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Abstract

We investigate the generalization of the concept of a flock of a quadratic
cone to more general types of cones. Several new flocks are found and a
geometric construction of one of these is given.

1 Introduction

Let F = GF(q) with q = 2e. Define a monomial cone in PG(3, q) to be the set of
points,

Σβ = {(x, y, z, w) | yβ = xzβ−1},
together with the vertex (0, 0, 0, 1), where (β, q − 1) = (β − 1, q − 1) = 1. A flock
of Σβ is a set of q planes of PG(3, q) not passing through the vertex which do not
intersect each other at a point of Σβ. Without loss of generality, the planes of a
flock may be represented by

atx+ bty + ctz + w = 0, t ∈ F .

If, in such a representation, each of the functions at, bt, and ct is a monomial function
of t, we shall call the flock a monomial flock. Finally, we define

Dβ0 = {y ∈ F | y = xβ + x, for some x ∈ F}

and its complement, Dβ1 = F\Dβ0.
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The simplest example of a flock is the linear flock, which is a flock consisting of
q planes passing through a fixed line L skew to Σβ . Examples of non-linear flocks
are also known. The case of the quadratic cone, Σ2, has been extensively examined
(see [10]).

One of the most interesting features of flocks is that they are related to a large
variety of other structures. Flocks of quadratic cones give rise to certain generalized
quadrangles of order (q2, q) and can be used to define translation planes. Recently,
in the even case, a third connection was found [3]. A flock of a quadratic cone gives
rise to a set of q + 1 ovals in a projective plane PG(2, q), q even, called a herd of
ovals. This link, found previously by Payne [7], led to the discovery of the Payne
ovals ([7]) and to the discovery of the Subiaco ovals ([3]).

However, not all ovals are related to flocks of quadratic cones (via herds), and so,
we were led to investigate flocks of the cones Σβ , for which t 7→ tβ is an automorphism
of F of maximal order. These flocks are called α-flocks. The study of these flocks
led to a proof of the fact that the Cherowitzo ovals form an infinite family, and
provided a uniform method for proving that all known monomial ovals are ovals (see
[4]).

The connection between ovals and flocks is still not completely determined, so we
are naturally led to look at a larger collection of cones in this note. Our restriction
to monomial flocks is spurred by the recent classification of monomial flocks of
quadratic cones ([8]).

In the next section, we collect some general results concerning monomial flocks
of monomial cones. Section 3 provides all the known examples. In section 4, the
geometric structure of one of these new flocks is examined and a geometric con-
struction is given for a flock of this type. Finally, we end with a number of open
problems.

2 General results

The algebraic condition that a set of q planes in the above representation form a
flock of Σβ is,

(at + as)
1

β−1 (ct + cs)

(bt + bs)
β
β−1

∈ Dβ1, ∀t 6= s.

It is easily seen that this condition forces each of at, bt, and ct to be a permutation
of F and that we may, by reparameterization, choose any one of these functions
to be any permutation we like. Such a normalization proved useful in earlier work
([4],[3]), but has not been fruitful in this more general context, so we shall not make
any such normalization.

Specializing to monomial flocks, we may take at = Ata, bt = Btb, and ct = Ctc,
where A,B,C are nonzero constants. The algebraic condition then becomes,

κ
(ta + sa)

1
β−1 (tc + sc)

(tb + sb)
β
β−1

∈ Dβ1, ∀t 6= s, where κ =
A

1
β−1C

B
β
β−1

. (1)

On setting s = 0 in (1) we have that

κt
a−c−β(b−c)

β−1 ∈ Dβ1, ∀t 6= 0. (2)
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From this we can conclude that κ ∈ Dβ1 (set t = 1), and so, the necessary condition
in (2) will be satisfied if β ≡ a−c

b−c (mod q − 1). Monomial flocks with β ≡ a−c
b−c

(mod q− 1) will be referred to as flocks of type I, and all others as flocks of type II.

Remark 1 There are situations in which a monomial flock must be of type I. For
instance, it can be shown to be so when t 7→ tβ is an automorphism of the field (of
maximal order) or if q−1 is a prime. Computer results show that if q < 28 or q = 29

then the only monomial flocks are of type I. However, flocks of type II do exist when
q = 28.

Using (1), we can replace a flock by an equivalent one in which the constants of
the general form have been absorbed into the single constant κ. The planes of this
normalized monomial flock are given by:

tax+ tby + κtcz + w = 0, (3)

with κ ∈ Dβ1 for each t ∈ F . In keeping with previous usage, we will represent each
plane of the monomial flock by an upper triangular 2× 2 matrix of the form(

ta tb

κtc

)
.

A set of q matrices of this form is called a β - clan if the corresponding planes form
a flock of a β-cone. We remark that we are only using the matrices as a notational
device and we will not be exploring the algebraic ramifications of this notation.

Note that, with t = 0 in (3), we always have the plane w = 0 in a monomial
flock. We will view this plane as the carrier plane of the cone. The points of the
carrier of the cone, i.e., the points of intersection of the cone and w = 0, are:

{(xβ, x, 1, 0) | x ∈ F} ∪ {(1, 0, 0, 0)}.

Consider a generator of the cone, i.e., a line joining the vertex (0, 0, 0, 1) with a
point of the carrier of the cone. This line meets each plane of (3) at the point
(xβ, x, 1, taxβ + tbx+κtc) for a fixed x ∈ F or (1, 0, 0, ta). No two planes of (3) meet
at a point of the cone, if and only if, for each x ∈ F the functions taxβ + tbx+ κtc,
and ta are permutations (in t). We refer to this set of q+ 1 polynomials as the herd
corresponding to the set of planes given by (3). Thus, we have:

Theorem 1

(
ta tb

κtc

)
is a β-clan if and only if each polynomial in its herd is a

permutation polynomial. �

Remark 2 In [3] the term “herd of ovals” was introduced, for 2-cones, to denote
the geometric point sets given by the functions that we have here called a “herd”
with a different parameterization. From the more general viewpoint that we have
taken, it is clear that it is the set of functions rather than the point sets that they
determine which are of primary interest. This shift in emphasis on what a herd is,
is embodied in our definition.
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Remark 3 This theorem appears in [3] for 2-clans, and again, in [4] for α-clans. It
should be clear from the proof that, even in its current form, this is not the most
general statement that can be made. Indeed, there is nothing about the geometric
nature of the carrier that is needed in this proof, so the statement really applies to
cones of the most general kind.

In keeping with the above remark, we shall make a modest extension of our
definitions. Given a monomial cone Σβ , if we add a point to the carrier of the cone
and then construct the cone with the same vertex over the expanded carrier, we shall
refer to the new cone as an extended cone. A flock of the extended cone is defined in
the same way as a flock of Σβ , only with reference to the extended cone, i.e., a set
of q planes of PG(3, q) not passing through the vertex which do not intersect each
other at a point of the extended cone.

Corollary 1 The point (0, 1, 0, 0) may be added to the carrier of any monomial
cone and any monomial flock of the original cone will remain a flock of the extended
cone.

Proof. The point (0, 1, 0, 0) in w = 0 is on no other plane of the flock, else tb would
not be a permutation. The additional generator of the extended cone will add the
permutation polynomial tb to the herd. By Theorem 1 the original flock is a flock
of the extended cone. �

Remark 4 In the case of a 2-cone, this point is the nucleus of the conic carrier of
the cone and the extended cone is a regular hyperoval cone. Thas ([9]) proved this
corollary in the case that the cone is a cone over an arbitrary oval.

Any collineation of PG(3, q) will map a flock of a cone to a flock of the image
cone. In particular, if we apply a collineation which fixes the vertex and stabilizes
the carrier plane (w = 0), and furthermore, induces in the carrier plane a monomial
preserving collineation, then we should expect to see a fairly simple relationship
between the flocks of equivalent β-cones. More precisely, we have:

Theorem 2 The following are equivalent:

(1)

(
ta tb

κtc

)
is a β-clan.

(2)

(
tb ta

κtc

)
is a 1

β
-clan.

(3)

(
ta tc

κ
1−β
β tb

)
is a (q − β)-clan.

(4)

(
tb tc

κβ−1ta

)
is a (q − 1

β
)-clan.

(5)

(
tc ta

κ
1−β
β tb

)
is a 1

q−β -clan.
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(6)

(
tc tb

κβ−1ta

)
is a β

β−1
-clan.

Proof. The group of six homographies of PG(2, q) whose associated matrices are
given by 〈0 0 1

0 1 0
1 0 0

 ,
0 0 1

1 0 0
0 1 0

〉

preserve monomials in the plane ([2]). Using any one of them as M in


0

M 0
0

0 0 0 1

 (4)

will give a matrix whose associated homography fixes (0, 0, 0, 1) and stabilizes the
plane w = 0, while preserving any monomial in that plane. We shall carry out the
computation for one of these equivalences, the rest are similar.

Assume that

(
ta tb

κtc

)
is a β-clan, and apply the homography, ρ, whose matrix

(for points) is, 
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 ,
to the points of the β-cone’s carrier together with (0, 1, 0, 0) (see Corollary 1) to
obtain,

(xβ, x, 1, 0)ρ = (x, 1, xβ, 0) =

(sq−
1
β , s, 1, 0) if x 6= 0 (s 6= 0),

(0, 1, 0, 0) if x = 0.

(0, 1, 0, 0)ρ = (1, 0, 0, 0)

(1, 0, 0, 0)ρ = (0, 0, 1, 0).

By removing the point (0, 1, 0, 0), we see that the “image” of the β-cone is a (q− 1
β
)-

cone. Now we apply ρ to the planes of the flock to obtain,

[ta, tb, κtc, 1]ρ = [tb, κtc, ta, 1].

When we normalize this flock it has the form, [tb, tc, κβ−1ta, 1]. Thus we have shown
that (1)⇒ (4), and ρ−1 provides the reverse implication. �

Monomial flocks are in a sense simpler than other kinds of flocks since they admit
a cyclic group of automorphisms. More precisely, we have:
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Theorem 3 Let λ be a primitive element of F , then the cyclic group of order q− 1
given by, 〈

λa 0 0 0
0 λb 0 0
0 0 λc 0
0 0 0 1


〉
,

fixes the plane w = 0 and acts sharply transitively on the remaining planes of the
flock, tax+ tby+κtcz+w = 0. Furthermore, if this is a flock of a β-cone, the β-cone
is also stabilized, if and only if, the flock is of type I.

Proof. Since we are dealing with a flock, ta is a permutation polynomial, and so,
(a, q − 1) = 1. Thus, the group has order q − 1. Clearly, the group fixes the plane
w = 0. The action of the generator of the group on the planes of the flock is given by
[ta, tb, κtc, 1] → [(λ−1t)a, (λ−1t)b, κ(λ−1t)c, 1]. Thus, the action is sharply transitive
on the remaining planes of the flock.

The generator fixes the vertex of the β-cone and its action on the points of the car-
rier of the cone is given by (xβ , x, 1, 0)→ (λaxβ , λbx, λc, 0) ≡ (λa−c+β(c−b)sβ , s, 1, 0).
Since the point (1, 0, 0, 0) is fixed, we see that the β-cone is stabilized if and only if
β ≡ a−c

b−c (mod q − 1), i.e., the flock is of type I. �

3 Some families of β-clans

A complete computer search was made for monomial flocks of monomial cones over
the fields GF(q), q = 2e, for e = 3, 4, . . . , 8, and a partial search for e = 9. Theorem
2 was used to significantly reduce the amount of search time. Besides the α-flocks,
which are reported in [4], all the remaining β-clans that were found will be discussed
in this section. We will, when appropriate, only display one of the six equivalent
clans given by Theorem 2.

Theorem 4 Let L = GF(2r) be a proper subfield of F = GF(q) and L∗ = L \ {0},
then (

t2
a

t

κt2
b

)
with 0, a and b distinct, is a β-clan for

β ≡ j(q − 1) + (2r − 1)(2b − 2a)

(2b − 1)(2r − 1)
(mod q − 1) where 0 ≤ j < 2r − 1,

whenever (β, q − 1) = (β − 1, q − 1) = 1 and κL∗ ⊆ Dβ1.

Proof. In this case (1) becomes,

κ
(t2

a
+ s2a)

1
β−1 (t2

b
+ s2b)

(t+ s)
β
β−1

= κ(t + s)
2a−2b+β(2b−1)

β−1 .

With β as given in the statement of the theorem, this exponent reduces to j(q−1)
(β−1)(2r−1)

.

Since (β − 1, q − 1) = 1, we have that

κ
(
(t + s)

1
β−1

) j(q−1)
2r−1 ∈ κL∗ for all t 6= s.
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Thus, provided (β, q− 1) = (β − 1, q − 1) = 1, and κL∗ ⊆ Dβ1, this is a β-clan. �

Remark 5 If L = GF(2) then these β-clans are of type I, and the last condition
reduces to κ ∈ Dβ1. For other subfields we obtain type II flocks, and, indeed, the
only type II flocks found in the examined planes were of this form. Specifically, over
the field GF(256), with primitive element λ satisfying λ8 = λ4 +λ3 +λ2 +1, we have
that (

t2 t
λ29t4

)
is a 29-clan,

and (
t4 t

λ37t32

)
is a 53-clan.

In both of these cases, L = GF(4).

Remark 6 The β-clans of this theorem provide a set of matrices that is closed
under matrix addition. This property does not seem to be shared with any other
known types of non-linear clans in even characteristic. Indeed, Johnson [6] has
shown that, for quadratic cones in even characteristic, this property implies that
the flock is linear.

The other β-clans that have been found seem to be rare in comparison with those
given in Theorem 4.

Proposition 1 (
t t5

t7

)
is a 3-clan

whenever q = 2e, e ≡ 1 or 5 (mod 6).

Proof. Using Theorem 1, we examine the polynomials t and x3t+ xt5 + t7 for each
x ∈ F . The latter are Dickson permutation polynomials under the given conditions
([5], pg. 57). �

Remark 7 The above proposition shows that 1 ∈ D3
1 if e ≡ 1 or 5 (mod 6). How-

ever, it can be shown that 1 ∈ D3
1 if and only if e 6≡ 0 (mod 3).

Lemma 1 If β = 2i + 1 then(
ta tb

κtc

)
is a β-clan if and only if

(
t(β−1)c tb

κt
a
β−1

)
is a β-clan.

Proof. Since β − 1 = 2i corresponds to a field automorphism, (1) becomes,

κ
(ta + sa)

1
2i (tc + sc)

(tb + sb)
β
β−1

= κ
(t2

ic + s2ic)
1
2i (t

a
2i + s

a
2i )

(tb + sb)
β
β−1

∈ Dβ1.

�
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Remark 8 With β = 2 (i = 0) this reduces to a well known equivalence of 2-clans.

Proposition 2 (
t14 t5

t
1
2

)
is a 3-clan

whenever q = 2e, e ≡ 1 or 5 (mod 6).

Proof. Apply lemma 1 to the 3-clan of proposition 1. �

The only remaining β-clans to be found in the planes that were examined are
the 5-clans given by, (

t−22 t14

t23

)
, (5)

and its companion obtained from lemma 1, over the fields GF(32) and GF(128) (and
not over GF(512).) While there is little doubt that these are the initial members of
infinite families, this representation may not be the one that generalizes.

4 A geometric construction of a flock

Some of the flocks of the β-clans given in Theorem 4 have a remarkably simple
geometric structure. We shall describe one such structure, and provide a geometric
construction for this type of flock.

Definition 1 The lines of intersection of w = 0 with the q − 1 other planes of the
flock will be called base lines. The intersection of two distinct base lines is called a
base point.

Lemma 2 Let bt, t ∈ F\{0}, denote the base line of the plane t2
a
x+ty+κt2

b
z+w =

0. Then bt+s passes through the intersection of bt and bs for t 6= s. Furthermore, the
line of intersection of the planes with base lines bt and bs lies in the plane determined
by the vertex Z and the base line bt+s.

Proof. Let the (not necessarily distinct) base lines bt and bs have a common point
P . Let the planes, for which these are the base lines, meet in the line r. Clearly, P is
on r. The projection of r from the point Z = (0, 0, 0, 1) into the plane w = 0 is the
line (t2

a
+s2a)x+(t+s)y+κ(t2

b
+s2b)z = 0. The point P , which is in the plane w = 0

is certainly a point of this line. Since t2
i
+ s2i = (t + s)2i in fields of characteristic

two, this projected line has the equation (t+ s)2ax+ (t+ s)y + κ(t+ s)2bz = 0 and
so, is the base line bt+s. �

Consequently, all of the
(
q
2

)
lines of intersection of planes in the flock lie in the

planes determined by the vertex and each of the base lines.

Proposition 3 With q = 2e, the configuration of base points and lines, formed by
the planes t2

a
x+ ty+ κt2

b
z +w = 0, t 6= 0, is the dual of an embedded PG(e− 1, 2),

if the base lines are distinct and meet three at a point.
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Proof. Since there are q−1 distinct base lines, meeting three at a point, the number
of base points on a base line is q−2

2
= 2e−1−1, and the total number of configuration

points is 1
3

(
q−1

2

)
= (2e−1)(2e−1−1)

(22−1)(21−1)
=
[
e
2

]
2
. The point-line dual of this configuration

of base points and lines thus has the same parameters as the point-line design of a
PG(e− 1, 2).

To prove that these designs are isomorphic, we must show that the Pasch Axiom
(Veblen’s Axiom) holds in the dual configuration, or, as we shall do, show that the
dual of the Pasch Axiom holds in the configuration. The dual of the Pasch axiom
in this setting is: Given a base point not on any side of a triangle formed by three
base lines, if the given point is joined to two of the vertices of the triangle by base
lines it is also joined to the third vertex by a base line. Let the three sides of the
triangle be given by base lines br, bs and bt. Without loss of generality and due to
the fact that there are only three base lines through any base point, we may assume
that the given base point, P , is the intersection of the base lines br+s and br+t, and
thus, the third vertex of the triangle, Q, is the intersection of the lines bs and bt. By
Lemma 2, the third base line through Q is bs+t, while the third base line through P
is b(r+s)+(r+t) = bs+t, thus proving the validity of the dual of the Pasch Axiom. �

Remark 9 There are some, but not all, β-clans which meet the conditions of the
above proposition. For instance, all the known 3-clans satisfy these conditons.

Lemma 3 Under the assumptions of Propositon 3, given four base lines, no three
of which are concurrent, if one of the diagonal lines of the quadrilateral they form
is a base line, then the three diagonal lines, which are concurrent, are all base lines.

Proof. Let the four base lines be bt, bs, br and bu. Label the points of intersection as
follows: A = bt∩ bs, B = br∩ bu, C = bs∩ br, D = bs∩ bu, E = bt∩ bu and F = bt∩ br.
Without loss of generality, we may assume that the diagonal line AB is a base line.
The 4ABC has sides that are all base lines, and E is joined to A and B by base
lines. Thus, by the dual of the Pasch Axiom, the diagonal line EC is a base line.
Now, 4CDE also has sides that are base lines, and F is joined to C and E by base
lines, hence we can again conclude that the diagonal line FD is a base line. Since
these lines are in a Desarguesian plane of even order, the three diagonal lines of this
quadrilateral are concurrent (Fano’s configuration). �

Proposition 4 Under the assumptions of Propositon 3, every point of PG(3, q) lies
on 0, 1, 2 or 4 planes of the flock.

Proof. The vertex of the cone lies on no plane of the flock. A non-vertex point of
the cone lies on exactly one plane of the flock. A point on a base line which is not
a base point lies on exactly two planes of the flock. Base points lie on four planes
of the flock. The proposition will be proved by showing that any point not in the
carrier plane, which lies on three planes of the flock, must lie on exactly four such
planes.

Let P be such a point, lying on three distinct planes with base lines bt, bs and br.
By lemma 2, since P lies on the line of intersection of the planes with base lines bt
and bs, it is in the plane π determined by Z and bt+s. If br = bt+s, then the plane
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determining br would be π, a contradiction since flock planes do not contain Z. The
plane with base line br therefore intersects π in a line passing through P (and not
containing Z). This line meets bt+s at a point Q, which is also on br, and so, is a
base point. There is a third base line through Q, say bu. The line of intersection of
the planes with bases lines br and bu must lie in π by lemma 2, and therefore, must
be the line PQ. Hence, the point P lies on at least four planes of the flock.

Consider the four base lines bt, bs, br and bu. Note that bt+s = br+u by the defini-
tion of bu. They form a quadrilateral in w = 0. By lemma 3, the two diagonal lines,
other than bt+s, are also base lines. Thus, they are bt+r = bs+u, and bt+u = bs+r , and
R, the common point of the three diagonal lines, is a base point. Consider the plane
π′ determined by Z and one of these diagonal lines, say bt+r. Then π′ intersects π
in the line ZR. The line of intersection of the planes with base lines bt and br lies
in π′ (lemma 2), and P lies on that line. Thus, P lies on the line ZR. Now suppose
that there is another plane of the flock, with base line bx, through P . Using the
same argument, with bx replacing br, the plane determined by Z and bt+x meets π
in the line ZP , and so, bt+x must contain the point R. Since there are only three
base lines through R, we must have that x = r, u or s. Therefore, there are exactly
four planes of the flock through P . �

We can provide a geometric construction of the these flocks.

Construction 1 The following construction provides a flock of the type considered
above:

1. Embed PG(e− 1, 2) (e ≥ 3) in a plane ν1 = PG(2, 2e).

2. Take the dual of this embedding as the set of q − 1 base lines.

3. Let Z be a point of PG(3, 2e) not in ν1, ` one of the base lines, π1 the plane
determined by Z and `, and P a point of ` where 3 base lines meet.

4. Let µ be any line of π1 through P , not ` nor passing through Z.

5. Construct q
2
− 2 other lines in π1, each associated to a base point of `, other

than P , in the following way: Label the base points of ` with Qi, 1 ≤ i ≤ q
2
−1,

where P = Q1. Fix a base line through P , other than `, call it t. For each base
point Qi on `, other than P , select a base line in ν1 through Qi other than `,
call it s. Let t ∩ s = R. The third base line through R intersects ` at a point
Qi′, where 1 6= i′ 6= i. Join Qi′ to Z in π1, and call the intersection of this line
with µ, R′. Finally, join Qi to R′. This is the line associated with Qi.

6. With µ being taken as the line associated with P = Q1, for each base point
Qi on `, form the planes νi,1 and νi,2 determined by the line of π1 associated
with Qi and each of the base lines through Qi other than `, with the plane
determined by µ and t being labelled ν1,1.

7. Let π2 be the plane determined by Z and the base line through P , other than t
or `. Let π2 ∩ ν1,1 = r and construct the plane determined by r and `, call it
ν2.



Monomial flocks of monomial cones 251

8. The q − 2 planes, νi,j, 1 ≤ i ≤ q
2
− 1, j = 1, 2 constructed in step 6, and the

planes ν1 and ν2, form the flock.

There are a few comments to be made concerning this construction.

1. The embedding of step 1 can be found explicitly in Brown [1]. It is also shown
there that there is a cyclic group acting sharply transitively on the points of
the embedding.

2. In step 4, there are q−1 choices for the line µ, and each leads to a flock. These
flocks are closely related by a parameter which is a non-zero field element.
They all normalize to the same flock.

3. In step 5, there appears to be a choice of which base line to take through each
of the points on `. However, these choices are irrelevant, as is, which base line
through P is choosen as t. Consider the two base lines through each of P and
Qi, other than `. These four lines determine a quadrilateral, and, by the proof
of lemma 3, the diagonal lines of this quadrilateral are seen to be base lines
that meet on `. Thus, no matter which of the four vertices of the quadrangle
is picked to be R (corresponding to making different choices of the base lines
through P and Qi), the third base line through it will always meet ` at the
same point, Qi′.

Theorem 5 Construction 1 provides a flock for a cone with vertex Z whose carrier
is any set of points in ν1 not in the union of the points in the base lines.

Proof. Clearly, the construction provides a set of q planes which do not pass
through the point Z. The theorem will be proved if it can be shown that every line
of intersection determined by two of these planes lies in a plane determined by Z
and one of the base lines. Trivially, this is true of all intersections with ν1 (these are
the base lines) and, by construction, it is true for the intersection of νi,1 and νi,2, for
all i (these lines lie in π1.)

For the remainder of the proof, we shall fix some notation. For a plane νi,j with
i 6= 1 and j = 1 or 2 (see comment 3 following the construction), the point R, is
the intersection of the base line of this plane with t, the base line through P . We
will choose the labelling so that the third base line through R is the base line of the
plane νi′,j. In π1, R

′ = µ ∩ ZQi′, and, by the construction, is a point of νi,j. Thus,
the line RR′ is the line of intersection of νi,j and ν1,1. For a second plane, νk,m,
with k 6= 1, i and m ∈ {1, 2}, the points corresponding to R and R′ will be labelled
T and T ′, respectively. Thus, TT ′ = νk,m ∩ ν1,1. We will denote by νi,j′ the plane
constructed through Qi other than νi,j , ν1 and ν2.

We start by showing that the intersection of any other plane with ν1,1 has the
required property.

Consider the plane νi,j. The plane determined by RR′ and the base line RQi′

contains the line R′Qi′, which, in turn, contains the point Z. Therefore, RR′ is
contained in a plane determined by Z and a base line. Now, the intersection of
ν1,1 with ν2 is the line r, which is contained in the plane π2, of the required type.
Hence, all the other planes of the construction meet ν1,1 in lines that lie in planes
determined by Z and a base line.
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Had the base line of ν1,2 been used in the role of t in the construction, the
constructed planes would be the same (comment 3). Repeating the above argument
in this case shows that ν1,2 has the same property.

We now consider the the intersection of νi,j with νk,m, where i 6= k, i, k > 1, and
j,m = 1, 2. There are two cases to consider, depending on whether or not k = i′.

Let k = i′. With S = QiR
′∩Qi′T

′, the line of intersection of νi,j and νi′,m is SR.
In π1, the quadrangle QiQi′R

′T ′ has diagonal line ZSP . Therefore, the plane de-
termined by Z and SR contains the base line t = PR.

Now, assume k 6= i′. Let V be the intersection of the base lines of νi,j and νk,m
and let S = RR′ ∩ TT ′ ∈ ν1,1. The line of intersection of νi,j and νk,m is V S.
Projecting ν1,1 from Z to ν1, we see that S projects to the point L, which is the
intersection of the base lines of νi′,j and νk′,m. Thus, the plane determined by Z and
V S contains the line V L. The sides of 4RTV are base lines, and L is joined to R
and T by base lines, so, by the dual of the Pasch Axiom, V L is a base line.

Finally, we must show that the lines of intersection in ν2 have the required
property. Recall, from the construction of ν2 that r = π2 ∩ ν1,1, where π2 is the
plane determined by Z and the base line of ν1,2. Consider the plane νi,j. Let
S = r ∩RR′. The line SQi is the intersection of νi,j and ν2. Projecting ν1,1 from Z
to ν1, we see that S projects to the point L, which is the intersection of the base
lines of νi′,j and ν1,2. Thus, the plane determined by Z and SQi contains the line
LQi. The sides of 4RPQi are base lines, and L is joined to R and P by base lines,
so, by the dual of the Pasch Axiom, LQi is a base line. �

5 Open problems

This work should be considered as an initial foray into largely uncharted waters. It
raises more questions than it answers. Some of the open problems are:

1. What are the actual families to which the flocks given in (5) belong?

2. Are there other type II monomial flocks besides those given by Theorem 4?

3. An initial impetus for examining monomial cones was to find new occurances of
o-polynomials naturally associated with herds. No such examples were found,
which leads to the following question. If ta appears as the coefficient of x in a

type I monomial flock, whose y coefficient is t
1
β , and is an o-polynomial, must

tβ also be an o-polynomial?

4. No known cone whose carrier is an oval or hyperoval has a flock of the type
given by Construction 1. Is it possible that the base line configuration used in
that construction is a blocking set for ovals in the plane?

5. The base line configuration for all the known monomial α-flocks are subsets
of the duals of translation hyperovals (in particular, q − 1 lines, no three of
which are concurrent). The base line configurations of all the β- flocks given
in Section 3 are the same as those given by the flocks of Theorem 4. What
are the other types of base line configurations for monomial flocks? Can these
configurations be classified?
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6. What can be said about the flocks of cones when the conditions (β, q − 1) =
(β − 1, q − 1) = 1 are relaxed? More generally, for flocks of arbitrary cones?
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