Linear spaces of quadrics and new good codes

Andries E. Brouwer

Abstract

A conjecture of Mario de Boer about the weights occurring in a space of
quadrics is proved. Some record-breaking codes are constructed.

Let V' be a vector space of dimension m over [F, and consider the space F' of all

quadratic forms on V. Then dim F' = (m; 1). If @ is a quadratic form on V with

radical R, then we can define a nondegenerate form @ on V/R by Q(z + R) = Q(x)
for x € V. We shall call @) elliptic, parabolic or hyperbolic when @) is. The rank of
@ is the dimension of V/R.

Theorem

For0<t< %m there do exist linear subspaces Fy of F' such that

(i) these subspaces form a chain: Fi1 C Fy for all t,

(#) dim F} = (m;q) —mt,

(#i) all nonzero quadrics in Fy have rank at least 2t (indeed, the associated sym-
metric bilinear forms all have rank at least 2t ),

(iv) the nonzero hyperbolic quadrics in Fy have rank at least 2t 4 2,

(v) if m is odd, then the elliptic quadrics in F; have rank at least 2t + 2,

(vi) if m = 2t, then the nonzero quadrics in Fy are all elliptic.

Parts (i)-(iv),(vi) are due to Mario de Boer [1]. Part (v) was conjectured by him.

One may construct a linear code C' from F' (and C; from F}), by fixing one
representative x in each projective point (1-space) () in the projective space PV,
and use evaluation to get for each quadratic form @) € F; a code word cg = (Q(2))4-
Its weight is the number of projective points outside the quadric defined by Q.
Clearly, this code has word length |PV| and dimension dim F}.
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Lemma

The quadric defined by @ in PV has

m—1
q - 1 + Eq%(m—f—r)—l
qg—1
points, where r = dimRad @ and ¢ = —1,0,1 when Q is elliptic, parabolic or

hyperbolic, respectively.
It follows that

Corollary

For0<t< %m there do exist linear subcodes Cy of C' with parameters

[

q" — 1 m+1 m—1 m—t—2
PR ( 9 ) —mt, ¢° " —q ]
and these codes form a chain: Cyi 1 C Cy for all t.

If m is even, then Cy has at most m — 2t + 2 nonzero weights (precisely m + 1 if
t=0); if m is odd, then C; has at most m — 2t nonzero weights.

The smallest of these codes in fact have a larger minimum distance: if t =
s(m — 1) then C; has parameters

qg" —1

m—1
[q_17m7q ]

and if t = %m then Cy has parameters

q" — 11 m—1 Im—1
[q_l,Qqu +q2" ]
In these last two cases, Cy is equidistant.

(In [2] it is claimed incorrectly that for m = 2t 4+ 1 the code C; is a 2-weight
code.)

The code C (a 2nd order projective Reed-Muller code) is not very good, but for
t > 0 the codes C} are often the best codes known, given their word length and
dimension. Mario de Boer conjectures that C; has the largest possible dimension
among the linear subcodes of C' not containing hyperbolic quadrics of rank at most
2t except in case ¢ = 2, m = 2, t = 1. This would mean that in all cases C; is the
largest possible linear subcode of C' with its minimum distance.

Proof (of the theorem). Take V' = Fym. Then we have
F = {Z az‘jl'qil'qj | aij € qu, Ajt1,j+1 = a?j}
,J

where the sum is over the unordered pairs i,7 in {0,...,m — 1}, regarded as the
additive group of integers modulo m. Let F}; be the subspace of F' defined by a;; = 0
for |i — j| < t. Then (i) and (ii) hold.
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Note that for odd m the elements of F' can be written as

Q)=Tr( Y. agz"?)

0<j<m/2

where Tr is the trace function from Fym to F,, while if m = 2n is even, we have

Q) =Tr( Y aga™) + tr (agur' ")

0<j<m/2

where tr is the trace function from F. to F, (and ag,z'™9" actually lies in Fyn).

The symmetric bilinear form B corresponding to Q is given by B(z,y) = 3 a;(z9
y? 4+ 29y7") = Tr (zL(y)) where L(y) = 2aooy + S50 aojy? for all m.

We have Rad Q C Rad B, and y € Rad B if and only if L(y) = 0. But if Q € F},
then L(z) = M(z)?, where M has degree at most ¢™ %, so |Rad B| < ¢ and
dimRad B < m — 2t, unless M = 0, i.e., B = 0, so that ¢ is even, t = 0, and (@ is
the square of a linear form. This proves (iii).

Each nonzero polynomial @ in F; has degree at most ¢™ ! + ¢™ '~* and has
smallest degree term of degree at least 1+ ¢' (unless ¢ = 2, ¢t = 0). Put Q(z) =
Q(x)/x?. Then every root of @ is a root of Q) so that Q defines a quadric with at
most (¢ 1 +¢™ 1t — ¢t —1)/(q — 1) projective points, and we see that F; does not
contain hyperbolic quadrics ) with r = dimRad @ > m — 2t. If t = %m, then we
see that the nonzero quadrics () in F; have fewer than 9% points, hence are all
elliptic. This proves (iv) and (vi).

Assume that m is odd, and consider the field W = Fm as a vector space of
dimension m over Fp2. Each quadric Q(z) = Y, bz 27" on W has restriction
> a; ;7729 to Fym, where agro = iy (subscripts modulo m). If this restriction
is an elliptic (or hyperbolic) quadric with radical of dimension m — 2t (over F,),
and a;; = 0 for |i — j| < t, then @ is a hyperbolic quadric with radical of the same
dimension, and by ; = ask 2 (subscripts mod m). But for the coefficients we still need
that they vanish when the indices differ by less than ¢, and this was lost. Choose h
such that 2" = 1 (mod m). Go to the field F,v with N = 2"m. Then the equation is
the same again (Q(z) = X2, ; ai,szi:czj where z = qZh), and the quadric is hyperbolic.
Contradiction. This proves (v). ]

The above codes are good, as we mentioned — usually they are as good as
the best codes known, given length and dimension. A little bit of fiddling yields
improvements in the tables.

We can enlarge our codes by adding the all-1 vector. Let D; = C; 4 (1). Then
dim D; = dim C; + 1. What about the minimum distance?

The largest weight occurring in Cy is ¢™ 1 +¢™ 2 if m is odd, and ¢™ ! +¢™ 1
if mis even. Thus, if ¢ = 2 and m is odd, we find a [2™, (m;q) —mit+1,2m-1_om=t=2]_
code (extending D; by one extra position 0 where the quadratic forms vanish and
the nonzero constants do not). This is an extended BCH code.

If g is odd, then the nonzero positions of () are partitioned into the x for which
Q(z) is a square and those for which it is a nonsquare. If @ is a hyperbolic or
elliptic quadric, then both parts have the same size (g™ — 5q%(m+r)_1)/2. If Q is
parabolic, then Q(z) is a square or a non-square for (¢ + ng™*+7=1/2) /2 points
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x, where n = 1. In particular, for ¢ = 3 we find that D; has minimum distance (at
least) 3™t — (3™~*~1 +1)/2, that is 6 = (3™ *72 +1)/2 smaller than the minimum
distance of ;. This means that we can lengthen D;, adding ¢ ones to the all-1
vector, and obtain ternary [(3™ 4 3™7172)/2, 5”;1) —mt+1,3""1 — 37121 codes.
For example, with m = 5, ¢t = 1 we find ternary [126, 11, 72]-codes, while the current
record holder was a [126, 11, 68]-code. It seems likely that we can do even better by

adjoining a random vector to Cy, instead of the all-1 vector.
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