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Abstract

The present paper indicate a method of obtaining the Hewitt realcompactifica-
tion vX of a Tychonoff space X, by considering a distinguished family of maximal
regular congruences, viz., those which are real, on the hemiring C+(X) of all the
non-negative real valued continuous functions on X.

1. Introduction

The structure space W (R) of a hemiring R, as the set of all maximal regular con-
gruences on R equipped with the hull-kernel topology, has been introduced in 1990
by Sen and Bandyopadhyay [5], who have shown that W (R) is a T1 topological
space and it is T2 only under certain restrictions. In a previous paper [1] the present

authors proved that in case R contains the identity,W (R) is compact and for any Ty-
chonoff space X, the structure space of the hemiring C+(X) of all the non-negative
real valued continuous functions on X is precisely the Stone-Čech compactifications
βX of X. In this paper we have focused our attention on a particular type of con-

gruences, viz., the real maximal regular congruences on C+(X). Given any maximal
regular congruence ρ on C+(X), we have shown that a partial ordering ‘ ≤′ on the
quotient hemiring C+(X)/ρ can be so defined that C+(X)/ρ becomes a totally or-
dered hemiring, which further contains an order isomorphic copy of the hemiring IR+

via a canonical map. ρ is called real if C+(X)/ρ is isomorphic to IR+ , otherwise it is
called hyper-real. Next we have shown that a real congruence ρ on C+(X) is charac-
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terized by the property that the set {ρ(n) : n ∈ IN} is cofinal in C+(X)/ρ, where IN
is the set of all natural numbers and for each n in IN, ρ(n) denotes the residue class

in the hemiring C+(X)/ρ which contains the function n, taking value n constantly
on X. This result has further led us to show an intrinsic feature of real congruences
on C+(X) in terms of their associated z-filters on X. Using all this result we have
finally succeeded in proving that the set of all real maximal regular congruences on

C+(X) with the hull-kernel topology in vX, the Hewitt realcompactification of X.

2. Partially ordered hemirings

Definition 2.1 Following [4] we define a non-empty set R with two distinct com-
positions ‘+′ and ‘.′ a hemiring, if it satisfies all the axioms of a ring except possibly
the one that ensures the existence of additive inverses of the members of R; and

which satisfies the additional axiom:

a.0 = 0.a = 0 ∀ a ∈ R.

Definition 2.2 Following [5] we define a congruence on a hemiring R to be an

equivalence relation ρ on R which satisfies the following conditions:

∀x, y, z ∈ R, (x, y) ∈ ρ⇒ (x+ z, y + z) ∈ ρ,

(x.z, y.z) ∈ ρ and (z.x, z.y) ∈ ρ.

The congruence ρ is called cancellative if,

∀ x, y, z ∈ R, (x+ z, y + z) ∈ ρ⇒ (x, y) ∈ ρ.

A cancellative congruence ρ on a hemiring R is called regular if there exist elements
e1, e2 in R such that

∀a ∈ R, (a + e1.a, e2.a) ∈ ρ and (a + a.e1, a.e2) ∈ ρ.

Evidently each cancellative congruence on a hemiring with unity 1 is regular.

For details of these concepts we refer to [4] and [5]. For further results and nota-
tions regarding residue classes of a hemiring modulo maximal regular congruences

we refer to [1] because they will frequently be used in this article.

Definition 2.3 A hemiring (H,+, .) equipped with a partial order ‘ ≤′ is called a
partially ordered hemiring if the following conditions are satisfied: ∀a, b, c, d ∈ H

1. a ≤ b⇔ a + c ≤ b+ c

2. a ≤ c and b ≤ d⇒ a.d+ c.b ≤ a.b+ c.d.
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Definition 2.4 A congreunce ρ on a partially hemiring H is called convex if for
all a, b, c, d in H,

(a, b) ∈ ρ and a ≤ c ≤ d ≤ b⇒ (c, d) ∈ ρ.

The following tells precisely when the residue class hemiring of a partially ordered
hemiring modulo a regular congruence on it can be partially ordered in some natural
way.

Theorem 2.5 Let H be a partially ordered hemiring, ρ be a regular congruence on
H. In order that H/ρ be a partially ordered hemiring, according to the definition:

ρ(a) ≤ ρ(b) if and only if there exist x, y in H such that (x, y) ∈ ρ and a+x ≤ b+y,
it is necessary and sufficient that ρ is convex.

Proof. First assume that ρ is convex. To prove the antisymmetry assume that
ρ(a) ≤ ρ(b) and ρ(b) ≤ ρ(a) where a, b belong to H. Then there exist (xi, yi) in
ρ, i = 1, 2 such that a + x1 ≤ b + y1 and b + x2 ≤ a + y2. This implies that
a + x1 + x2 ≤ b + y1 + x2 ≤ a + y1 + y2. Since (a + x1 + x2, a + y1 + y2) belongs

to ρ, in view of the convexity of ρ, we have (a + x1 + x2, b + y1 + x2) belongs to
ρ. Since ρ is cancellative, this implies that (a + x1, b + y1) belongs to ρ which
gives (a + x1 + y1, b+ x1 + y1) belongs to ρ and this yields (a, b) belongs to ρ, i.e.,

ρ(a) = ρ(b). The reflexivity and transitivity of ‘ ≤′ on H/ρ is trivial and hence their
proofs are omitted.

It can easily be verified that for any a, b, c in H, ρ(a) ≤ ρ(b) if and only if
ρ(a) + ρ(c) ≤ ρ(b) + ρ(c). So to complete the proof we need to check only that

for a, b, c, d in H, ρ(a) ≤ ρ(c) and ρ(b) ≤ ρ(d) implies that ρ(a).ρ(d) + ρ(c).ρ(b) ≤
ρ(a).ρ(b)+ρ(c).ρ(d). Let us take a, b, c, d inH such that ρ(a) ≤ ρ(c) and ρ(b) ≤ ρ(d).
So there exist (x1, y1), (x2, y2) in ρ such that a + x1 ≤ c + y1 and b + x2 ≤ d + y2.
Then, since H is partially ordered hemiring, we have

(a + x1).(d+ y2) + (c+ y1).(b+ x2) ≤ (a + x1).(b+ x2) + (c+ y1).(d+ y2)

i.e.,
(a.d+ c.b) + (a.y2b+ x1.d+ x1.y2 + y1.x2 + c.x2 + y1.b)

≤ (a.b+ c.d) + (a.x2 + y1.d+ y1.y2 + x1.x2 + c.y2 + x1.b)

Since (x1, y1) and (x2, y2) belong to ρ we have that all of (a.y2, a.x2), (x1.d, y1.d),
(x1.y2, y1.y2), (y1.x2, y1.y2), (c.x2, c.y2) and (y1.b, x1.b) are members of ρ. Thus,

(a.y2 +x1.d+x1.y2 + y1.x2 + c.x2 + y1.b, a.x2 + y1.d+ y1.y2 +x1.x2 + c.y2 +x1.b) ∈ ρ.

Hence,

ρ(a.d+ c.b) ≤ ρ(a.b+ c.d),

i.e.,
ρ(a).ρ(d) + ρ(c).ρ(b) ≤ ρ(a).ρ(b) + ρ(c).ρ(d).

Thus H/ρ is a partially ordered hemiring.
Conversely, if H/ρ is a partially ordered hemiring according to the given defini-

tion, then it is easy to verify that ρ is convex. 2
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Remark 2.6 For a, b in H we write ρ(a) < ρ(b) if ρ(a) ≤ ρ(b) and ρ(a) 6= ρ(b).

3. Congruences on the lattice ordered hemiring
C+(X)

In what follows X will stand for a Tychonoff space. C(X) denotes the ring of all
real valued continuous functions on X. For a real number r, r denotes the constant

function on X such that r(x) = r for all x in X. We take IR+ to be the hemiring of
all non-negative real numbers and C+(X) = {f ∈ C(X) : f(x) ≥ 0 ∀x ∈ X}. Then
C+(X) is a lattice ordered hemiring with usual definition of ‘+′, ‘.′ and ‘ ≤′ and for
any two f, g in C+(X), f ∨ g and fΛg are defined by,

(f ∨ g)(x) = max{f(x), g(x)}and

(fΛg)(x) = min{f(x), g(x)} ∀x ∈ X.
Obviously f ∨ g and fΛg belong to C+(X).

Convention. Each congruence on C+(X) considered in this paper will be assumed
to be regular and further every scuh congruence ρ will stand for a proper one i.e.,
for which ρ 6= C+(X) × C+(X).

We recall some notions and results pertaining to the congruences on the hemiring

C+(X). For a detailed discussion see [1].

Theorem 3.1 If ρ is a congruence on C+(X) then E(ρ) = {E(f, g) : (f, g) ∈ ρ}
is a z-filter on X, where E(f, g) = {x ∈ X : f(x) = g(x)} is the agreement set of f

and g.

Definition 3.2 A congruence ρ on C+(X) is called

1. a z-congruence if for all f, g in C+(X), E(f, g) belongs to E(ρ) implies that
(f, g) belongs to ρ.

2. a prime congruence if for all f, g, h, k in C+(X), (f.h + g.k, f.k + g.h) ∈ ρ
implies either (f, g) ∈ ρ or (h, k) ∈ ρ.

3. a maximal congruence if there does not exist any congruence σ on C+(X)
which properly contains ρ

Theorem 3.3 If F is a z-filter on X, then

E−1(F) = {({, }) ∈ C+(X )× C+(X ) : E({, }) ∈ F}

is a z-congruence on C+(X).

Theorem 3.4 The assignment ρ→ E(ρ) establishes a one-to-one correspondence
between the set of all z-congruences on C+(X) and that of all z-filters on X.
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Theorem 3.5 If ρ is a maximal congruence on C+(X) then E(ρ) is a z-ultrafilter
on X and conversely if F is a z-ultrafilter on X then E−1(F) is a maximal congru-

ence on C+(X).

We now state two results which are not included in [1]. Their proofs follow
immediately from the following fact:

E(f1, g1) ∪ E(f2, g2) = E(f1.f2 + g1.g2, f1.g2 + f2.g1)

for all f1, f2, g1, g2 in C+(X).

Theorem 3.6 If ρ is a prime z-congruence on C+(X), then E(ρ) is a prime z-filter
on X. Conversely, for any prime z-filter F on X,E−1(F) is a prime z-congruence
on C+(X).

Theorem 3.7 Each maximal congruence on C+(X) is both a prime congruence
and z-congruence.

4. Order structure on the quotient hemiring of
C+(X)

Our contemplated main result of this paper demands some study on the order struc-
ture of the quotient hemiring of C+(X) modulo maximal congruences. The following

is the first proposition towards such an end.

Theorem 4.1 A z-congruence ρ on C+(X) is convex.

Proof. Let (f, g) belong to ρ and h1, h2 in C+(X) be such that f ≤ h1 ≤ h2 ≤ g.

Since E(f, g) ⊂ E(h1, h2) and E(f, g) belongs to E(ρ), E(h1, h2) belongs to E(ρ).
Clearly then (h1, h2) belong to ρ because ρ is a z-congruence. 2

The following two results show that the order structure of the quotient hemiring
C+(X)/ρ has some connection with agreement sets of the members of ρ. (Compare
with similar results in the Sec. 5.4 of [3] for the quotient ring C(X)/I , where I is a

z-ideal in C(X).).

Theorem 4.2 Let ρ be a z-congruence on C+(X) and f, g belong to C+(X). Then
ρ(f) ≤ ρ(g) if and only if f ≤ g on some member of E(ρ). On the other hand if

f < g at each point of some member of E(ρ), then ρ(f) < ρ(g).

Proof. Let ρ(f) ≤ ρ(g). Then there exists (h1, h2) in ρ with f + h1 ≤ g + h2.
Therefore f ≤ g on the set E(h1, h2) in E(ρ). Conversely, let f ≤ g on Z where Z
is a member of E(ρ). Then there exists (h1, h2) in ρ such that Z = E(h1, h2). Put

h = (f−g)∨0. Then h belongs to C+(X) and E(h, 0) contains E(h1, h2). Since ρ is
a z-congruence, this implies that (0, h) belongs to ρ. We assert that f + 0 ≤ g + h.
Hence ρ(f) ≤ ρ(g).
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For the remaining part of this theorem assume that f < g everywhere on some
Z in E(ρ). Then E(f.g) ∩ Z = φ which implies that (f, g) does not belong to ρ.

Therefore ρ(f) 6= ρ(g). But by the first part of this theorem, we have ρ(f) ≤ ρ(g).
Hence ρ(f) < ρ(g). 2

Theorem 4.3 Let f, g belong to C+(X) and ρ be a maximal congruence on C+(X)
with ρ(f) < ρ(g). Then there exists a set Z in E(ρ) at each point of which f < g.

Proof. The result follows by using Theorem 4.2 and arguing similarly as in the

Proof of 5.4 (b) of [3]. 2

A question may be raised - what are the z-congruences ρ on C+(X) which makes
the partially ordered hemiring C+(X)/ρ a totally ordered one? A sufficient condition

is provided in the following.

Theorem 4.4 If ρ is a prime z-congruence on C+(X), then C+(X)/ρ is a totally
ordered hemiring. The same assertion is true in particular therefore for a maximal

congruence.

Proof. We need to verify only that for arbitrary f, g in C+(X), ρ(f) and ρ(g) are

comparable with respect to the relation ‘ ≤′. Now Z1 = {x ∈ X : f(x) ≤ g(x)}
and Z2 = {x ∈ X : g(x) ≤ f(x)} are zero sets in X such that Z1 ∪ Z2 = X. By
Theorem 3.4, E(ρ) is a prime z-filter on X. Hence either Z1 belongs to E(ρ) or Z2

belongs to E(ρ). But f ≤ g on Z1 and g ≤ f on Z2. By Theorem 4.2 we have either

ρ(f) ≤ ρ(g) or ρ(g) ≤ ρ(f). 2

The following proposition is basic towards the initiation of real and hyper-real
congruences on C+(X). The proof is a routine verification and hence omitted.

Theorem 4.5 Let ρ be maximal congurence on C+(X). Then the mapping ψ : r →
ρ(r) establishes an order preserving isomorphism of the totally ordered hemiring IR+

into the totally ordered hemiring C+(X)/ρ.

This theorem leads to the following

Definition 4.6 A maximal congruence ρ on C+(X) is called

1. real if ψ(IR+) = C+(X)/ρ,

2. hyper-real if it not real.

Therefore Theorem 3.7 of [1] can be restated as follows:

Theorem 4.7 For each point x in X, the fixed congruence ρx = {(f, g) ∈ C+(X)×
C+(X) : f(x) = g(x)} on C+(X) is real.

The following is criterion for a maximal congruence on C+(X) to be a real one.
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Theorem 4.8 A maximal congruence ρ on C+(X) is real if and only if the set
{ρ(n) : n ∈ IN} is cofinal in the totally ordered hemiring C+(X)/ρ.

To prove this we need the following lemma.

Lemma 4.9 For any maximal congruence ρ on C+(X) each non-zero element in

C+(X)/ρ has a multiplicative inverse.

Proof. Let f belong to C+(X) be such that ρ(f) 6= ρ(0). Since ρ is a z-congruence,
this ensures that E(f, 0) does not belong to E(ρ). Since E(ρ) is z-ultrafilter on
X one can find (h1, h2) in ρ with E(f, 0) ∩ E(h1, h2) = φ. Let h =| h1 − h2 | and
g = 1/(f+h). Then h, g ∈ C+(X) and E(f, g, 1) = E(h1, h2). Since (h1, h2) belongs

to ρ and ρ is a z-congruence, (f.g, 1) belongs to ρ. Thus ρ(f).ρ(g) = ρ(1).

Proof of the theorem. Since n is confinal in the totally ordered hemiring IR+, the

necessity part of the theorem becomes trivial.
Assume therefore that the set {ρ(n) : n ∈ IN} is cofinal in the totally ordered

hemiring C+(X)/ρ. We first show that the set {ρ(q) : q ∈ Q+} is dense in the totally
ordered hemiring C+(X)/ρ, where Q+ denotes the set of all non-negative rationals.

Let f, g belongs to C+(X) be such that ρ(f) < ρ(g). Then we assert that there is a
positive integer n such that ρ(f) + ρ(1/n) < ρ(g). If possible, let for all n ∈ IN

ρ(f) + ρ(1/n) ≥ ρ(g) · · · · · · 4.8.1.

Set,
B = {b ∈ C+(X)/ρ : ρ(f) + b < ρ(g)}.

Since ρ(f) ≤ ρ(g), by Theorem 4.3 one can find Z in E(ρ) such that f(x) < g(x)
for each x in Z. Put h = ((g − f) ∨ 0)/2. Then f(x) < f(x) + h(x) < g(x) for all
x in Z. By the second part of Theorem 4.2 we have ρ(f) < ρ(f) + ρ(h) < ρ(g).

This shows that ρ(h) 6= ρ(0) and ρ(h) ∈ B. Thus B contains non-zero elements of
C+(X)/ρ. Let b be an arbitrary non-zero element of B. Then by Lemma 4.9, b has
a multiplicative inverse, b−1, in C+(X)/ρ. Inequality 4.8.1 gives us

ρ(f) + b < ρ(g) ≤ ρ(f) + ρ(1/n) ∀n ∈ IN.

This shows that b < ρ(1/n) for all n ∈ IN , and hence b−1 ≥ ρ(n) for all n ∈ IN This
is contradiction to the assumption that {ρ(n) : n ∈ IN} is cofinal in C+(X)/ρ. Thus
there is a positive integer n for which ρ(f) + ρ(1/n) < ρ(g), so that

ρ(n).ρ(f) + ρ(1) < ρ(n).ρ(g) · · · · · · 4.8.2

Let m be the smallest integer such that ρ(n).ρ(f) < ρ(m) and hence in view of 4.8.2
we have

ρ(n).ρ(f) < ρ(m) < ρ(n).ρ(g).

Thus, ρ(f) < ρ(m/n) < ρ(g). Therefore {ρ(q) : q ∈ Q+} is dense in C+(X)/ρ.

Let us define a map Φ : C+(X)/ρ → IR+ by the following rule: let f ∈ C+(X).
If there is a q ∈ Q+ such that ρ(f) = ρ(q) then we put Φ(ρ(f)) = q. Otherwise set,

Lf = {s ∈ Q+; ρ(s) < ρ(f)} ∪ {q : q is a negative rational}
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Uf = {s ∈ Q+ : ρ(f) < ρ(s)}.
Then (Lf , Uf) defines a Dedekind section of the set of rationals and accordingly
determines a unique real number t, say, which is clearly non-negative. We put in

this case Φ(ρ(f)) = t.
In order to show that Φ is an isomorphism of C+(X)/ρ onto IR+ we choose f, g

in C+(X) arbitrarily. Then for any four non-negative rational numbers p, q, r, s,

satisfying

ρ(p) ≤ ρ(f) < ρ(r) and ρ(q) ≤ ρ(g) < ρ(s),

one, in view of Theorems 4.2 and 4.3 can easily verify that

p + q ≤ Φ(ρ(f)) + Φ(ρ(g)) < r + s

and
p + q ≤ Φ(ρ(f) + ρ(g)) < r + s.

The last pair of inequalities together with the denseness of {ρ(q) : q ∈ Q+} in
C+(X)/ρ clearly ensures that

Φ(ρ(f) + ρ(g)) = Φ(ρ(f)) + Φ(ρ(g)).

By an argument similar to one used above we can show that

Φ(ρ(f).ρ(g)) = Φ(ρ(f)).Φ(ρ(g)).

Let f, g belong to C+(X) such that ρ(f) < ρ(f). Since {ρ(q) : q ∈ Q+} is dense
in C+(X)/ρ, in view of the definition of Φ it follows that Φ(ρ(f)) < Φ(ρ(g)). Thus
Φ is an order preserving isomorphism of C+(X)/ρ onto IR+ and hence ρ is a real
maximal congruence on C+(X). 2

From the above Theorem we can say that for any hyperreal maximal congruence
ρ on C+(X) there exists an f ∈ C+(X) for which ρ(f) ≥ ρ(n) for all n ∈ IN . We
call such a ρ(f) an inifnitely large element of C+(X)/ρ. The multiplicative inverse
of an infinitely large element is called an infinitely small element of C+(X)/ρ. One

can check that the multiplicative inverse of an infinitely small element is infinitely
large. Thus a hyper-real congruence on C+(X) is characterised by the presence of
infinitely large (or infinitely small) elements in the residue class hemiring.

The following proposition correlates hyper-real congruences on C+(X) with un-
bounded functions on this hemiring.

Theorem 4.10 Let ρ be a maximal congruence on C+(X) and f ∈ C+(X) be

arbitrary. Then the following statements are equivalent:

1. ρ(f) is infinitely large.

2. For all n ∈ IN the set Zn = {x ∈ X : f(x) ≥ n} is a member of E(ρ).

3. For all n ∈ IN, (fΛn, n) belongs to ρ.

4. f is unbounded on each member of E(ρ).

(Compare with Result 5.7 (a) of [3]).
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Proof (1) ⇒ (2). Let ρ(f) be infinitely large. Then ρ(n) ≤ ρ(f) for all n ∈ IN .
Now for an arbitrary n ∈ IN , in view of Theorem 4.2, ρ(n) ≤ ρ(f) implies that there

exists Z ∈ E(ρ) such that n ≤ f of Z. Thus Z ⊂ Zn. Since E(ρ) is a z-ultrafilter
on X and Zn is a zero set in X, it follows that Zn belongs E(ρ).

(2) ⇒ (3). Since Zn = E(fΛn, n) for all n ∈ IN and ρ is a z-congruence, the
result follows.

(3) ⇒ (2). Trivial.

(2) ⇒ (4). Let (2) holds. Let Z be an arbitrary member of E(ρ). Since E(ρ) is
a z-ultrafilter, Z ∩ Zn 6= φ for all n ∈ IN . So, for any x in Z ∩ Zn, f(x) ≥ n, for all

n ∈ IN . This shows that f is unbounded on Z. Consequently (4) holds.
(4) ⇒ (1). Let (4) holds. If possible let ρ(f) be not infinitely large. So there

exists n ∈ IN such that ρ(f) ≤ ρ(n). Then by Theorem 4.2 there is Z ∈ E(ρ) such
that f ≤ n on Z, which contradicts our assumption. Thus ρ(f) is infinitely large.
2

We conclude this section with a simple but useful characterisation of real con-
gruences.

Theorem 4.11 A maximal congruence ρ on C+(X) is real if and only if E(ρ) is
closed under countable intersection.

Proof. Let ρ be real. If possible suppose that E(ρ) is not closed under countable
intersection. So there exists a sequence {(fn, gn) : n ∈ IN} in ρ such that the set
∩{E(fn, gn) : n ∈ IN} does not belong to E(ρ). Set f =

∑∞
n=1(| fn − gn | Λ2−n).

Then by Weirstrass M-test it follows that f ∈ C+(X). Now E(f, 0) = ∩{E(f, g) :

n ∈ IN} and hence (f, 0) 6∈ ρ. Therefore ρ(0) < ρ(f), because 0 ≤ f . For any
positive integer m, f ≤ 2−m on the set

⋂m
n=1E(fn, gn) which is member of E(ρ). By

Theorem 4.2, ρ(f) ≤ ρ(2−m). Since m is an arbitrary positive integer, ρ(f) is an

infinitely small element of C+(X)/ρ, whence ρ becomes hyper-real-a contradiction.
Conversely, let E(ρ) be closed under countable intersection. If possible suppose

that ρ is not real. Then there exists g in C+(X) such that ρ(g) is infinitely large. So

by Theorem 4.10, for each n ∈ IN the set Zn = {x ∈ X : n ≤ g(x)} is a member of
E(ρ). Obviously

⋂∞
n=1Zn = φ, - which contradicts our hypothesis. Hence ρ is real.

2

5. The realcompactification theorem

Let W (X) be the collection of all maximal congruences on C+(X) and WR(X) =
{ρ ∈ W (X) : ρ is real }. It is easy to verify that the collection {W (f, g) : f, g ∈
C+(X)} is a base for the closed sets of a topology on W (X) where W (f, g) =
{ρ ∈ W (X) : (f, g) ∈ ρ}. W (X), equipped with this topology is known as the
structure space of C+(X). The subspace WR(X) of W (X) is called the real structure
space of C+(X). It has been established in [1] that (ηX,W (X)) is the Stone-Čech

compactification βX of X where ηX(x) = ρx for each x ∈ X. In this section we
propose to state and proof that (ηX ,WR(X)) is the Hewitt realcompactification vX
of X which is the main result of this article.
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In what follows we recall a definition and two results (without proof) of [2] which
play a vital role to achieve our goal.

Definition 5.1 Forany subset A of X, the set

rcl A = {x ∈ X : each Gδ − set inX containing x meets A}

is called the realclosure (or Q-closure of) A. A is called realclosed (or Q-closed) if
A = rclA.

It is clear that every closed set in X is realclosed, while any open interval (a, b)

of IR is realclosed subset of IR without being closed.

Theorem 5.2 Every realclosed subset of a realcompact space is realcompact.

Theorem 5.3 X is realcompact if and only if it is realclosed in βX.

Now we are in a position to state and prove our main result.

Theorem 5.4 Let f : X → Y be a continuous map where Y is a realcompact
space. There there exists continuous function F : WR(X) → Y such that FoηX = f

i.e., the following diagram commutes.

X
f−→ Y

ηX ↓ ↗ F
WR(X)

In order to prove this theorem the following two lemmas are needed.

Lemma 5.5 The subspace WR(X) of the space W (X) is realcompact.

Proof. Recall that W (X) is compact and hence in particular realcompact. Thus
in view of Theorem 5.2, to complete the proof it is sufficient to check that WR(X)

is realclosed subset of W (X).

Let us choose an element ρ0 in W (X) −WR(X). Since ρ0 is hyper-real, there
exists g ∈ C+(X) such that ρ0(g) is infinitely large. Set fn = g ∨ n and hn = gΛn

for each n ∈ IN . Then by Theorem 4.10, we get that (hn, n) belongs to ρ0 for
each n ∈ IN . Since (fn, n) ∩ E(hn+1, n+ 1) = φ for each n ∈ IN, (fnn) 6∈ ρ0 for
each n ∈ IN . Now set V = W (X) − ⋃∞n=1W (fn, n). Then V is a Gδ-set in W (X)
containing ρ0. Let ρ be an arbitrary element in WR(X). Then by Theorem 4.8,

ρ(g) ≤ ρ(m) for some m ∈ IN . Also by Theorem 4.2, there is a Z in E(ρ) such that
g ≤ m on Z and hence Z ⊂ E(fm, m). Consequently (fm, m) ∈ ρ which implies that
ρ ∈W (fm, m). Thus V ∩WR(X) = φ and hence WR(X) is realclosed in W (X). 2
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Lemma 5.6 Let f : X → Y be continuous, ρ be a prime z-congruence on C+(X).
Then f∗(ρ), defined by

f∗(ρ) = {E(h, g) : h, g ∈ C+(Y ), (hof, gof) ∈ ρ},

is a prime z-filter on Y . Moreover if ρ is real maximal congruence on C+(X), then

f∗(ρ) has the countable intersection property.

Proof. Obviously φ is not a member of f∗(ρ). Let Z belong to f∗(ρ) and Z1 be

a zero-set in Y containing Z. Then there exists h, g, h1, g1 in C+(Y ) such that
Z = E(h, g), Z1 = E(h1, g1) and (hof, gof) belongs to ρ. So E(hof, gof) belongs to
E(ρ). It can easily be verified that E(hof, gof) ⊂ E(h1of, g1of) and hence, ρ being
a z-congruence, (h1of, g1of) belongs to ρ. Consequently Z1 = E(h1, g1) belongs to

f∗(ρ).

Now suppose that Z1, Z2 be two arbitrary members of f∗(ρ). So there are

h1, g1, h2, g2 in C+(Y ) such that Zi = E(hi, gi) and (hiof, giof) are members of
ρ for i = 1, 2. Since for any h, g in C+(Y ), (h.g)of = (hof).(gof) and (h + g)of =
(hof) + (gof), it follows that

E(h1of, g1of) ∩E(h2of, g2of) = E((h1of)2 + (g1of)2 + (h2of)2 + (g2of)2,

2((h1of).(g1of) + (h2of).(g2of)))

= E((h2
1 + g2

1 + h2
2 + g2

2)of, 2(h1.g1 + h2.g2)of)

which is a member of E(ρ). Thus

Z1 ∩ Z2 = E((h2
1 + g2

1 + h2
2 + g2

2), 2(h1.g1 + h2.g2)) ∈ f∗(ρ).

This shows that f∗(ρ) is a z-filter on Y .

Finally, let Z1 ∪Z2 belong to f∗(ρ) where Zi = E(fi, gi); fi, gi ∈ C+(Y ), i = 1, 2.

Then since Z1 ∪Z2 = E(f1.g2 + f2.g1, f1.f2 + g1.g2) and ρ is prime, by an argument
similar to the above we can show that either Z1 ∈ f∗(ρ) or Z2 ∈ f∗(ρ). Thus f∗(ρ)
is a prime z-filter on Y .

To show, for a real maximal congruence ρ on C+(X), f∗(ρ) has the countable
intersection property , let us take a sequence {E(hn, gn)} in f∗(ρ). Then for all n ∈
IN, (hnof, gnof) belongs to ρ and hence by the Theorem 4.11,

⋂∞
n=1E(hnof, gnof) is

non-empty. For any x in
⋂∞
n=1E(hnof, gnof), f(x) ∈ ⋂∞n=1E(hn, gn). Thus f∗(ρ) has

the countable intersection property. 2

Proof of the Theorem. Let ρ be a member of WR(X). Since for a prime z-filter with
countable intersection property on a realcompact space is fixed and since prime z-
filter contains at most one cluster point (see 8.12 and 3.18 of [3]) it follows that there
exists a unique y ∈ Y such that {y} = ∩f∗(ρ). For every ρ in WR(X) set F (ρ) = y

where {y} = ∩f∗(ρ). This defines a map F : WR(X) → Y . For each x ∈ X it
follows that F (ρx) = f(x) because f(x) ∈ ∩f∗(ρx). Thus F (ηX(x)) = f(x) ∀x ∈ X
and hence FoηX = f .
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To prove the continuity of the function F , choose any ρ0 in WR(X) and any open
set V in Y such that F (ρ0) ∈ V . Then there exist g1, g2 ∈ C+(Y ) such that

F (ρ0) ∈ Y − Z(g1) ⊂ Z(g2) ⊂ V.

Clearly then g1.g2 = 0. Now F (ρ0) does not belong to Z(g1) and hence Z(g1) =
E(g1, 0) does not belong to f∗(ρ). Consequently (g1of, 0) does not belong to ρ0

and this implies that the set U = (W (X)−W (g1of, 0)) ∩WR(X) is an open neigh-
bourhood of ρ0 in WR(X). Now choose any ρ in U . Then (g1of, 0) 6∈ ρ. Since

(g1of).(g2of) = 0 and ρ is a prime congruence on C+(X), it follows that (g2of, 0) ∈
ρ. Thus Z(g2) = E(g2, 0) ∈ f∗(ρ) a nd hence F (ρ) ∈ E(g2, 0) = Z(g2) ⊂ V . Thus
F (U) ⊂ V . Therefore the map F : WR(X)→ Y is continuous. 2

Recall that the Hewitt realcompactification vX of a space X is characterised by

the fact thay any continuous map of X into an arbitrary realcompact space admits
a continuous extension over vX. Hence in view of the above theorem we conclude
our article with the following

Corollary 5.7 (nX ,WR(X)) is the Hewitt realcompactification vX.
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