, 256, 296} ⊂ LRB(4, 3).

Let k = 12 or 16, we have

{204, 272, 784} ⊂ LRB(4, 3).

In lemma 14, let k = 5, we have

{36, 56, 76, 96, 116, 176, 196, 236, 276, 316, 796} ⊂ LRB(4, 3).

Let k = 9 or 13, we have

{172, 244, 248} ⊂ LRB(4, 3).

In Theorem 7, let k = 5, then we have

{40, 60, 100, 160, 240, 280, 780} ⊂ LRB(4, 3).

From the LRTD(4, 3, 8), we may form an LRB(4, 3; 32) containing an LRB(4, 3; 8)
as a subsystem. From a TD(5, 1, 7) we may form an LRB(4, 3, 36) containing an
LRB(4, 3; 8). From an RTD(5, 1, 8) we may form an LRB(4, 3; 40) containing an
LRB(4, 3; 8). Since 148 = 5× 28 + 8, 168 = 5× 32 + 8, then by Theorem 8, we may
form an LRB(4, 3; 148) from a TD(5, 1, 28), an LRB(4, 3; 168) from a TD(5, 1; 32).

We may form an LRB(4, 3; 156) containing an LRB(4, 3; 32) from a TD(5, 1, 31),
and so there is an LRB(4, 3; 156) containing an LRB(4, 3; 8). As there is a
GD(5, 1, {148, 24}; 764) [2], then by Theorem 8, there exists an LRB(4, 3; 772).
Finally, for v = 792, since there is an RGD(8, 1, 8; 792), then there exists an
LRB(4, 3; 792), by Theorem 5. This completes the proof. �

Lemma 16 ([1])
If there is a TD(17, 1, n), then there is a GD(K, 1,M ; v) where K = {5, 17}, M =
{n, n+4m1, n+4m2}, v = 17n+4(m1 +m2), for any m1, m2 satisfying 0 ≤ m1, m2 ≤
n.
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Now we are ready to prove our main theorem.

Theorem 9
If v ≡ 0 (mod 4), v ≥ 8 and v /∈ E, then there exists an LRB(4, 3; v).

Proof. For v ≤ 320, or 772 ≤ v ≤ 804, see Lemma 15. Suppose v ≥ 324. First,
let n = 19 and m1, m2 ∈ {0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 16, 19} in Lemma 16.
Then there is a GD(K, 1,M ; v) where K = {5, 17}, M = {19, 19 + 4m1, 19 + 4m2},
v = 323 + 4(m1 + m2) such that there is an LARB(4, 3; k) for each k ∈ K, and
there is an LARB(4, 3;m + 1) for each m ∈ M . By Theorem 8, there exists an
LRB(4, 3; v + 1). This proves that there exists an LRB(4, 3; v) for each v ≡ 0
(mod 4), 324 ≤ v ≤ 464.

Now let

n = 23, 27, 31, 47, 59, 71, 83, 107, 139, 171, 203, 243, 331

and

32s−1 · 17, 32s−1 · 25, 32s−1 · 37, 32s−1 · 49, 32s · 23, 32s · 31, 32s · 43, s = 2, 3, · · · .

Choose m1 and m2 appropriately and apply Theorem 8 recursively. This gives an
LRB(4, 3; v) for each v ≡ 0 (mod 4), v ≥ 324, v /∈ {772, 780, 784, 788, 792, 796, 804}.
Combining this with Lemma 15 completes the proof. �
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