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Abstract

We prove that the local isometry classes of Riemannian 3-manifolds with
distinct constant Ricci eigenvalues are parametrized by three arbitrary func-
tions of two variables. This improves essentially the earlier result by A.Spiro
and F.Tricerri from [9].

1 Introduction

The problem of how many Riemannian metrics exist on the open domains of RRR3

with prescribed constant Ricci eigenvalues ρ1 = ρ2 6= ρ3 was completely solved in
the series of papers [3],[2] and [7]. The main existence theorem says that the local
isometry classes of these metrics are always parametrized by two arbitrary functions
of one variable. Some nontrivial explicit examples are presented in [3], as well.

The case of distinct constant Ricci eigenvalues is more interesting. Here the first
nontrivial examples have been presented by K.Yamato [10], and some others in [4].
Finally, in [5], nontrivial explicit examples have been constructed for every choice of
the Ricci eigenvalues ρ1 > ρ2 > ρ3. (All examples in [10] are complete Riemannian
manifolds but the range of the admissible triplets of Ricci eigenvalues is restricted
by certain algebraic inequalities. Outside this range it seems that the corresponding
metrics must always be incomplete.) In [6] an explicit classification was done under
some additional geometric conditions.
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The problem of how many local isometry classes of solutions exist has remained
open until recently. In [9] the authors have shown that, in the real analytic case, the
local isometry classes depend on an infinite number of parameters. Their method is
based on the theory of formally integrable analytic differential systems.

In the present paper we give a definitive solution of the existence problem for
the real analytic case. Only elementary techniques are used, i.e. the calculus of
exterior differential forms and the Cauchy-Kowalewski Theorem. In fact, the ba-
sic partial differential equations for the problem have been derived already in [5]
but the manipulation with the integrability conditions appeared to be cumbersome.
The present authors now succeeded to settle these equations using computer as-
sistance (and ”Maple V”, (C) Waterloo Maple Software) for the necessary routine
manipulations.

For more information about the background and related problems (and for more
references) see Introduction in [9] and especially [1].

2 The basic system of PDE for the problem

In this section we recall the basic preparatory results from [5] (omitting routine
computational details) and we draw some simple consequences of them.

We assume here that (M, g) is a Riemannian 3-manifold of class C∞ with dis-
tinct constant Ricci eigenvalues ρ1, ρ2, ρ3. Choose an open domain U ⊂ M and
a smooth orthonormal moving frame {E1, E2, E3} consisting of the corresponding
Ricci eigenvectors at each point of U . Denoting by Rijkl and Rij the corresponding
components of the curvature tensor and the Ricci tensor respectively, we obtain

Rii = ρi (i = 1, 2, 3), Rij = 0 for i 6= j, (1)

R1212 = λ3, R1313 = λ2, R2323 = λ1, where λi are constants, (2)

Rijkl = 0 if at least three indices are distinct.

Moreover, the numbers λi are connected with the numbers ρi as follows:

λi − λj = −(ρi − ρj), i, j = 1, 2, 3. (3)

In a neighborhood Um of any point m ∈ U one can construct a local coordinate
system (w, x, y) such that

E3 =
∂

∂y
on Um. (4)

Consider the orthonormal coframe {ω1, ω2, ω3} which is dual to {E1, E2, E3}.
Then the coordinate expression of the coframe {ω1, ω2, ω3} in Um must be of the
form

ω1 = Adw +Bdx

ω2 = Cdw +Ddx

ω3 = dy +Gdw +Hdx

(5)

where A,B,C,D,G,H are unknown functions to be determined.
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Now, we shall compute the components ωij of the connection form. These are
determined by the standard formulas

dωi +
∑

ωij ∧ ωj = 0, ωij + ωji = 0, i, j = 1, 2, 3 . (6)

We put

ωij =
∑
k

aijkω
k . (7)

The components Ωi
j of the curvature form are determined by the standard formula

Ωi
j = dωij +

∑
ωik ∧ ωkj . (8)

From (2) we obtain at once

dω1
2 + ω1

3 ∧ ω3
2 = λ3ω

1 ∧ ω2 ,

dω1
3 + ω1

2 ∧ ω2
3 = λ2ω

1 ∧ ω3 ,

dω2
3 + ω2

1 ∧ ω1
3 = λ1ω

2 ∧ ω3 .

(9)

Differentiating (9) and substituting (9) and (6) in the new equations, we obtain

(λ1 − λ3)ω2 ∧ ω3 ∧ ω1
3 + (λ3 − λ2)ω1 ∧ ω3 ∧ ω2

3 = 0 ,

(λ3 − λ2)ω1 ∧ ω2 ∧ ω2
3 + (λ2 − λ1)ω2 ∧ ω3 ∧ ω1

2 = 0 ,

(λ2 − λ1)ω1 ∧ ω3 ∧ ω1
2 + (λ1 − λ3)ω1 ∧ ω2 ∧ ω1

3 = 0 .

(10)

Using the notation (7) we obtain, more explicitly,

(λ1 − λ3)a1
31 + (λ3 − λ2)(−a2

32) = 0 ,

(λ3 − λ2)a2
33 + (λ2 − λ1)a1

21 = 0 ,

(λ2 − λ1)(−a1
22) + (λ1 − λ3)a1

33 = 0 .

(11)

Putting

α =
λ1 − λ3

λ3 − λ2
=
ρ1 − ρ3

ρ3 − ρ2
(12)

(where obviously α 6= 0,−1), we get (11) in the unified form

a2
32 = αa1

31, a
2
33 = (α + 1)a1

21, a
1
33 = −

(α + 1

α

)
a1

22 . (13)

Now, we shall calculate the coefficients aijk using only (5) and (6). First we introduce
new functions D, E,F (where D 6= 0) by

D = AD− BC, E = AH − BG, F = CH −DG . (14)

We also define a bracket of two functions f, g by

[f, g] = f ′yg − fg′y . (15)
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Then we obtain, by a routine calculation

a1
21 =

1

D(GB ′y −HA′y + A′x −B ′w), a1
31 =

1

D (DA′y − CB ′y), (16)

a1
22 =

1

D(GD′y −HC ′y + C ′x −D′w), a2
32 =

1

D (AD′y −BC ′y), (17)

a1
33 =

1

D(DG′y − CH ′y), a2
33 =

1

D (AH ′y − BG′y), (18)

a1
23 =

1

2D{[C,D] + [A,B]− [G,H] + (G′x −H ′w)} ,

a2
31 =

1

2D{[C,D]− [A,B] + [G,H]− (G′x −H ′w)} ,

a1
32 =

1

2D{[C,D]− [A,B]− [G,H] + (G′x −H ′w)} .

(19)

(In [5], there is a sign misprint in the last formula.)
Due to (13), we have only six basic coefficient functions, namely

a1
31, a

1
21, a

1
22, a

1
23, a

2
31, a

1
32 .

For the abbreviation, we put

p = a1
23, q = a2

31, r = a1
32, s = a1

22, t = a1
21, u = a1

31 . (20)

Now, taking into account the formulas (13), we can re-write (16)-(19) as a system
of partial differential equations

A′y = Au+ C(r − p) ,
B ′y = Bu+D(r − p) ,
C ′y = A(p+ q) + αCu ,

D′y = B(p+ q) + αDu ,

G′y = (α+ 1)Ct− α+ 1

α
As ,

H ′y = (α+ 1)Dv − α+ 1

α
Bs .

(21)

A′x − B ′w = Dt + Eu+ F(r − p) ,
C ′x −D′w = Ds + E(p + q) + αFu ,

G′x −H ′w = D(r − q)− α+ 1

α
Es + (α + 1)Ft .

(22)

Next, we express explicitly the conditions (9) for the curvature components. After
lengthy but routine calculations we obtain the following system of partial differential
equations (which is again re-arranged in two parts and in which the formulas (13)
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are used):

Aq′y + αCu′y + (α+ 1)Gt′y − (α + 1)t′w − AV1 − C(W1 − λ1) = 0 ,

Bq′y + αDu′y + (α + 1)Ht′y − (α+ 1)t′x − BV1 −D(W1 − λ1) = 0 ,

Au′y + Cr′y −
α+ 1

α
Gs′y +

α+ 1

α
s′w − A(V2 − λ2) −CW2 = 0 ,

Bu′y +Dr′y −
α + 1

α
Hs′y +

α+ 1

α
s′x − B(V2 − λ2)−DW2 = 0 ,

At′y + Cs′y +Gp′y − p′w − AV3 − CW3 = 0 ,

Bt′y +Ds′y +Hp′y − p′x − BV3 −CW3 = 0 ;

(23)

Aq′x − Bq′w + αCu′x − αDu′w + (α+ 1)Gt′x − (α + 1)Ht′w
−DU1 − EV1 − F(W1 − λ1) = 0 ,

Au′x − Bu′w + Cr′x −Dr′w −
α+ 1

α
Gs′x +

α+ 1

α
Hs′w

−DU2 − E(V2 − λ2)− FW2 = 0 ,

At′x − Bt′w + Cs′x −Ds′w +Gp′x −Hp′w −D(U3 − λ3)− EV3 − FW3 = 0 .

(24)

Here Ui, Vi,Wi (i = 1, 2, 3) are auxiliary functions defined by

U1 = αtq − (α − 1)su − (α + 2)tr ,

V1 =
(α+ 1)(α + 2)

α
ts− (α+ 1)uq − (α− 1)up ,

W1 =
α+ 1

α
s2 − (α + 1)2t2 − α2u2 + pq − rq + rp ,

U2 =
1

α
sr + (α− 1)tu− 2α + 1

α
sq ,

V2 = (α+ 1)t2 − u2 − (α + 1)2

α2
s2 − pq − pr − qr ,

W2 = (1− α)pu − (α+ 1)ru +
(2α+ 1)(α + 1)

α
st ,

U3 = −t2 − s2 − αu2 + pq + qr − pr ,

V3 =
1

α
sp− (α+ 2)tu− 2α+ 1

α
sq ,

W3 = −αtp− (α+ 2)tr − (2α+ 1)su .

(25)

Now we want to solve the system (23) explicitly with respect to the y−derivatives
of the functions p, q, . . . , t. For this purpose and also for the aim of the next section,
we shall prove

Lemma 1. In some neighborhood Vm ⊂ Um there is a system of local coordinates
(w, x, y) such that

a) the orthonormal coframe {ω1, ω2, ω3} preserves the form (5) ,

b) w(m) = x(m) = y(m) = 0 ,

c) D E F 6= 0 in Vm .
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Proof. We define the new local coordinates in Um by the formulas w = w−w(m), x =
x − x(m), y = y − Φ(w, x), where Φ is a smooth function such that y(m) −
Φ(w(m), x(m)) = 0. Then (5) preserves its form in the new coordinates and we
get

A = A, B = B, C = C, D = D, G = G + Φ′w, H = H + Φ′x .

Hence E = E +AΦ′x−BΦ′w, F = F +CΦ′x−DΦ′w. We see that, unless Φ satisfies a
specific partial differential equation, EF 6= 0 in a neighborhood Vm and D = D 6= 0
also holds. This completes the proof. �

Thus, in the following we can always suppose that our local coordinates satisfy
the conditions of Lemma 1. Now routine calculations using the Cramer’s rule and
the first equation of (24) show easily that the system (23) is equivalent to the explicit
system

p′y =
1

F (Cp′x −Dp′w) +
D
EF (At′x − Bt′w)

+
D2

2(α + 1)EF
{
(W1 − λ1)− α(V2 − λ2)− (α + 1)(U3 − λ3)

}
− DF V3 ,

q′y =
α + 1

E (Gt′w −Ht′x)

+
F
2E
{

(W1 − λ1)− α(V2 − λ2)− (α+ 1)(U3 − λ3)
}

+ V1 ,

r′y =
α + 1

αF (Hs′x −Gs′w)

− E
2αF

{
(W1 − λ1)− α(V2 − λ2) + (α + 1)(U3 − λ3)

}
+W2 ,

s′y =
1

F (Cs′x −Ds′w)− D
2(α + 1)F

{
(W1 − λ1)− α(V2 − λ2) + (α+ 1)(U3 − λ3)

}
,

t′y =
1

E (At′x − Bt′w) +
D

2(α + 1)E
{

(W1 − λ1)− α(V2 − λ2)− (α+ 1)(U3 − λ3)
}
,

u′y =
1

2α

{
(W1 − λ1) + α(V2 − λ2) + (α+ 1)(U3 − λ3)

}
.

(26)

3 The main theorem

Now we want to apply the Cauchy-Kowalewski Theorem to the previous system of
partial differential equations. To this aim we need some preparatory lemma. We
shall limit ourselves to a special case, and we prefer an informal way of presentation.
An expert can see easily how to formulate this result in the full generality and rigour,
using the language of rings of real analytic functions (whose variables are chosen from
a countable set of formal symbols) and their ideals.

Lemma 2. Let

fα(zγ,
∂zγ

∂xi
) = 0 (α = 1, . . . , a; i = 1, . . . , n) (A)

hβ(zγ,
∂zγ

∂xj
) = 0 (β = 1, . . . , b; j = 1, . . . , n− 1) (B)
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be a system of a+b partial differential equations of 1st order for c unknown functions
z1, . . . , zc of n variables x1, . . . , xn, where fα and hβ are real analytic functions of
the corresponding variables. Assume that each differential equation

∂

∂xn
hβ(zγ,

∂zγ

∂xj
) = 0 (β = 1, . . . , b)

is an algebraic consequence of the equations fα = 0, their first partial derivatives
and the equations hβ = 0.

Let {zγ = P γ(x1, . . . , xn), γ = 1, . . . , c} be a real analytic solution of the sub-
system (A) defined on an open neighborhood Ω ⊂ RRRn[x1, . . . , xn] of the origin. Sup-
pose that the functions P

γ
(x1, . . . , xn−1) = P γ(x1, . . . , xn−1, 0) satisfy the subsys-

tem (B) in a neighborhood of the origin in RRRn−1[x1, . . . , xn−1]. Then the functions
P γ(x1, . . . , xn) satisfy the subsystem (B) in a neighborhood Ω′ ⊂ Ω of the origin in
RRRn.

Proof. By the induction we see that each equation

∂k

(∂xn)k
hβ(zγ,

∂zγ

∂xj
) = 0 (β = 1, . . . , b) (27)

is an algebraic consequence of the equations fα = 0, their partial derivatives up to
order k, and of the equations hβ = 0. This means that all equations (27) will be
satisfied if we substitute first zγ = P γ(x1, . . . , xn) and then xn = 0. In other words,
we have

∂k

(∂xn)k

∣∣∣∣∣
xn=0

hβ(P γ,
∂P γ

∂xj
) = 0, γ = 1, . . . , b, (28)

for all integers k ≥ 0. Because the functions hβ(P γ ,
∂P γ

∂xj
) are real analytic, we get

hβ(P γ,
∂P γ

∂xj
) = 0 for all β in a neighborhood of the origin in RRRn. �

From now on, we assume our Riemannian 3-manifold (M, g) to be real analytic.
We see easily that all calculations and constructions from the previous section are
still valid inside the category Cω. We consider a neighborhood Vm ⊂ M with a local
coordinate system (w, x, y) satisfying the conditions of Lemma 1. We are going to
prove

Theorem 1. The general solution of the system of partial differential equations (21)-
(24) depends on six arbitrary functions of two variables and six arbitrary functions
of one variable.

Proof. The functions zγ from Lemma 2 will be chosen as our functions A, . . . , H,
p, . . . , u and the independent variables will be x1 = w, x2 = x, x3 = y. We see that
the subsystem (21)+(23) is of the type (A) and the subsystem (22)+(24) is of the
type (B). (Here a = 12, b = 6.) Now, let us consider (22)+(24) as a system of PDE
for the functions of two variables w, x, which will be denoted as A0, B0, . . . , t0, u0, re-
spectively. Choose B0, D0, H0, p0, r0, s0 as arbitrary analytic functions of w, x. Then
(22) and (24) give a system of six PDE for the six unknown functionsA0, C0, G0, q0, t0
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and u0, which can be expressed explicitly with respect to the corresponding x-
derivatives and we can use the Cauchy-Kowalewski Theorem. (For the correctness
it sufices to choose the initial condition A0(w, 0) 6= 0.) The general solution then
involves, in addition, six arbitrary functions of one variable w.

Next, consider the partial differential equations (21) and (26) (which are equiv-
alent to (21) and (23)). Then the Cauchy-Kowalewski Theorem implies that there
is a unique solution (A,B, . . . , t, u) in a neigborhood of the origin in RRR3 such that

A(w, x, 0) = A0(w, x), B(w, x, 0) = B0(w, x), . . . , u(w, x, 0) = u0(w, x)

in a neighborhood of the origin in RRR2[w, x]. The initial conditions are given, of
course, as solutions of the system (22)+(24).

As the final step, we have to prove that this solution satifies also the equations
(22)+(24). Here one can show by lengthy but routine calculations that these equa-
tions differentiated with respect to the variable y are algebraic consequences of the
equations (21)+(23) (or (21)+(26)), their derivatives with respect to w and x, and
of the equations (22)+(24). (Here the calculations by hand were realized for the
subsystem (22) and a computer with the sofware package ”Maple V, rel.3.0”, (C)
Waterloo Maple Software, was used for more cumbersome subsystem (24)). Hence
we can apply Lemma 2 and the proof of the Theorem 1 is completed. �

We shall now formulate our main result.

Theorem 2. The isometry classes of germs of three-dimensional (real analytic)
Riemannian metrics with prescribed distinct constant Ricci eigenvalues are para-
metrized by triplets of germs of arbitrary (real analytic) functions of two variables.

Proof. Let (M, g), (M, g) be two real analytic Riemannian 3-manifolds with the same
constant Ricci eigenvalues ρ1 > ρ2 > ρ3. Let F : U → U be an isometry between
two open domains of M and M , respectively. We construct the ”Ricci adapted”
orthonormal coframes {ωi}, {ωi} and the local coordinate systems (w, x, y), (w, x, y)
in the neighborhoods Um ⊂ U and UF (m) = F (Um) ⊂ U , respectively, such that g
and g are both of the form (5). We obviously have

F ∗(ωi) = εiω
i, εi ∈ {−1, 1}, i = 1, 2, 3 . (29)

Hence we see easily that the corresponding parametrization of F in local coordinates
must be of the form

w = Φ1(w, x), x = Φ2(w, x), y = εy + Φ3(w, x) (30)

where ε = ±1 and Φi(w, x) are arbitrary (real analytic) functions of two variables.
Conversely, every local transformation F of the form (30) determines a local isometry
which preserves the formulas (5) via (29). The result now follows from Theorem 1.

�

Let us notice that we neglect here six arbitrary functions of one variable. This
is completely justified by the following example: consider a system of partial differ-
ential equations of the form

∂2

(∂x)2
Aj(w, x) = Bj(w, x), j = 1, 2, 3 , (31)
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for six unknown functions. A person ”A” can say that the general solution of (31)
depends on three arbitrary functions Aj of two variables. On the other hand, a
person ”B” can say, with the same legitimacy, that the general solution depends
on three arbitrary functions Bj of two variables and six additional functions of one
variable w.

Remark. A Riemannian manifold (M, g) is said to be curvature homogeneous
if, for any pair of points p and q of M , there is a linear isometry F : TpM →
TqM between the corresponding tangent spaces such that F ∗Rq = Rp (where R
denotes the curvature tensor of type (0, 4) ). I.M.Singer in 1960 (see [8]) asked the
question whether there exist curvature homogeneous spaces which are not locally
homogeneous. The first example was constructed by K.Sekigawa in 1973 (cf.[5],[6]
and [1] for more details, futher development and references). In dimension three, a
Riemannian manifold is curvature homogeneous if and only if it has constant Ricci
eigenvalues. Theorem 2 then implies that the local isometry classes of curvature
homogeneous Riemannian spaces of dimension 3 are parametrized by 3 arbitrary
functions of two variables. It was not known, until now, that there exists so many
curvature homogeneous spaces. The class of all locally homogeneous spaces is really
negligible in this context.
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