
New partial geometries constructed from old

ones

Frank De Clerck

Abstract

R. Mathon and A. Street constructed seven new partial geometries pg(7, 8, 4)
partly by computer. We generalize this construction and give a computerfree
proof of the fact that one can derive from the partial geometry PQ+(7, 2),
constructed by F. De Clerck, R. H. Dye and J. A. Thas, exactly three of those
partial geometries using this construction.

1 Introduction

A partial linear space S = (P ,L, I) of order (s, t) is a (finite) incidence structure
such that each point is incident with t + 1 lines, each line is incident with s + 1
points and two different points are incident with at most one line.

A partial geometry pg(s, t, α) is a partial linear space of order (s, t) such that for
each anti-flag (x, L) the incidence number α(x, L), being the number of points on
L collinear with x, is a constant α ( 6= 0). The numbers s, t and α are called the
parameters of S. The partial geometries are introduced by Bose [1]. Note that the
dual structure of a partial geometry is again a partial geometry and that

|P| = v = (s+ 1)
(st + α)

α
and |L| = b = (t + 1)

(st + α)

α
.

The point graph Γ(S) of a partial geometry S is an

srg
(
(s+ 1)

(st + α)

α
, s(t + 1), s− 1 + t(α− 1), α(t + 1)

)
.
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Each strongly regular graph Γ having parameters of this form with t ≥ 1, s ≥
1, 1 ≤ α ≤ s + 1 and 1 ≤ α ≤ t + 1 is called a pseudo–geometric (s, t, α)–graph.
If the graph Γ is indeed the point graph of at least one partial geometry, then Γ is
called geometric. Translating the necessary conditions for strongly regular graphs
yields conditions on the existence of partial geometries in terms of the parameters,
see [6] for more details, examples and the status of the theory up to 1995.

A family of partial geometries pg(22n−1−1, 22n−1, 22n−2) and sometimes denoted
by PQ+(4n− 1, 2) is constructed in [4]. We recall here briefly the construction. Let
Q+ = Q+(4n−1, 2), n ≥ 2, be a hyperbolic quadric in PG(4n−1, 2). It is well-known
that the set of maximal totally isotropic subspaces (having dimension 2n−1) on Q+

can be divided into two disjoint families D1 and D2. Two maximal totally isotropic
subspaces belong to the same family iff their intersection has an odd dimension. A
spread Σ = {σ0, . . . , σ22n−1} of Q+, is a (maximal) set of 22n−1 + 1 disjoint (2n− 1)-
dimensional spaces on Q+. All the elements of Σ belong to the same family, without
loss of generality we will assume in the sequal that they belong to D1. We will fix
Σ and refer to it as an orthogonal spread . Let Ω be the set of all hyperplanes of the
elements of Σ. Consider the incidence structure PQ+(4n − 1, 2) = (P ,L, I) with P
the set of points of PG(4n − 1, 2) not on the quadric, L = Ω and x I L, x ∈ P and
L ∈ L, if and only if x is contained in the polar space L? of L with respect to Q+.
One can prove that PQ+(4n− 1, 2) is indeed a pg(22n−1 − 1, 22n−1, 22n−2).

For q = 3 an analogous construction is given in [12], but the point set P is
in this case restricted to the set {p = 〈v〉‖Q(v) = 1}. The incidence structure
PQ+(4n− 1, 3) is a partial geometry with parameters s = 32n−1 − 1, t = 32n−1, α =
2 · 32n−2. Up to now it is only known that Q+(7, 3) has a spread which yields a
pg(26, 27, 18).

Cohen [3] was the first to construct a pg(8, 7, 4) using the root system E8. In
[7] Haemers and Van Lint constructed a pg(8, 7, 4) using coding theory. Kantor
[8] proved that PQ+(7, 2) and the dual of the geometry of Haemers–Van Lint are
isomorphic. Later on Tonchev [13] showed with the help of a computer that the
model of Cohen and the dual of the geometry of Haemers–Van Lint are isomorphic.
In [5] this isomorphism is proved without the use of a computer. It is known that
the point graph of PQ+(7, 2) does not yield other partial geometries [5] (see also [8]).
For a long time it has been conjectured that any pg(7, 8, 4) had to be isomorphic
to PQ+(7, 2). However in [11] a construction technique for new partial geometries
from other ones with the same parameters has been introduced which yield, using
some computer search, seven new pg(7, 8, 4). We will generalize this construction
and give a geometric proof.

Remarks

1. Four of these geometries were independently found by M. Klin and S. Reichard
(private communication). They are using another construction technique, but
also here some computer calculations were involved.

2. Mathon has recently proved that the Hermitian graphsH(q) (also called Talyor
graphs) are geometric for q = 32m [10], yielding a family of partial geometries
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with new parameters:

s = 32m − 1, t =
34m − 1

2
, α =

32m − 1

2
.

2 New partial geometries from old ones with a replaceable spread

2.1 Replaceable spreads of a partial geometry

Let Φ be a spread of a pg(s, t, α) S, i.e. a set of st/α + 1 lines partitioning the
point set, we will refer to Φ as a pg-spread. Assume t > 1 and let L be any element
of L \ Φ. Let ΦL be the set of s + 1 lines of Φ intersecting L. We call L regular
with respect to Φ if there exists a set of s + 1 lines LΦ = {L0 = L,L1, . . . , Ls} that
partitions the point set P(ΦL) of ΦL, and each element of L\(LΦ∪Φ) is intersecting
ΦL in at most s points.

Lemma 1 If L is a regular line with respect to the pg-spread Φ of a pg(s, t, α) S,
then t ≥ s + 1. Moreover if t = s + 1 then every line M not being an element of
the spread Φ neither of LΦ intersects P(ΦL) in α points. Conversely, if every line
M not being an element of the spread Φ neither of LΦ intersects P(ΦL) in α points
then t = s + 1.

Proof. Assume that the line Mi, not being an element of the pg-spread Φ neither
of LΦ, i = 1, . . . , d = t(st+α)

α
− (s+ 1) intersects P(ΦL) in ai points. By counting the

ordered pairs (p,Mi), p ∈ P(ΦL), p I Mi, i = 1, . . . , d, in two different ways, we get

d∑
i=1

ai = (s+ 1)2(t− 1).

Counting the ordered triples (p, p′,Mi), p, p
′ ∈ P(ΦL), p I Mi I p′, i = 1, . . . , d, we

get
d∑
i=1

ai(ai − 1) = (s+ 1)2s(α− 1).

Using
∑d
i=1(ai − ā)2 ≥ 0 with dā =

∑d
i=1 ai, we find

s(α− t)2(t− s− 1) ≥ 0.

Hence either α = t but then P = P(ΦL), hence ai = s + 1, i = 1, . . . , d, which is

against the assumption or t ≥ s+ 1. If t = s+ 1 then ai =
∑

ai
d

= α, ∀i = 1, . . . , d.
Conversely, assume that every line Mi, i = 1, . . . , d not being an element of the

pg-spread Φ neither of LΦ intersects P(ΦL) in α points (α 6= s + 1). We count in
two different ways the number of ordered pairs (p,Mi) with p a point of P(ΦL) and
p I Mi. This yields

(s+ 1)2(t− 1) =

(
t(st+ α)

α
− (s+ 1)

)
α.

This equation simplifies to (s− t+ 1)(s(t− 1) + (α− 1)) = 0. Hence t = s+ 1. �
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Definition

Assume that Φ is a pg-spread of a pg(s, s+ 1, α) such that every line is regular with

respect to Φ. Then L \ Φ is partitioned in s(s+1)
α

+ 1 sets Li (i = 0, . . . , s(s+1)
α

) each
containing s+ 1 mutually skew lines. The spread Φ will be called a replaceable pg-
spread for reasons that will become clear very soon. This definition generalizes the
definition given in [11]; they restrict their definition to pg-spreads of pg(2α−1, 2α, α)
and they call them regular spreads. We prefer to use another terminology as the
concept of regular spreads is used in another context.

Remarks

1. If Φ is a replaceable pg-spread of a pg(s, s+1, α), then the incidence structure
D(Φ) with as points the elements of Φ and as blocks the sets ΦL, incidence

being the natural incidence, is a symmetric 2 − ( s(s+1)
α

+ 1, s + 1, α) design.
This yield extra conditions on the parameters s and α. We will prove in the
sequel that PQ+(4n − 1, q) (q = 2 or 3) has replaceable spreads, which yield
2 − (22n − 1, 22n−1, 22n−2) designs in the case q = 2 and 2 − (32n−1

2
, 32n−1, 2 ·

32n−2) designs in the case q = 3. These designs have the parameters of the
complement of the designs of points and hyperplanes of a PG(2n−1, q), (q = 2
or 3).

2. If L is a regular line with respect to a pg-spread Φ of a pg(s, t, α) S, then the
2− ((st+α)/α, s+ 1, (s+ 1)α) design D with point set Φ and block set L\Φ,
incidence being intersection; is a design with an (s+1)-fold block. By the well
known inequality of Mann [9] |L \Φ| ≥ (s+ 1)|Φ|, which yields the inequality
t ≥ s + 1 of lemma 1. Hence if Φ is replaceable, then the block set of D is a
disjoint union of s+ 1 symmetric 2− ( s(s+1)

α
+ 1, s+ 1, α) designs.

2.2 The construction

Let S be a pg(s, s + 1, α) with a replaceable pg-spread Φ. Define the following
incidence structure SΦ = (PΦ,LΦ, IΦ). The elements of PΦ are on the one hand
the points of S and on the other hand the sets Li, i = 0, . . . , s(s+ 1)/α; the set of
lines LΦ equals L \ Φ. Finally p IΦ L is defined by p I L if p ∈ P and by L ∈ p if
p ∈ {Li‖i = 0, . . . , s(s+ 1)/α}.

Theorem 1 SΦ is a pg(s+ 1, s, α).

Proof. It is clear from the construction that SΦ is a partial linear space of order
(s+ 1, s). We only have to prove that for each anti-flag (p, L) the incidence number
equals α. Let p be a point of S and let Lp be the line of the pg-spread Φ through p.
If Lp is not intersecting L in the partial geometry S, then the α lines of S through
p and intersecting L are all elements of SΦ while the point of type Li defined by L
is not collinear with p. However if Lp is intersecting L in the partial geometry S,
then there are α − 1 lines of S (being also lines of SΦ) through p and intersecting
L. Let Li be the unique set defined by L and let Li(p) be the line of Li through
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p, then p IΦ Li(p) IΦ Li IΦ L. Hence also in this case the incidence number α(p, L)
equals α. Assume p ∈ {Li‖i = 1, . . . , s(s+ 1)/α + 1} then as each line L of SΦ not
contained in p intersects the point set of p in α points, it follows that the incidence
number is again α. �

Remark

It has been checked by computer by Mathon and Street [11] (and also by V. Tonchev,
private communication) that PQ+(7, 2) has, up to isomorphism, exactly 3 replace-
able spreads, yielding (after dualizing) 3 non-isomorphic partial geometries pg(7, 8, 4).
One of these pg(7, 8, 4) contains replaceable spreads too which yield again partial
geometries pg(7, 8, 4), non-isomorphic to the former ones. In total Mathon and
Street have found by this technique (they call this construction switching) 7 partial
geometries pg(7, 8, 4) that are not isomorphic to PQ+(7, 2).

3 Replaceable spreads of PQ +(4n − 1, q) (q = 2 or 3)

Assume that S is a partial geometry of type PQ+(4n − 1, q) (q = 2 or 3). In the
sequel we will always denote by H∗, the polar space with respect to Q+(4n−1, q) of
a subspace H. It is easy to check (see [5]) that two lines L and M are intersecting
lines of S iff on the quadric Q+(4n−1, q), L∩M∗ = ∅ (or equivalently L∗∩M = ∅).
Hence any subset of Ω contained in one element σi of the orthogonal spread Σ yields
a set of mutually disjoint lines of S. In [5], the following theorem has been proved
for q = 2, but the proof can easily be modified for q = 3 (see also [8], lemma 3.5).

Theorem 2 Suppose that p0 is a point on Q+(4n−1, q) (q = 2 or 3). The set of lines
V of PQ+(4n− 1, q) intersecting as (2n− 1)-dimensional subspaces of Q+(4n− 1, q)
in a point p0 of the quadric is contained in exactly 2 pg-spreads.

As before, assume that Ω is the union of all hyperplanes of the elements σi, i =
0, . . . , q2n−1 of the orthogonal spread Σ. Assume p0 ∈ σ0. One of the pg-spreads
occuring in theorem 2, which we will denote by Φ1, consists of all hyperplanes of
σ0. The other pg-spread, which we will denote by Φ2, equals V ∪ {p∗0 ∩ σi‖i =
1, . . . , q2n−1}.

Assume n is even. We will construct a third type of pg-spread of PQ+(4n−1, q),
(q = 2 or 3). Let δ be an element of D1 such that δ ∩ σi i = 0, . . . , q2n−1 is
either empty or a PG(n − 1, q). Without loss of generality we may assume that
δ = 〈H0, . . . , Hqn〉 with Hi = δ ∩ σi = PG(n − 1, q), i = 0, . . . , qn. Each subspace
Hi is contained in qn−1

q−1
hyperplanes of σi. The union of all these hyperplanes yields

q2n−1
q−1

lines of PQ+(4n − 1, q) forming a pg-spread which we will denote by Φ3. We

will call a spread Φi (i = 1, 2, 3) a spread of type i.

Theorem 3 A pg-spread Φ of type 1 is a replaceable pg-spread of PQ+(4n − 1, q),
q = 2 or 3, for all n ≥ 2.

Proof. In order to prove the assumption, we have to prove that each line L ∈ L\Φ
is regular with respect to Φ. Let L be a line of S = PQ+(4n − 1, q) not contained
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in Φ, hence L is an element of Ω not contained in σ0. Without loss of generality we
may assume that L is a hyperplane of σ1. The polar space L∗ of L with respect to
Q+ intersects σ0 in a point p0. The q2n−1 elements of ΦL are the hyperplanes of σ0

not containing p0. The lines Li = p∗0 ∩ σi, i = 2, . . . , q2n−1 are disjoint in S from L
and are concurrent with all elements of ΦL. As these lines are pairwise disjoint, they
are partitioning the point set P(ΦL \L), while no other line is completely contained
in P(ΦL). Hence L is regular with respect to Φ; hence a pg-spread of type 1 is
replaceable. �

Theorem 4 The pg-spreads of type 2 and 3 of PQ+(4n − 1, q), q = 2 or 3, are
replaceable pg-spreads if and only if n = 2.

Proof. Assume that Φ is a pg-spread of PQ+(4n − 1, q) of type 2. As in the
proof of theorem 3 we assume again that p0 ∈ σ0. If L ∈ σ0 \ Φ then the elements
of ΦL are the q2n−1 elements of Φ not contained in σ0 while the elements of LΦ

partitioning P(ΦL) are the elements of σ0 \Φ. No other line is completely contained
in P(ΦL). Hence L is regular with respect to Φ. Assume however that L ∈ σi,
L 6= Li = p∗0 ∩ σi, i = 1, . . . , q2n−1. Without loss of generality we may assume
that L ∈ σ1. As subspaces on the quadric L ∩ L1 = H1 = PG(2n − 3, q). Let
L∗ = 〈σ1, σ

′〉, with σ′ ∈ D2. Then σ′ ∩ (σ1 ∩ Φ) = L ∩ L1 = H1, while σ′ ∩ (σi ∩ Φ)
for i 6= 1 is either empty or a point. As L ∩ p∗0 6= ∅ it follows that σ0 ∩ σ′ is a
point q0, which is however different from p0 as L is not contained in p∗0. Without
loss of generality we may assume that the q2n−2 points of σ′ ∩ p∗0 \H1 are the points
qi = σ′ ∩ σi, i = 0, 2, . . . , q2n−2. The elements of Φ in σj, j = q2n−2 + 1, . . . , q2n−1

are q2n−1 − q2n−2 elements of ΦL. On the other hand the elements of Φ in σ0 not
containing q0 are the other q2n−2 elements of ΦL. The lines of the partial geometry
that are not concurrent to L in the partial geometry but concurrent to all elements
of ΦL should be hyperplanes of σ1, . . . , σq2n−2. The hyperplanes in σ1 are the q − 1
hyperplanes through H1 and different from L and L1. Note that for i = 2, . . . , q2n−2,
the intersection L∗1∩σi (i 6= 1) is a point pi and similarly L∗∩σi (i 6= 1) is a point qi,

moreover the projective line 〈pi, qi〉 is a line of the hyperplane Li ∈ Φ. The q2n−2−q
q−1

hyperplanes of σi through 〈pi, qi〉 and different from Li all yield lines of the partial
geometry intersecting all elements of ΦL. Hence the total number of lines of the
partial geometry and not in Φ that are completely contained in P(ΦL) equals

q +
q2n−2 − q
q − 1

(q2n−2 − 1).

This number is equal to q2n−1 if and only if n = 2. Assume n = 2, thenH1 = L∩L1 is
a line and the 3-dimensional space σ̄ = 〈p0, q0, H1〉 ∈ D1 intersects σi (i = 2, . . . , q2)
in the line 〈pi, qi〉 ∈ Li and in each of these spaces there are q planes which form
together with the q planes through H1 in σ1 the q3 elements of the set LΦ defined by
L. Hence the spread Φ2 is a replaceable spread of the partial geometry PQ+(7, q),
(q = 2, 3). Note by the way that the union of the planes of σi, (i = 0, . . . , q2)
through the lines Hi = σi ∩ σ̄ form a pg-spread of type 3 of the partial geometry.

Finally assume that Φ is a pg-spread of type 3. The same argument as above
can be used to prove that Φ is not replaceable if n > 2; i. e. for each line L there
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are more then q2n−1 lines covering the points of ΦL. However assume n = 2, we
will prove that a pg-spread of type 3 is indeed replaceable. Assume δ ∈ D1 such
that δ ∩ σi, i = 0, . . . , q2 is a line Hi, while δ ∩ σi = ∅ for i > q2. We will denote
the elements of the pg-spread in σi (i = 0, . . . , q2) by Lji , j = 0, . . . q. Assume
L ∈ L \ Φ. Again we have to consider 2 cases, the first case being L ∈ σi, i =
0, . . . , q2. Without loss of generality we may assume L ∈ σ0. The polar space L∗ of
L intersects each of the elements σi (i > 0) of the orthogonal spread Σ in a point
pi. Without loss of generality we may assume that pi ∈ L0

i , i = 1, . . . , q2, hence
ΦL = {Lji‖i = 1, . . . , q2; j = 1, . . . q}. A line of the partial geometry intersecting all
the elements of ΦL should either be a plane of σ0 or a plane of σi, i > q2. Let p0

be the intersecting point on the quadric of L and H0, then the set LΦ is the union
of the q2 planes of σ0 through p0 (and not contained in Φ) with the q3 − q2 planes
p∗0∩σi, i = q2 +1, . . . , q3. Hence L is regular with respect to Φ. The second case that
we have to consider, is the case L ∈ σi, i > q2. Without loss of generality we may
assume L ∈ σq3. The polar space L∗ of L will intersect σi, i = 0, . . . , q3−1, in a point
pi. However one of these points, for instance p0 will be a point of δ. Again we may
assume that pi ∈ L0

i , i = 1, . . . , q2 hence again ΦL = {Lji‖i = 1, . . . , q2; j = 1, . . . q}
and LΦ is the union of the q2 planes of σ0 through p0 (and not contained in Φ) with
the q3 − q2 planes p∗0 ∩ σi, i = q2 + 1, . . . , q3. It follows that each line L is regular
with respect to Φ and hence the spread of type 3 in PQ+(7, q) is replaceable. �

Corollary

The partial geometry PQ+(7, q), (q = 2 or 3) has up to isomorphism exactly 3 pg-
spreads, each of them being replaceable.
Proof.

Assume that Φ is a pg-spread of PQ+(7, q), (q = 2 or 3) which is not of type 1

or 2. As Φ contains q4−1
q−1

elements, we may assume without loss of generality, that

Φ contains q+ 1 planes of σ0 intersecting in a line H0 of Q+(7, q) and of q+ 1 planes
of σ1 intersecting in a line H1 of Q+(7, q). The maximal subspace δ = 〈H0, H1〉 is
an element of D1 intersecting exactly q2−1 other elements of the orthogonal spread
Σ in a line. Hence Φ ∼= Φ3. �

Remarks

1. Note that PQ+(7, 2) has 9 pg-spreads of type 1, while there are 135 of type
2 and 126 of type 3. It is known that Aut(PQ+(7, 2)) = Alt(9). This can
easily be proved by regarding Aut(PQ+(7, 2)) acting on the 9 elements of the
orthogonal spread Σ. The group is transitive on the points as well as on the
lines of PQ+(7, 2).

2. Assume Φ is a pg-spread of PQ+(4n − 1, q) (q = 2 or 3) of type 1, i. e. it is
the set of hyperplanes of an element σ0 of Σ. For every line L ∈ L \ Φ, the
elements of ΦL are the hyperplanes of σ0 not containing p0 = L∗ ∩ σ0. Hence
there is a canonical bijection from the sets Li, i = 1, . . . , q

2n−1
q−1

to the points of

σ0. From this it follows that the symmetric design D(Φ1) is indeed isomorphic
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to the complement of the design of points and planes of PG(2n − 1, q). The
partial geometry SΦ is the geometry with as point set the set of points of
PQ+(4n− 1, q) union the set of points of a fixed element σ0 of the orthogonal
spread Σ. The line set is the set of hyperplanes contained in the other elements
σi (i = 1, . . . q2n−1) of the orthogonal spread Σ. A point p is incident with a
line L, if and only if L is contained in the polar hyperplane p∗ of p with respect
to the quadric. Note that the point graph as well as the block graph of this
geometry were known before, see [2]. If n = q = 2, the automorphism group of
the dual partial geometry (which is the geometry Γ2 in [11]) is the alternating
group Alt(8). It is transitive on the 120 points and has clearly 2 orbits of lines,
one of size 15 and one of size 120.
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