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Abstract

We show how a semipartial geometry can be constructed from a particular
type of subquadrangle of order r of a generalized quadrangle of order (r, r2).
We also determine conditions under which two such semipartial geometries
are isomorphic. As a result, a new semipartial geometry will be constructed
from a generalized quadrangle constructed by Kantor.

1 Introduction

We begin with the definition of a finite generalized quadrangle. (For more details
on generalized quadrangles see [15]). A (finite) generalized quadrangle (GQ) is an
incidence structure S = (P ,B, I) in which P and B are disjoint (non-empty) sets of
objects called points and lines, respectively, and for which I⊆ (P × B) ∪ (B × P) is
a symmetric point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + t lines (t ≥ 1) and two distinct points are
incident with at most one line;

(ii) Each line is incident with 1+s points (s ≥ 1) and two distinct lines are incident
with at most one point;

(iii) If X is a point and ` is a line not incident with X, then there is a unique pair
(Y, m) ∈ P × B for which X I m I Y I `.
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The integers s and t are the parameters of the GQ and S is said to have order
(s, t). If s = t, then S is said to have order s. If S has order (s, t), then it follows
that |P| = (s + 1)(st + 1) and |B| = (t + 1)(st + 1) ([15, 1.2.1]).

If S = (P ,B, I) is a GQ of order (s, t) then the incidence structure S∧ = (B,P , I)
is a GQ of order (t, s) known as the dual of S. In any GQ S = (P ,B, I), if two distinct
points X, Y are collinear, we write X ∼ Y and denote the line incident with X and
Y by 〈X, Y 〉. If X and Y are not collinear then we write X 6∼ Y . If X is a point
of S, then we define X⊥ = {Y ∈ P : Y ∼ X} ∪ {X}. If {X1, . . . , Xn} is a set of n
points of S, pairwise non-collinear, then we define {X1, . . . , Xn}⊥ = ∩ni=1X

⊥
i . A set

of three, pairwise non-collinear, points of a GQ is called a triad.
Let S = (P ,B, I) be a GQ of order (s, t) and let S ′ = (P ′,B′, I′) be a GQ of

order (s′, t′). The GQ S ′ is a subquadrangle (subGQ) of S if P ′ ⊆ P , B′ ⊆ B and I′

is the restriction of I to (P ′ × B′) ∪ (B′ × P ′). If S ′ is a subquadrangle of S, then
we write S ′ ⊆ S. If S 6= S ′ then we say that S ′ is a proper subquadrangle of S and
write S ′ ⊂ S. If S ′ ⊂ S, then it follows that P ′ 6= P and B′ 6= B.

As an example, the GQ Q(5, q), of order (q, q2), arises as the geometry of points
and lines of a non-singular elliptic quadric in PG(5, q), which has a canonical form
given by the equation f(x0, x1)+x2x5+x3x4 = 0 where f is an irreducible quadratic
binary form. The GQ Q(4, q), of order q, arises similarly as the geometry of points
and lines of a non-singular (parabolic) quadric in PG(4, q), which has a canonical
form given by the equation −x0

2 + x1x4 + x2x3 = 0. We note that Q(5, q) contains
subquadrangles isomorphic to Q(4, q) (see [15, 3.1.1 and 3.5 (a)]).

An ovoid of a GQ S of order (s, t) is a set θ of points such that each line of S is
incident with precisely one point of θ. It follows that θ has st + 1 points. Dually, a
spread of a GQ S of order (s, t) is a set S of st + 1 lines of S such that each point
of S is incident with exactly one line of S.

Lemma 1.1 ([16], [11], see [15], 2.2.1) Let S = (P ,B, I) be a GQ of order (r, r2)
with a subquadrangle S ′ = (P ′,B′, I′) of order r and let P ∈ P \ P ′. Then the set of
points of S ′ which are collinear with P form an ovoid of S ′.

An ovoid defined as in Lemma 1.1 is said to be subtended by P , or just subtended.
The ovoids of S ′ subtended by the points in P\P ′ are said to be the ovoids subtended
by S or just the subtended ovoids.

A rosette based at a point X of a GQ S of order (s, t) is a set R of ovoids
with pairwise intersection {X} and such that {θ \ {X} : θ ∈ R} is a partition of the
points of S not collinear with X. The point X is called the base point of R. It
follows that a rosette R has s ovoids.

If S = (P ,B, I) is a GQ of order (r, r2) with a subquadrangle S ′ = (P ′,B′, I′)
of order r, then every line of S is either a line of S ′ or is incident with exactly one
point of S ′ (by [15, 2.1] and a count). A line of S meeting S ′ in exactly one point
is called a tangent. Given a tangent line ` to S ′, the set of r ovoids subtended by
points of ` not in S ′ form a rosette of S ′. To see this, first observe that if X, Y I `
and X, Y ∈ P \P ′, then the ovoids θX and θY subtended by X and Y both contain
the point ` ∩ S ′. Also if θX and θY contain a further point Z of S ′, then X, Y, Z
form a triangle, contradicting GQ axiom (iii). We say that this rosette is the rosette
subtended by the line ` or that the rosette is subtended.
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A (finite) semipartial geometry (SPG) is an incidence structure T = (P ,B, I)
in which P and B are disjoint (non-empty) sets of objects called points and lines
respectively, and for which I⊆ (P × B)∪(B × P) is a symmetric point-line incidence
relation satisfying the following axioms:

(i) Each point is incident with 1 + t lines (t ≥ 1) and two distinct points are
incident with at most one line;

(ii) Each line is incident with 1+s points (s ≥ 1) and two distinct lines are incident
with at most one point;

(iii) If X is a point and ` is a line not incident with X, then the number of pairs
(Y, m) ∈ P × B for which X I m I Y I ` is either a constant α (α > 0), or 0;

(iv) For any pair of non-collinear points (X, Y ) there are µ (µ > 0) points Z such
that Z is collinear with both X and Y .

The integers s, t, α, µ are the parameters of T . For more information on SPGs
see [4].

In Section 2 we will show that if S is a GQ of order (r, r2) and S ′ ⊂ S is a
subGQ of order r such that each subtended ovoid of S ′ is subtended by precisely
two points, then the subtended ovoid/rosette structure is an SPG with parameters
s = r − 1, t = r2, α = 2 and µ = 2r(r − 1). It will also be shown that the above
condition is equivalent to the existence of an involution of S that fixes S ′ pointwise.

In Section 3 we consider the isomorphism problem of SPGs constructed as above.
In particular we consider TW and TS two SPGs constructed from GQs W ′ ⊂ W and
S ′ ⊂ S, respectively. We show that TW and TS are isomorphic if and only if there
is an isomorphism from W ′ to S ′, taking TW to TS .

In Section 4 we outline the construction of a GQ, S(C), of order (q2, q) from a
q-clan C and state some results on GQs constructed in this manner. In Section 5,
for q odd and non-prime, we consider a q-clan GQ, S(Cσ) constructed by Kantor in
[10]. We construct a new SPG from a subGQ of S(Cσ) isomorphic to Q(4, q).

2 SPGs from GQs of order (r, r2)

Consider the SPG (constructed by Metz, see [5] and by Hirschfeld and Thas [7])
with parameters s = q − 1, t = q2, α = 2, µ = 2q(q − 1), where q is a prime
power. The construction due to Metz, is as follows: let Q = Q(4, q), P be the set
of three dimensional, non-singular elliptic quadrics contained in Q. Let a bundle
of Q be a set of q elements of P that meet pairwise in a common point. Let B be
the set of bundles of Q. Define incidence I⊆ (P × B) ∪ (B ×P) to be symmetrized
containment. Since each bundle is a set of q elliptic quadric ovoids of Q sharing a
common tangent plane at the point where the elliptic quadrics intersect, and two
elements of P that are tangent are incident with exactly one common bundle, it
follows that the structure T = (P ,B, I) is a SPG with the above parameters.

Now consider the GQ S = Q(5, q). S contains Q as a subGQ and the subtended
ovoids are exactly the elements of P . Moreover, the subtended rosettes are the
bundles and T is the incidence structure obtained by taking subtended ovoids as
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points and subtended rosettes as lines. This relation between Q(5, q), Q(4, q) and
the SPG T seems to depend on the combinatorics of the situation, rather than the
specific geometry. So, it is natural to try and extend this result to a more general
scenario. The following work leads to such a generalisation.

To begin we recall a result of Bose and Shrikhande interpreted in the GQ context.

Lemma 2.1 ([1], see [15], 1.2.4) If S is a GQ of order (r, r2) and {X, Y, Z} is a
triad of S, then |{X, Y, Z}⊥| = r + 1.

Corollary 2.2 Let S be a GQ of order (r, r2) and S ′ a subGQ of order r. A
subtended ovoid of S ′ is subtended by at most two points of S. Further, if an ovoid
θ is subtended by two points X, X ′, then the size of the intersection of θ with any
other subtended ovoid θY , Y 6= X, X ′, is determined: if Y ∼ X or Y ∼ X ′, then
|θ ∩ θY | = 1 and if Y 6∼ X, X ′, then |θ ∩ θY | = r + 1.

Proof. Suppose that an ovoid θ is subtended by three points X, Y, Z. These
three points are necessarily pairwise non-collinear and so form a triad of S. Since
|{X, Y, Z}⊥| ≥ r2 + 1 we have a contradiction of Lemma 2.1. Thus any ovoid may
be subtended by at most two points.

Now suppose that θ is subtended by exactly two points X and X ′. Let θY be
the ovoid subtended by the point Y , Y 6= X, X ′. Suppose that Y ∼ X or Y ∼ X ′;
without loss of generality we may suppose that Y ∼ X. Thus θX and θY are
contained in the rosette subtended by the line 〈X, Y 〉 and so θX ∩ θY = {P} for
some point P and |θ ∩ θY | = |{X, X ′, Y }⊥| = 1. Suppose now that Y 6∼ X, X ′, then
{X, X ′, Y } is a triad of S and so |θ ∩ θY | = |{X, X ′, Y }⊥| = r + 1. �

If a GQ S of order (r, r2) has a subGQ S ′ ⊂ S of order r such that each subtended
ovoid of S ′ is subtended by exactly two points of S, then we say that S ′ is doubly
subtended in S. In some sense a doubly subtended subquadrangle is an ‘extreme’
subquadrangle, so it is not surprising that we get some nice geometry from it. At
this stage we introduce a slight abuse of notation. If X is a point of S, then we
denote this by X ∈ S. If X is a point of S but not a point of S ′, then we denote
this by X ∈ S \ S ′.

We might now ask how many subtended rosettes can two subtended ovoids have
in common. Let θX and θY be two subtended ovoids; subtended by X and Y ,
respectively, where θX 6= θY .

There are three cases to consider: (i) neither θX nor θY is subtended by a second
point, (ii) θX is subtended by another point X ′ and θY is not subtended by a
second point, (iii) θX and θY are each subtended by a second point, say X ′ and Y ′

respectively. For case (i) θX and θY are contained in exactly one common subtended
rosette if X ∼ Y and in none otherwise. In case (ii) Y may be collinear with at
most one of X, X ′ since otherwise Y ∈ {X, X ′}⊥ ⊂ S ′ which contradicts Y ∈ S \S ′.
Thus for case (ii) θX and θY have one common rosette if Y ∼ X or Y ∼ X ′ (not
both) and none otherwise. For case (iii), to each unordered, incident pair taken
from {X, X ′, Y, Y ′}, there corresponds a subtended rosette containing θX and θY .
So there may be none, one or two subtended rosettes containing θX and θY . Note
that for the case where there are two such subtended rosettes, that they need not
be distinct. In this case two distinct lines subtend the same rosette.
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We have already seen that a GQ S of order (r, r2) with a subGQ S ′ of order
r that has all subtended ovoids of S being subtended twice is a special and also
extremal case of a subGQ of S. We now give a result which shows the relationship
between double subtending and the existence of a particular type of involution of
the GQ S. The idea for the construction of the involution comes from Thas [17].
For the following we will denote the ovoid subtended by a point X by θX.

Lemma 2.3 Let S be a GQ of order (r, r2) and S ′ a subGQ of order r. Then S ′ is
doubly subtended in S if and only if there exists a non-identity involution of S that
fixes S ′ pointwise.

Proof. First, let τ be an involution of S that fixes S ′ pointwise. We first show that
τ fixes no point of S \ S ′. Suppose that X ∈ S \ S ′ and τ (X) = X. Consider a line
` such that X ∈ ` and let ` ∩ S ′ = P , say. Now τ (P ) = P and so τ (`) = `. Now
let R ∈ `, R 6= P . Then θR = θτ (R) but τ (R) ∈ ` and so R = τ (R). Thus ` is fixed
pointwise by τ . Now consider a point Y ∈ S \ S ′, Y 6∼ X. If θY = θX then since
an ovoid may only be subtended twice and τ (Y ) subtends θY we must have that
τ (Y ) = Y . If θY 6= θX, then there exists an incident point/line pair (`′, R′) such
that X ∈ `′, R′ ∈ S \ S ′ and Y ∼ R′. However, R′ is fixed by τ as it is collinear
with X and so every point collinear with R′ is fixed, so τ also fixes Y . Thus τ fixes
every point of S and so is the identity, which is a contradiction. Hence τ fixes no
point in S \ S ′.

Thus we can now say that for any point X ∈ S \ S ′ we have τ (X) = X ′ 6= X
and so θX is subtended by the distinct points X, X ′.

Now, suppose that S ′ is doubly subtended in S. If X ∈ S \S ′ then let X ′ be the
second point subtending θX . Now define τ to be the following map:

τ : X 7→ X ′ X ∈ S \ S ′

X 7→ X X ∈ S ′.

Consider points P, Q ∈ S, with P ∼ Q. If P, Q ∈ S ′, then P = τ (P ) ∼ τ (Q) =
Q. If P ∈ S ′, Q ∈ S \ S ′, then P ∈ θQ = θQ′ = θτ (Q) and so P ∼ τ (Q), that is
τ (P ) ∼ τ (Q).

Now if P, Q ∈ S \ S ′ then |θP ∩ θQ| = |θτ (P ) ∩ θτ (Q)| = 1; so by Corollary 2.2 we
have that τ (Q) ∼ P or τ (Q) ∼ τ (P ). Since Q ∼ P it must be that τ (Q) 6∼ P and
so τ (P ) ∼ τ (Q). Thus τ is an automorphism of S and clearly an involution. �

Corollary 2.4 If S is a GQ of order (r, r2) that has a doubly subtended subGQ S ′
of order r, then for each incident point, subtended ovoid pair (X, θ), for X ∈ S ′,
there exists an unique subtended rosette R, containing θ and with base point X.

Proof. If θ is subtended by the points Y and Y ′, then the only subtended rosettes
containing θ and with base point X, are those subtended by the lines 〈X, Y 〉 and
〈X, Y ′〉. However 〈X, Y 〉 is the image of 〈X, Y ′〉 under the involution constructed in
Lemma 2.3, and vice-versa. Since the involution in Lemma 2.3 fixes the subquad-
rangle S ′ pointwise (and linewise), the rosette subtended by 〈X, Y 〉 and the rosette
subtended by 〈X, Y ′〉 are the same. �
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Now we show that if a subGQ is doubly subtended, then we get an SPG from
its subtended ovoid/rosette structure.

Theorem 2.5 Let S be a GQ of order (r, r2) containing a subGQ S ′ of order r,
such that S ′ is doubly subtended in S. Consider the incidence structure T :

Points : Subtended ovoids of S ′.
Lines : Subtended rosettes of S ′.
Incidence : Symmetrized containment.

Then T is a SPG with parameters s = r − 1, t = r2, α = 2 and µ = 2r(r − 1).

Proof. A rosette contains r ovoids, thus s = r−1. By Corollary 2.4 there are r2 +1
subtended rosettes containing a subtended ovoid θX , that is, t = r2.

Now consider a subtended rosette R with basepoint P and not containing the
ovoid θX . Recall that ovoids of R partition the points of S ′ that are not collinear
with P . Suppose that P ∈ θX. Then θX ⊂ S ′ \P⊥. Let n1 and nr+1 be the number
of ovoids of R that meet θX in 1 and r + 1 points, respectively (see Corollary 2.2).
Then we have the following equations:

nr+1 · r + n1 · 0 = r2

nr+1 + n1 = r

Solving simultaneously gives nr+1 = r and n1 = 0, that is, θX meets each ovoid
in R in r + 1 points.

Suppose now that P 6∈ θX . Then θX has r2 − r points non-collinear with P and
so we have the following equations:

nr+1 · (r + 1) + n1 = r2 − r

nr+1 + n1 = r

Solving simultaneously we have nr+1 = r − 2 and n1 = 2.
In terms of T the above means that if we have a non-incident point/line pair

(A, `) in T there are 0 or 2 point/line pairs (B, m) such that A I m I B I `.
Now consider two subtended ovoids of S ′, say θX and θY , such that |θX ∩ θY | =

r + 1. By Corollary 2.4, for each Q ∈ θX \ θY there exists exactly one subtended
rosette R, with base point Q and containing θX . By the above, we see that there
are two subtended rosettes containing θY and an ovoid in R, and so two subtended
ovoids that are contained in a subtended rosette with θX and contained in a distinct
subtended rosette with θY . This is true for each point in θX \ θY and so there are
2(r2 − r) subtended ovoids that are contained in a rosette with both θX and θY .
In T , this means that given two non-collinear points A and B there are 2r(r − 1)
points collinear to both A and B. �

Corollary 2.6 Let S be a GQ of order (r, r2) containing a subGQ S ′ of order r such
that there exists a non-identity involution of S that fixes S ′ pointwise. Then there
is an associated SPG with parameters s = r − 1, t = r2, α = 2 and µ = 2r(r − 1).
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3 The isomorphism problem for SPGs

In this section we will establish when two SPGs constructed as in Section 2 are
isomorphic. We first introduce algebraic 2-fold covers of SPGs.

3.1 Algebraic 2-fold covers of SPGs

Suppose that S is a GQ of order (r, r2) and S ′ is a subquadrangle of order r that
is doubly subtended in S. Let T be the SPG constructed from S and S ′ as in
Theorem 2.5. Let Γ be the point graph of T (the graph whose vertices are the
points of T and with adjacency given by collinearity in T ). Let c be a function such
that

c : {(P, Q) : P, Q adjacent vertices of Γ} → Z2

and c(P, Q) = c(Q, P ) for any pair of adjacent vertices P, Q. Now, define the graph
Γ as follows. Let the set of vertices of Γ be {(P, α) : P ∈ Γ, α ∈ Z2} and define
two vertices (P, α) and (Q, β) of Γ to be adjacent if P and Q are adjacent in Γ and
c(P, Q) = α + β. Any graph that is isomorphic to Γ is an algebraic 2-fold cover of
Γ. The vertices (P, 0) and (P, 1) of Γ are said to cover the vertex P of Γ, while P
is said to be covered by (P, 0) and (P, 1). For more details on covers and algebraic
covers see [2]. Note that in the work that follows on algebraic 2-fold covers, since c
maps into Z2, arithmetic will be modulo 2.

Now, suppose that c has the additional property that if P, Q, R are three collinear
points of T then δc(P, Q, R) = c(P, Q) + c(P, R) + c(Q, R) = 0. Let ` be the line
of T incident with the points {X1, X2, · · · , Xs+1}. Each Xi, i = 1, . . . , s + 1, is
covered by two vertices of Γ and this set of 2(s + 1) vertices of Γ form two disjoint
complete graphs of size s + 1: {(X1, 0), (X2, c(X1, X2)), · · · , (Xs+1, c(X1, Xs+1))}
and {(X1, 1), (X2, c(X1, X2)+1), · · · , (Xs+1, c(X1, Xs+1)+1)} (note that s+1 = r).
Each of these sets is said to cover the clique of Γ corresponding to the points of `,
or to simplify matters, to cover `. Now consider the geometry T that has pointset
the vertex set of Γ and lineset the set of covers of lines of T and so has point graph
Γ. Any geometry that is isomorphic to T is an algebraic 2-fold cover of T and is
said to be defined by the function c.

3.2 The GQ condition

Let S, S ′ and T be as in Section 3.1 and let T be the algebraic 2-fold cover of T
defined by the function c. Then T is said to satisfy the GQ condition if for each set
{P, Q, R} of pairwise collinear points of T

δc(P, Q, R) = c(P, Q) + c(P, R) + c(Q, R) = 0⇐⇒ P, Q, R are collinear (1)

Theorem 3.1 Let S = (P ,B, I) be a GQ of order (r, r2) and S ′ = (P ′,B′, I′) a
doubly subtended subGQ of order r. Let T be the SPG constructed from S and S ′,
as in Theorem 2.5 and let T ∗ be the geometry (P \ P ′,B \ B′, I∗), where I∗ is the
appropriate restriction of I. Let Θ be the set of subtended ovoids of S ′ and represent
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P \ P ′ as the set {(θ, 0), (θ, 1) : θ ∈ Θ}. Let c be the function defined by

c(θi, θj) =

{
0 if |θi ∩ θj| = 1 and (θi, 0) and (θj, 0) are collinear.
1 if |θi ∩ θj| = 1 and (θi, 0) and (θj, 0) are not collinear.

Then T ∗ is an algebraic 2-fold cover of T defined by c. Furthermore, c satisfies the
GQ condition (1).

Proof. Let θ1 and θ2 be two collinear points of T and so |θ1 ∩ θ2| = 1. Clearly,
c(θ1, θ2) = c(θ2, θ1). Since θ1 and θ2 are collinear points of T , they are two subtended
ovoids of S ′ contained in a common subtended rosette, that is, subtended by two
lines of S. The point (θ1, 0) of T ∗ is incident with one of these lines and (θ1, 1) is
incident with the other, and similarly for (θ2, 0) and (θ2, 1). Thus (θ1, α) is collinear
with (θ2, β) if and only if c(θ1, θ2) = α + β. Thus c defines an algebraic 2-fold cover
of the point graph of T .

To show that T ∗ is an algebraic 2-fold cover of the geometry T , defined by
c, we need to show that δc(θ1, θ2, θ3) = 0 whenever θ1, θ2 and θ3 are distinct
collinear points of T . Let θ1, θ2 and θ3 be three distinct collinear points of T ,
then they are contained in a common subtended rosette R of S ′. Now (θ1, 0) is
collinear with (θ2, c(θ1, θ2)) and with (θ3, c(θ1, θ3)). Since 〈(θ1, 0), (θ2, c(θ1, θ2))〉 and
〈(θ1, 0), (θ3, c(θ1, θ3))〉 both subtend the rosette R, it follows that (θ2, c(θ1, θ2)) and
(θ3, c(θ1, θ3)) are collinear and so δc(θ1, θ2, θ3) = 0. Thus c defines a cover of the
geometry T .

If θ1, θ2 and θ3 are pairwise collinear but not incident with a common line of T ,
then it follows that they are not contained in a common subtended rosette of S ′.
Thus (θ1, 0), (θ2, c(θ1, θ2)) and (θ3, c(θ1, θ3)) are not incident with a common line
of T ∗ and so (θ2, c(θ1, θ2)) and (θ3, c(θ1, θ3)) are not collinear since this would be a
triangle in S. Hence, δc(θ1, θ2, θ3) = 1 and c satisfies the GQ condition. �

Given the notation of Theorem 3.1 and T ∗ ∼= T (since T is an algebraic 2-fold
cover of T ), consider the following description of S.

Points (i) Points of S ′.
(ii) Points of T .

Lines (a) Lines of S ′.
(b) ` ∪ P where ` is a line of T and P the base point of the

subtended rosette covered by `. (2)

Incidence (i),(a) As in S ′.
(i),(b) A point P of type (i) is incident with a line ` ∪Q of

type (b) if and only if P = Q.

(ii),(a) None.

(ii),(b) A point P of type (ii) is incident with a line ` ∪Q of

type (b) if and only if P is incident with ` in T

Now suppose that in the above incidence structure instead of using the algebraic
2-fold cover of T from Theorem 3.1 we use an arbitrary algebraic 2-fold cover of
T . The following theorem specifies the conditions under which this new incidence
structure is a GQ.
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Theorem 3.2 Let S = (P ,B, I) be a GQ of order (r, r2) and S ′ = (P ′,B′, I′) a
doubly subtended subGQ of order r. Let T be the SPG constructed from S and S ′,
as in Theorem 2.5 and let T be an algebraic 2-fold cover of T defined by a function
c. Let W be the incidence structure defined by (2). incident Then W is a GQ of
order (r, r2) if and only if c satisfies the GQ condition (1). In this case W contains
S ′ as a subquadrangle and S ′ is doubly subtended by W. The SPG constructed from
W and S ′ as in Theorem 2.5 is T .

Proof. Any line of S ′ is incident with r + 1 points of S ′ and so r + 1 points of W.
A line `∪ P of type (b) is incident with P and with the r points of T incident with
`. Thus each line of W is incident with r + 1 points.

Let Q be a point of type (i), then Q is incident with r + 1 lines of S ′. There are
(r2 − r)/2 subtended rosettes that have Q as a base point and so there are r2 − r
lines of W of type (b) that are incident with Q. Thus Q is incident with r2 +1 lines
of S. By Corollary 2.4 each subtended ovoid of S ′ is contained in r2 + 1 subtended
rosettes and so each type (ii) point of W is incident with r2 + 1 lines of W.

We check the third GQ axiom for each non-incident point/line pair, (P, `) of W.
If P is of type (i) and ` is of type (a), then since S ′ is a GQ the property holds. Let
P be of type (i) and ` ∪ Q of type (b). If P and Q are collinear then there is no
ovoid of S ′ containing both P and Q. Thus, Q is the unique point of ` ∪ Q that is
collinear with P . If P is not collinear with Q then P is contained in a unique ovoid
in the rosette subtended by `. There is a unique subtended rosette containing this
ovoid and with basepoint P .

Let P be of type (ii) and ` of type (a). The ovoid θ, corresponding to P meets `
in exactly one point X. There is a unique subtended rosette containing θ and with
basepoint X and thus a unique line of type (b) containing P and X.

Let P be of type (ii) and let ` ∪ Q of type (b). Let θ be the ovoid of S ′
corresponding to P and R = {θ1, . . . , θr} the subtended rosette of S ′ corresponding
to `. Without loss of generality suppose that P = (θ, 0). There are two possibilities
for `, either

` = {(θ1, 0), (θ2, c(θ1, θ2)), . . . , (θr, c(θ1, θr))} or

` = {(θ1, 1), (θ2, c(θ1, θ2) + 1), . . . , (θr, c(θr, θ1) + 1)}. Suppose that θ ∈ R and
that without loss of generality θ = θ1. Then since (θ, 0) is not incident with ` we
have that

` = {(θ1, 1), (θ2, c(θ1, θ2) + 1), . . . , (θr, c(θ1, θr) + 1)} and (θ, 0) is collinear with
none of the points on `. Thus Q is the unique point on ` ∪Q that is collinear with
P . Now suppose that θ 6∈ R and that without loss of generality

` = {(θ1, 0), (θ2, c(θ1, θ2)), . . . , (θr, c(θr, θ1))}. If Q ∈ θ then θ meets each of the
θi in r + 1 points and is contained in a unique subtended rosette with Q as the
basepoint, which gives a unique line incident with P and a point of `∪Q. If Q 6∈ θ,
then there are two ovoids of R that meet θ in precisely one point. Without loss
of generality let these ovoids be θ1 and θ2. Now (θ1, 0) is collinear to (θ2, c(θ1, θ2))
(on `) and (θ1, 1) is collinear to (θ2, c(θ1, θ2) + 1), while (θ, 0) is collinear to exactly
one point of the form (θ1,−) and one of the form (θ2,−). So (θ, 0) is collinear
to exactly one point on ` ∪ Q if and only if either (θ, 0) is collinear to (θ1, 0) and
(θ2, c(θ1, θ2) + 1) or (θ, 0) is collinear to (θ1, 1) and (θ2, c(θ1, θ2)). This occurs if and
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only if c(θ, θ2) = c(θ, θ1) + c(θ1, θ2) + 1. That is, if and only if

δc(θ, θ1, θ2) = c(θ, θ1) + (c(θ, θ1) + c(θ1, θ2) + 1) + c(θ1, θ2)

= 1.

This is precisely the GQ condition 1. Thus W is a GQ of order (r, r2) if and only if
c satisfies the GQ condition.

Now suppose that W is a GQ of order (r, r2). If X is a point of type (ii) of S,
then let θX be the ovoid of S ′ that is covered by X. The set of lines of W incident
with X meets S ′ in the set of basepoints of subtended rosettes containing θX . So, in
W, X subtends the ovoid θX in S ′. It then follows that a line ` ∪ P of W subtends
the rosette that is covered by the line ` of T . Thus S ′ is doubly subtended in W
and the subtended ovoid/rosette structure is T . �

3.3 Isomorphisms of SPGs

In this section we determine when two SPGs, constructed from the double subtend-
ing process, are isomorphic. We also calculate the group of such an SPG.

Theorem 3.3 Let W and S be two GQs of order (r, r2) and let W ′ and S ′ be
subGQs of W and S respectively, of order r. Let W ′ and S ′ be doubly subtended in
W and S and let the SPGs constructed as in Theorem 2.5 be TW and TS . The SPGs
TW and TS are isomorphic if and only if there exists an isomorphism from W ′ to S ′
that induces an isomorphism from TW to TS .

Proof. First, let cS define an algebraic 2-fold cover of TS , as in Theorem 3.1, and
let i : TW → TS be an isomorphism. If θ and θ′ are two points of TW , then we
may easily show that the function cW acting by cW(θ, θ′) = cS(i(θ), i(θ

′)) defines
an algebraic 2-fold cover of TW , that satisfies the GQ condition. Let T cWW be the
algebraic 2-fold cover of TW defined by cW , T cSS the algebraic 2-fold cover of TS
defined by cS and S the GQ of order (r, r2) constructed from T cWW and W ′ as in
Theorem 3.2. Now, let ı be the map from the point set of T cWW to the point set of
T cSS , which acts by (θ, α) 7→ (i(θ), α)), for θ a point of TW and α ∈ Z2. If the lines
of TW are considered as sets of points of TW , then ı induces an isomorphism from
T cWW to T cSS , which we also denote by ı. We show that ı may be extended to an
isomorphism from S to S.

Let ` and m be two lines of S that are tangent toW ′. A line of S that is tangent
to W ′ is said to be a transversal to ` and m if it is concurrent to both ` and m.

Let P be the unique point of W ′ that is incident with `. Let Q be the unique
point of W ′ that is incident with m. Now if P and Q are not collinear, then by the
third GQ axiom one point of the set ` \ {P} is collinear with Q and each of the
remaining r− 1 points of ` \ {P} is collinear with a unique point of m \ {Q}. Thus
there are r− 1 transversals to ` and m in this case. If P is collinear to Q (with the
line incident with P and Q necessarily a line of W ′), then each point of ` \ {P} is
collinear with a unique point of m \ {Q}. Thus there are r transversals to ` and m.

Now if ` and m are not skew, but meet in a point of W ′, that is P = Q, then
the third GQ axiom implies that there are no transversals to ` and m.
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Note that the above shows that the geometry T cWW satisfies the axiom (∗) of De
Clerck and Van Maldeghem [3].

is

Let `′ and m′ be the lines of T cWW such that ` = `′ ∪ {P} and m = m′ ∪ {Q}.
Let a line of T cWW be a transversal to `′ and m′ if it is concurrent to both `′ and m′.
Consider the incidence structure which has as points the sets L of lines of T cWW of
size q2 − q such that any pair of lines of L has no transversals T cWW a pair of lines
of `, m ∈ L and m, and and points L1 and L2 collinear if `1 and `2 have exactly
r transversals, for all `1 ∈ L1 and `2 ∈ L2 (lines are the maximal sets of pairwise
collinear points). The above calculations show that this incidence structure is W ′.

Thus ı may be extended to an isomorphism from S to S. The restriction of ı to
W ′ is an isomorphism from W ′ to S ′ that induces i from TW to TS .

Now suppose that there exists an isomorphism from W ′ to S ′ that takes TW
to TS . Since such an isomorphism maps ovoids to ovoids, rosettes to rosettes and
preserves inclusion of an ovoid in a rosette, it induces an isomorphism from TW to
TS . �

As a corollary of Theorem 3.3 we state the automorphism group of an SPG
arising from the double subtending process.

Corollary 3.4 Let S be a GQ of order (r, r2) and S ′ a subGQ of order r. Let
S ′ be doubly subtended in S, with SPG T constructed as in Theorem 2.5. The
automorphism group of T is the stabiliser of T in the automorphism group of S ′.

Proof. From the proof of Theorem 3.3, if T = TW = TS and i is an automorphism
of T , then there is an automorphism of S ′ that induces i. Also, any automorphism
of S ′ that fixes T induces an automorphism of T . Since any point of S ′ may be
expressed as the intersection of two ovoids that are points of T , any automorphism
of S ′ that induces the identity on T must be the identity. So, if we consider the
group of S ′ that fixes T acting on T by the automorphism it induces, the action is
faithful and so it is the group of T . �

4 The q-clan GQs

In this section we give a summary of results on the q-clan construction of GQs of
order (q2, q). First consider the group coset construction of a GQ as introduced by
Kantor [8]. Let G be a finite group of order s2t, s ≥ 2, t ≥ 2 and two families of
subgroups F = {S0, . . . , St}, F? = {S?

0 , . . . , S
?
t } such that |Si| = s, |S?

i | = st and
Si ⊆ S?

i . If F and F? satisfy:

K1 SiSj ∩ Sk = 1 for k 6= i, j

K2 S?
i ∩ Sj = 1 for i 6= j
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Then F is a 4-gonal family for G. The following point-line geometry S(G,F) is a
GQ of order (s, t).

Points : (i) Elements of G

(ii) Right cosets, S?
i g, i = 0, . . . , t, g ∈ G

(iii) (∞)

Lines : (a) Right cosets Sig, i = 0, . . . , t, g ∈ G

(b) Symbols [Si], i = 0, . . . , t.

A point g of type (i) is incident with each line Sig. A point S?
i of type (ii) is incident

with [Si] and with each line Sih ⊂ S?
i g. The point (∞) is incident with each line [Si]

of type (b). These are all of the incidence relations. The GQ S(G,F) is an elation
GQ with elation group G. If g ∈ G, then the elation corresponding to g is induced
by right multiplication by g.

Now we consider q-clans and give the construction of a 4-gonal family from a
q-clan, the development of which is due to Payne [12, 13] and Kantor [10]. For q a
prime power a q-clan is a set C = {At : t ∈ GF(q)} of q 2×2 matrices over GF(q) such
that for distinct s, t ∈ GF(q), (a, b)(As−At)(a, b)T = 0 has only the trivial solution

a = b = 0. We can normalise a q-clan such that for q odd At =

(
xt yt/2

yt/2 zt

)
and

for q even At =

(
xt yt
0 zt

)
.

Now consider the particular group G = {(α, c, β) : α, β ∈ GF(q)2, c ∈ GF(q)}
and define a binary operation on G by

(α, c, β) · (α′, c′, β ′) = (α + α′, c + c′ + β(α′)T , β + β ′).

This binary operation makes G into a group where (α, c, β)−1 = (−α, αβT − c,−β).
Let C be a normalised q-clan and Kt = At + AT

t for t ∈ GF(q). Define the following
subgroups of G:

A(∞) = {(0, 0, β) : β ∈ GF(q)2}
A?(∞) = {(0, c, β) : c ∈ GF(q), α ∈ GF(q)2}

A(t) = {(α, αAtα
T , αKt) : α ∈ GF(q)2} for t ∈ GF(q)

A?(t) = {(α, c, αKt) : c ∈ GF(q), α ∈ GF(q)2} for t ∈ GF(q).

Then F(C) = {A(t) : t ∈ GF(q)∪ {∞}} is a 4-gonal family for G which gives a GQ
of order (q2, q), S(G,F(C)). We will denote S(G,F(C)) by S(C).

The following three theorems are results on the automorphism group of a q-clan
GQ which will prove useful in Section 5.

Theorem 4.1 ([14], III.(1)) Suppose G1, G2 are groups and F a 4-gonal family
of G1. If Θ : G1 → G2 is a group isomorphism or a group anti-isomorphism, then
S(G1,F) and S(G2, Θ(F)) are isomorphic GQs.

In particular, if we have a group automorphism of G then it induces an automor-
phism of S(G,F).
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Theorem 4.2 ([14], IV.1.) Let C be a q-clan, q odd, with A0 = K0 = 0 and A
symmetric for all A ∈ C. Let S(C) = (P ,B, I) be the associated GQ of order (q2, q).
Let Θ be a collineation of S(C) which fixes (∞), [A(∞)], and (0, 0, 0). Then there
is

a permutation t 7→ t of the elements of GF(q),

a nonzero element λ of GF(q),

an automorphism σ of GF(q) and ,

a 2× 2 matrix D ∈ GL(2, q)

for which the following holds

At = λDTAσ
t D + A0 for all t ∈ GF(q).

Moreover, Θ induces an automorphism of G, given by

Θ : (α, c, β) 7→ (ασλ−1D−T , λ−1cσ + λ−2ασD−TA0D
−1(ασ)T , βσD + ασλ−1D−TK0).

Conversely, given D, σ, λ and t 7→ t as just described, the Θ = Θ(π, λ, σ, D) as
above is a collineation of S(C).

The automorphisms in Theorem 4.2 all fix the line [A(∞)], in the following theorem
we consider automorphisms not fixing [A(∞)].

Theorem 4.3 ([14], III.5.) If the set C = {At : t ∈ GF(q)} is a q-clan with A0 =(
0 0
0 0

)
, then C′ = {A−1

t : 0 6= t ∈ GF(q)} ∪ {A0} is a q-clan with S(C) ∼= S(C′).

In fact, the switch from C to C′ just amounts to interchanging the roles of A(∞) and
A(0) in the coordinatisation of S.

Note that for q odd, the isomorphism in Theorem 4.3 is given by the group auto-
morphism Θ : G→ G : (α, c, β) 7→ (β, 2c, 2α). Thus the subgroup Q1 = (GF(q)×
0)×GF(q)× (GF(q)× 0) is fixed under the isomorphism.

5 A GQ of Kantor, an ovoid of Kantor and a new SPG

In [10] Kantor constructed the q-clan Cσ, which has associated GQ S(Cσ) of order
(q2, q). In this section we investigate the connection between the GQ S(Cσ) and the
ovoid θσ constructed by Kantor in [9]. The dual GQ S(Cσ)∧ possesses a subquad-
rangle isomorphic to Q(4, q) and we show that each subtended ovoid of the Q(4, q)
subquadrangle is isomorphic to θσ. We also show that the Q(4, q) subquadrangle
is doubly subtended in S(Cσ)∧. Since the subtended ovoids are isomorphic to θσ,
Theorem 3.3 shows that the SPG constructed as in Theorem 2.5 is distinct from the
Metz/Hirschfeld and Thas SPG constructed in the classical case. Hence we have a
new SPG. Note that the work in this section relies heavily on the work of Payne
and Rogers in [14].
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Consider the q-clan

Cσ =

{
At =

(
t 0
0 −mtσ

)
: t ∈ GF(q)

}

where q is an odd prime power, m a fixed non-square of GF(q) and σ ∈ Aut(GF (q)),
as constructed in [10]. Recall from Section 4 that if G is the group with elements
{(α, c, β) : α, β ∈ GF(q)2, c ∈ GF(q)} and operation

(α, c, β) · (α′, c′, β ′) = (α + α′, c + c′ + β(α′)T , β + β ′),

then the family of subgroups of G (of order q2)

A(∞) = {(0, 0, β) : β ∈ GF(q)2}
A(t) = {(α, αAtα

T , αKt) : α ∈ GF(q)2} for t ∈ GF(q), where Kt = At + AT
t

= {(α, αAtα
T , 2αAt) : α ∈ GF(q)2} for t ∈ GF(q)

is a 4-gonal family for G which we denote by F(Cσ). The family of subgroups

A?(∞) = {(0, c, β) : c ∈ GF(q), α ∈ GF(q)2}
A?(t) = {(α, c, 2αAt) : c ∈ GF(q), α ∈ GF(q)2} for t ∈ GF(q)

is denoted by F?(Cσ). The GQ of order (q2, q) constructed from the 4-gonal family
F(Cσ) is denoted by S(Cσ). Note that Kantor observes that S(Cσ) ∼= S(Cσ−1).

In [10] Kantor observes that if Q1 = (GF(q) × 0) × GF(q) × (GF(q) × 0) and
Q2 = (0×GF(q))×GF(q) × (0× GF(q)) are subgroups of G, then for i = 1 or 2,
Fi = {Ai(t) = A(t)∩Qi : t ∈ GF(q)∪{∞}} is a 4-gonal family for Qi giving rise to
an Sp(4, q) subquadrangle, that is, a subquadrangle of S(Cσ) isomorphic to W (q).
We saw in Lemma 1.1 that ifW is a GQ of order (r, r2) withW ′ a subquadrangle of
order r, then each point ofW, external toW ′, subtends an ovoid ofW ′. Dually,W∧
is a GQ of order (r2, r) with (W ′)∧ a subquadrangle of order r and each line external
to (W ′)∧ subtends a spread of (W ′)∧. If W ′ is doubly subtended in W, then we
say that (W ′)∧ is doubly subtended in W∧. So, we are interested in the subtended
spreads of the GQ determined by F1 and F2. It can be shown using Theorem 4.2
([14, IV.1.]) that there exists an isomorphism of S(Cσ) that maps the subquadrangle
determined by F1 to the subquadrangle determined by F2. Since this is the case,
we will consider only the subquadrangle determined by F1, which will be referred
to as W (q) from here on.

Firstly, we show that the subtended spreads of W (q) are pairwise isomorphic.
We do this by showing that the group of S(Cσ) that fixes W (q) is transitive on the
lines of S(Cσ) external to W (q). The lines of S(Cσ) that are external to W (q) are
A(∞)g, for g ∈ G, such that A(∞)g ∩ Q1 is empty, and A(t)g, for t ∈ GF(q) and
g ∈ G, such that A(t)g ∩Q1 is empty. The following lemma deals with the external
lines of the form A(∞)g.

Lemma 5.1 The stabiliser of W (q) in S(Cσ) is transitive on lines external to W (q)
that have the form A(∞)g.
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Proof. The coset A(∞)g is the set {((g1, g2), g3 + u1g1 + u2g2, (g4 + u1, g5 +
u2)) : u1, u2 ∈ GF(q)} and so the line A(∞)g is external to W (q) if and only
if g2 6= 0. We show that g can be mapped to an element of G of the form
g′ = ((g′1, g

′
2),−, (−,−)) by an automorphism of S(Cσ) that fixes W (q).

Let k = g′2/g2 and gz = ((z, 0), 0, (0, 0)) where z = g′1/k − g1. The elation of
S(Cσ) corresponding to gz acts on g by right multiplication

gz : g 7→ ((
g′1
k

,
g′2
k

),−, (−,−)).

By Theorem 4.1 an automorphism of G that fixes Fσ induces an automorphism of
S(Cσ). Let σk be the automorphism of G acting by (α, c, β) 7→ (kα, k2c, kβ). The
automorphism of S(Cσ) induced by σk acts on g · gz by

σk : g · gz 7→ ((g′1, g
′
2),−, (−,−)).

Clearly both the elation of S(Cσ) induced by gz and the automorphism of S(Cσ)
induced by σk fix W (q).

So now we may assume that g has the form g = ((g′1, g
′
2), g3, (g4, g5)). Let x =

g′3− g3 +(g4− g′4) · g′1 +(g5− g′5) · g′2 and gx = ((0, 0), x, (0, 0)). The elation of S(Cσ)
induced by gx maps A(∞)g to A(∞)g′ and fixes W (q). �

Lemma 5.2 The stabiliser of W (q) in S(Cσ) is transitive on lines external to W (q).

Proof. First we show that the stabiliser of W (q) in S(Cσ) is transitive on the
set {[A(t)] : t ∈ GF(q)}. Let s ∈ GF(q) and let π be a permutation of GF(q),
π : t 7→ t = t + s. Then

At = At+s =

(
t + s 0

0 −m(t + s)σ

)

=

(
t 0
0 −mtσ

)
+

(
s 0
0 −msσ

)
= At + As = At + A0

So by Theorem 4.2 there is an automorphism Θ of S(Cσ) with λ = 1, σ the
identity, D = I (see Theorem 4.2 for notation) and associated permutation π. By
Theorem 4.2 we have that

Θ : [A(t)] 7→ [A(t + s)]

: (α, c, β) 7→ (α, c + αAsα
T , β + 2αAs)

Now Θ fixes W (q) and if we let s vary over GF(q), then we have the desired transi-
tivity on {[A(t)] : t ∈ GF(q)}.

From this it can be shown that any line external to W (q), of the form A(t)g may
be mapped to an external line of the form A(0)g′, for some g′. We now wish to find
an automorphism of S(Cσ) that fixes W (q) and swaps [A(∞)] and [A(0)] (and hence
maps a line of the form A(0)g to one of the form A(∞)g′ and vice versa). Consider

the q-clan C′σ = {A−1
t : t ∈ GF(q) \ {0}} ∪ {A0}. Now if S =

(
1 0
0 m

)
then the



202 M. Brown

automorphism of G given by (α, c, β) 7→ (αS−1, c, βS) induces an isomorphism from
S(C′σ) to S(Cσ) which maps ([A(t)], [A(0)], [A(∞)]) to ([A(t−1)], [A(0)], [A(∞)]) for
t ∈ GF(q) \ {0}. Composing this isomorphism with that in Theorem 4.3 yields an
automorphism of S(Cσ) mapping [A(∞)]↔ [A(0)] and fixing W (q).

Thus any line of S(Cσ) external to W (q), that has the form A(t)g may be mapped
to a line of the form A(∞)g′ by an automorphism of S(Cσ) fixing W (q). Lemma 5.1
then implies that the stabiliser of W (q) in S(Cσ) is transitive on the lines of S(Cσ)
external to W (q). �

We now show that each spread of W (q) subtended by a line of S(Cσ) external to
W (q), is dual to an ovoid of Q(4, q) that is isomorphic to the ovoid θσ constructed by
Kantor in [9]. That is, under the duality from W (q) to Q(4, q) any subtended spread
of W (q) is mapped to an ovoid of Q(4, q) isomorphic to θσ. Given Lemma 5.2, if one
subtended spread of W (q) is dual to an ovoid isomorphic to θσ, then all subtended
spreads must be.

Let Q(4, q) be defined by the equation x0x4 + x1x3 + x2
2 = 0 then θσ is given by

θσ = {(0, 0, 0, 0, 1)} ∪
{
(1, y, z,−myσ,−z2 + myσ+1) for y, z ∈ GF(q)

}
.

Here m is the same fixed non-square and σ the same automorphism of GF(q) used in
the definition of Cσ. The ovoid θσ may also be written as the intersection of Q(4, q)
with the variety defined by the equation mxσ1 + xσ−1

0 x3 = 0.
The GQ W (q) may be represented as the set of absolute points and lines of a

symplectic polarity in PG(3, q). The canonical form of W (q) in PG(3, q) is given
by the polarity which has associated bilinear form x0y1 − x1y0 + x2y3 − x3y2 = 0.
In the following lemma we give an explicit isomorphism between the W (q) as a
subquadrangle of S(Cσ) and the canonical representation in PG(3, q).

Lemma 5.3 Let F1 = {A1(t) = A(t) ∩ Q1 : t ∈ GF(q) ∪ {∞}} be the 4-gonal
family for W (q) as above. Let W (q)′ be the GQ arising in PG(3, q) as the set of
absolute points and absolute lines of the symplectic polarity with associated bilinear
form x0y1− x1y0 + x2y3− x3y2 = 0. Then the map ρ is an isomorphism from W (q)
to W (q)′ where ρ acts as follows:

(∞) 7→ (0, 1, 0, 0)
[A1(t)] 7→ 〈(0, 0, 2t, 1), (0, 1, 0, 0)〉

[A1(∞)] 7→ 〈(0, 1, 0, 0), (0, 0, 1, 0)〉
((g1, 0), g2, (g3, 0)) 7→ (1, 2g2 − g1g3, g3, g1)

A1(t)((g1, 0), g2, (g3, 0)) 7→ 〈(1, 2g2 − g1g3, g3, g1), (0, 2g1t− g3, 2t, 1)〉
A1(∞)((g1, 0), g2, (g3, 0)) 7→ 〈(1, 2g2 − g1g3, g3, g1), (0, g1, 1, 0)〉
A?

1(t)((g1, 0), g2, (g3, 0)) 7→ (0, 2tg1 − g3, 2t, 1)
A?

1(∞)((g1, 0), g2, (g3, 0)) 7→ (0, 2g1, 1, 0)

where t, g1, g2, g3 ∈ GF(q).

Theorem 5.4 Let W (q) be the subquadrangle of S(Cσ) given by F1. Then, each
spread of W (q) subtended by a line of S(Cσ) external to W (q) is dual to an ovoid of
Q(4, q) that is isomorphic to θσ.
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Proof. Given Lemma 5.2, we may take our favourite fixed line of S(Cσ) external to
W (q) and find its subtended spread S. Let ` = A(∞)g be the external line where
g = ((0, 1), 0, (0, 0)). Then the points on A(∞)g are

{((0, 1), u2, (u1, u2)) : u1, u2 ∈ GF(q)} ∪ {A?(∞)g}

where A?(∞)g = {((0, 1), u3, (u4, u5)) : u3, u4, u5 ∈ GF(q)}.
For each point on A(∞)g there is a unique line of W (q) incident with it, which

is a line of the subtended spread. For the point A?(∞) the corresponding line is
[A(∞)]. Now let h(u1, u2) = ((0, 1), u2, (u1, u2)) for u1, u2 ∈ GF(q), then for each
pair (u1, u2) we need to find t ∈ GF(q) such that A(t)h(u1, u2) is a line of W (q).
Now

A(t)h(u1, u2) =
{(

(v1, v2 + 1), v2
1t−mv2

2t
σ + u2 − 2mv2t

σ,

(2v1t + u1,−2mv2t
σ + u2)) : v1, v2 ∈ GF(q)}

and is a line of W (q) if it contains any point of W (q) (in which case it contains
q + 1 points of W (q)). This occurs if, as a coset of A(t) in G, A(t)h(u1, u2) contains
an element of Q1 (in which case it contains q elements of Q1). So v2 = −1 and

−2mv2t
σ = −u2 which implies t = −

(
u2

2m

)σ−1

.

Thus the spread of W (q) subtended by S(Cσ) has the form:

S =


[A(∞)]

A

(
−
(

u2

2m

)σ−1
)

h(u1, u2), u1, u2 ∈ GF(q)

To express the spread in the group coset representation of W (q) without reference

to S(Cσ), we need a representative of the coset A

(
−
(

u2

2m

)σ−1)
h(u1, u2) that is in

Q1, say ((0, 0), u2 + 2mtσ, (u1, 0)) = ((0, 0), u2/2, (u1, 0)). Thus the spread is

S =


[A(∞)]

A

(
−
(

u2

2m

)σ−1)
((0, 0),

u2

2
, (u1, 0)), u1, u2 ∈ GF(q).

By using the isomorphism in Lemma 5.3, S has the following form in W (q)′:

S =


{x0 = 0; x3 = 0} = 〈(0, 1, 0, 0), (0, 0, 1, 0)〉

〈(1, u2, u1, 0), (0,−u1, 2t, 1)〉, t = −
(

u2

2m

)σ−1

for u1, u2 ∈ GF(q).

We use Plücker coordinates and the Klein correspondence (see [6, Chapter 15])
to give a duality from W (q)′ to Q(4, q). Thus, in Q(4, q) the spread S becomes an
ovoid θ, say, which has the form:

θ =


(0, 0, 0, 0, 1)

(1, 2t,−u1, u2,−2u2t− u2
1), t = −

(
u2

2m

)σ−1

for u1, u2 ∈ GF(q).
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Now since

m(2t)σ + 1σ−1u2 = m

(
2
(−u2

2m

)σ−1)σ
+ u2

= m
(−u2

m

)
+ u2

= 0,

it follows that every point of θ satisfies the equation mxσ1 + xσ−1
0 x3 = 0 and so θ is

the ovoid θσ. �

Theorem 5.5 There is an involution of S(Cσ) that fixes W (q).

Proof. Consider the automorphism ΘD = Θ(π, λ, ρ, D) of S(Cσ), using the notation
of Theorem 4.2, where π is the identity permutation on GF(q), λ = 1, ρ the identity

automorphism of GF(q) and D =

(
1 0
0 −1

)
∈ GL(2, q). Then

ΘD : (α, c, β) 7→ ((α1,−α2), c, (β1,−β2)) where α = (α1, α2) and β = (β1, β2).

Thus ΘD is an involution of S(Cσ) that fixes W (q). �

Corollary 5.6 The SPG constructed by the GQ S(Cσ)∧ and the subGQ isomorphic
to Q(4, q), as in Theorem 2.5, is not isomorphic to the known SPG with parameters
s = q − 1, t = q2, α = 2 and µ = 2q(q − 1).

Proof. The GQ S(Cσ)∧ of order (q, q2) has a subquadrangle of order q isomorphic
to Q(4, q) such that there is a collineation of S(Cσ)∧ that fixes this subquadrangle
pointwise. Thus, by Corollary 2.6 we have an SPG and since each subtended ovoid
of the subquadrangle is non-classical, by Theorem 3.3 it is not isomorphic to the
known SPG of that order. �
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