LS-category of classifying spaces

J. B. Gatsinzi

ABSTRACT. — Let X be a 1-connected topological space of finite type. Denote by BautX the base of the universal fibration of fibre X. We show in this paper that the Lusternik-Schnirelmann category of Baut X is not finite when X is a wedge of spheres or a finite CW-complex with finite dimensional rational homotopy.

Introduction

In this paper X will denote a simply connected CW-complex of finite type. Recall that the Lusternik-Schnirelmann category of a topological space, cat(S), is the least integer n such that S can be covered by (n + 1) open subsets contractible in S, and is ∞ if no such n exists.

Denote by X_0 the localization of X at zero, the rational Lusternik-Schnirelmann category, $cat_0(X)$, is defined by $cat_0(X) = cat(X_0)$. This invariant satisfies

$$nil H^*(X, \mathbb{Q}) \le e_0(X) \le cat_0(X), \quad ([6], [12]),$$
 (i)

$$cat_0(X) \le cat(X) \ ([12]), \tag{ii}$$

where $nil H^*(X, \mathbb{Q})$ is the nilpotence of the cohomology ring with rational coefficients and $e_0(X)$ the Toomer invariant ([12]).

In this text we will use the theory of minimal models. The Sullivan minimal model of X is a free commutative cochain algebra $(\Lambda Z, d)$ such that $dZ \subset \Lambda^{\geq 2}Z$. Moreover $Z^n \cong Hom_{\mathbb{Q}}(\pi_*(X) \otimes \mathbb{Q}, \mathbb{Q})$ ([10], [5]).

The Quillen minimal model of X is a free chain Lie algebra $(\mathbb{L}(V), \delta)$ satisfying $\delta V \subset \mathbb{L}^{\geq 2}V$ and the graded vector space V is related to the cohomology of X by

Bull. Belg. Math. Soc. 2 (1995), 121-126

Received by the editors April 1994

Communicated by Y. Félix

AMS Mathematics Subject Classification : 55P62, 55M30

Keywords : rational homotopy, classifying space.

 $V_n \cong H^{n+1}(X, \mathbb{Q}) \ ([10], [5]).$

Let (L, δ) be a differential graded Lie algebra of finite type. The cochain algebra on (L, δ) is the commutative cochain algebra $C^*(L, \delta)$ defined as follows:

$$C^*(L, \delta) \cong (\Lambda s^{-1}L^{\vee}, d_1 + d_2);$$

 L^{\vee} denotes the dual of L, and d_1 and d_2 are defined by:

$$< d_1 s^{-1} z, \ sx > = < z, \ \delta x >$$

 $< d_2 s^{-1} z; \ sx_1, \ sx_2 > = (-1)^{|x_1|} < z, \ [x_1, x_2] >$

where $z \in L^{\vee}$, $x_i, x \in L$.

Moreover, $(\mathbb{L}(V), \delta)$ is a Quillen model of X if and only if the commutative differential graded algebra $C^*(\mathbb{L}(V), \delta)$ is a Sullivan model of X.

We define from $(\Lambda Z, d)$ and (L, δ) two Lie algebras of derivations. First, the differential Lie algebra $(Der \Lambda Z, D)$ is defined by ([10]): in degree k > 1, take the derivations of ΛZ decreasing degree by k. In degree one, we only consider the derivations θ which decrease degree by one and verify $[d, \theta] = 0$. The differential D is defined by $D\theta = [d, \theta] = d\theta - (-1)^{|\theta|} \theta d$.

In the same way we define a differential Lie algebra $Der \mathbb{L}(V) = \bigoplus_{k \ge 1} Der_k(\mathbb{L}(V))$

where $Der_k(\mathbb{L}(V))$ is the vector space of derivations which increase the degree by k with the restriction that $Der_1(\mathbb{L}(V))$ is the vector space of derivations of degree one which commute with the differential δ .

Define the differential Lie algebra $(s\mathbb{L}(V) \bigoplus_{\sim} Der\mathbb{L}(V), \tilde{D})$ as follows:

- $s\mathbb{L}(V) \oplus Der\mathbb{L}(V)$ is isomorphic to $s\mathbb{L}(V) \oplus Der\mathbb{L}(V)$ as a graded vector space,
- If $\theta, \theta' \in Der \mathbb{L}(V)$; $sx, sy \in s\mathbb{L}(V)$, $[\theta, \theta'] = \theta\theta' (-1)^{|\theta||\theta'|}\theta'\theta$, $[\theta, sx] = (-1)^{|\theta|} s\theta(x)$, [sx, sy] = 0,
- $\tilde{D}(\theta) = [\delta, \theta], \tilde{D}(sx) = -s\delta x + ad x$, where ad x is the derivation of $\mathbb{L}(V)$ defined by (ad x)(y) = [x, y].

Theorem ([10], [9], [11]) The graded differential Lie algebras $(s\mathbb{L}(V) \bigoplus_{\sim} Der\mathbb{L}(V), \tilde{D})$ and (Der ΛZ , D) are models of the universal covering \tilde{B} aut X of B aut X.

We shall use these models to compute the rational LS-category of $\tilde{B}aut X$. Since $cat(Baut X) \ge cat(\tilde{B}aut X) \ge cat_0(\tilde{B}aut X)$, we shall conclude that the LS-category of Baut X is not finite whenever $cat_0(\tilde{B}aut X) = \infty$.

1 The theorem

Theorem Let X be a simply connected finite CW-complex. The LS-category of B aut X is not finite provided one of the following hypothesis is satisfied:

- (a) dim $\Pi_*(X) \otimes \mathbb{Q}$ is finite,
- (b) X has the rational homotopy type of a wedge of spheres.

Remarks:

- 1. Observe that in case (b), $cat(X_0) = 1$ and $dim \prod_*(X) \otimes \mathbb{Q}$ is not necessary finite.
- 2. Let $X = CP(\infty)$. Since $H^*(X, \mathbb{Q}) \cong \Lambda x$, |x| = 2, $cat_0(X) = \infty$. The graded Lie algebra $Der(\Lambda x)$ is reduced to the vector space of dimension one generated by the derivation θ of degree two defined by $\theta(x) = 1$. Then \tilde{B} aut X has the rational homotopy type of the sphere S^3 . This shows that $cat_0(\tilde{B} aut X)$ can be finite while $cat(X) = \infty$.
- 3. Let G be a connected Lie group acting on X. The Borel fibration $X \longrightarrow EG \times_G X \longrightarrow BG$ is classified by a map $f : BG \longrightarrow \tilde{B}$ aut X. Consider the map $H^*(f, \mathbb{Q}) : H^*(\tilde{B} \text{ aut } X, \mathbb{Q}) \longrightarrow H^*(BG, \mathbb{Q}) \cong \Lambda V$ where V is concentrated in even degrees. Suppose now that $cat_0(\tilde{B} \text{ aut } X)$ is finite. Then $\tilde{H}^*(f, \mathbb{Q})$ is trivial. (Otherwise, $nil(H^*(\tilde{B} \text{ aut } X, \mathbb{Q})) = \infty$.) Therefore $f : BG \longrightarrow \tilde{B} \text{ aut } X$ is rationally trivial, that is: the action of the group G on the space X is rationally trivial.

2 Proof of the theorem under hypothesis (a)

Let $(\Lambda V, d)$ be the Sullivan minimal of a simply connected space S. According to [3, corollary 6.12],

$$(cat_0(S), \dim V < \infty) \Longrightarrow n \text{ is odd}$$
 (iii)

where n denotes the greatest integer such that $V^n \neq 0$.

Applying (iii) to X, we conclude that the greatest integer k such that $Z^k \neq 0$ is odd. Let $x \in Z^k$, $x \neq 0$. Define a derivation θ of ΛZ by $\theta(x) = 1$, $\theta(z) = 0$ if z belongs to a graded supplementary of $\mathbb{Q}.x$ in Z. Then θ is a cycle which is not a boundary since $(Der\Lambda Z)_p = 0$ if p > k. Denote by y the class of θ in $H_k(Der(\Lambda Z, d)) \cong$ $\Pi_{k+1}(\tilde{B} aut X) \otimes \mathbb{Q}$. Since $\Pi_*(\tilde{B} aut X) \otimes \mathbb{Q} \cong H_*(Der\Lambda Z, D)$ is finite dimensional and k + 1 is even, applying (iii) to the Sullivan minimal model

$$(\Lambda Y, \ \tilde{d}) \xrightarrow{\simeq} C^*(Der\Lambda Z, \ D)$$

of $(\tilde{B} aut X)$ where $Y \cong H_*(Der\Lambda Z, D)$, we conclude that the rational LS-category of $\tilde{B} aut X$ cannot be finite.

3 Proof of the theorem under hypothesis (b)

In this section, we shall suppose that X is a wedge of at least two spheres. The case when X is a sphere has been treated above. Therefore we will suppose that the number of spheres is ≥ 2 .

The proof is divided in two parts, the first concerns the case where X is a wedge of odd dimensional spheres (Lemma 1) and the second case concerns the case there is at least one even dimensional sphere (Lemma 2).

Lemma 1 Let X be a wedge of odd dimensional spheres, then the LS-category of \widetilde{B} aut X is ∞ .

Proof: Let $L = \Pi_*(\Omega X) \otimes \mathbb{Q} \cong \mathbb{L}(a, b, c_i)$ be the Quillen minimal model of X and suppose that $|b| \ge |a| \ge |c_i|$. Denote ad L the ideal of DerL generated by the inner derivations of L. Define the projection

$$\phi: (sL \oplus DerL, D) \longrightarrow (Der L/(ad L), 0)$$

by $\phi(sx) = 0$ and $\phi(\theta)$ is the class of θ in Der L/(ad L).

Clearly ϕ commutes with differentials. Since $imD \cong ad L$ and $kerD \cong Der L$, it is obvious that the map ϕ induces the identity in homology. Thus

$$\Pi_*(\Omega B \ aut \ X) \otimes \mathbb{Q} \cong Der \ L/(ad \ L).$$

For $p \geq 2$, define $\theta_p \in Der L/(ad L)$ by $\theta_p(a) = \theta_p(c_i) = 0$ and $\theta_p(b) = ad^p(a)(b)$. Denote, $L_1 = \bigoplus_{p=2}^{\infty} \mathbb{Q} \cdot \theta_p$, the abelian Lie sub algebra of $\mathcal{L} = Der L/(ad L)$. Observe that $L_1 \subset \mathcal{L}/[\mathcal{L}, \mathcal{L}]$.

Thus $H^*(C^*(L_1))$ is a sub algebra of $H^*(C^*(\mathcal{L})) \cong H^*(\tilde{B} \ aut \ X) \otimes \mathbb{Q}$. Since $nilH^*(C^*(L_1)) = \infty, \ cat(\tilde{B} \ aut \ X) = \infty$.

Lemma 2 Let $X = S^{\alpha_1} \vee \cdots \vee S^{\alpha_n}$ be a wedge of spheres such that α_1 is even, then the Lusternik-Schnirelmann category of \widetilde{B} aut X is ∞ .

Proof: Let $L = \mathbb{L}(a_1, \dots, a_p, b_1, \dots, b_q)$ be the Quillen minimal model of X with $|a_i|$ odd, $|b_j|$ even, $|a_i| \leq |a_{i+1}|$, and $|b_j| \leq |b_{j+1}|$. There is an element $\theta \in \mathcal{L} = Der L/(ad L)$ such that $|\theta|$ is odd, $[\theta, \theta] = 0$ and $\theta \in \mathcal{L}/[\mathcal{L}, \mathcal{L}]$.

In fact if $q \neq 0$, we can choose x and y in the sequence $\{a_1, \dots, a_p, b_1, \dots, b_q\}$ such that |y| - |x| is the smallest odd positive integer. The derivation θ , defined by $\theta(x) = y$ and $\theta = 0$ on the other generators of L, satisfies the above properties. Moreover θ is not an inner derivation, therefore the class of θ is not zero in \mathcal{L} .

If q = 0, there is an element a_{i_0} of maximal degree such that $|a_{i_0}| < 2|a_1|$. The derivation θ , defined by $\theta(a_{i_0}) = [a_1, a_1]$ and null elsewhere, satisfies the desired properties. Note that there is no element $x \in L$ such that $\theta(a_{i_0}) = [a_{i_0}, x]$, thus θ is

not an inner derivation.

Denote $A = U\mathcal{L} \xrightarrow{\simeq} C_*(\Omega \tilde{B} \text{ aut } X)$ the enveloping algebra of \mathcal{L} . Let x be the image of θ by the injection $\mathcal{L} \longrightarrow U\mathcal{L}$. Since $[\theta, \theta] = 0$, we have $x^2 = 0$.

Let (B(A), d) be the normalized bar construction on A([7]). The bar filtration of $\overline{B}(A)$ induces a filtration of $H(\overline{B}(A), d)$ whose associated bigraded vector space is denoted by $E_{*,*}^{\infty}$. Recall that the Toomer invariant is defined by $e_0(X) =$ $\sup \{ p \mid , E_{p,*}^{\infty} \neq 0 \}$. The element $[x| \dots |x]$ is a cycle of $(\overline{B}(A), d)$ which is not a boundary since x is not decomposable in A. Therefore for each $p \geq 2$, the class of $[x| \dots |x]$ is a non zero element in $E_{p,*}^{\infty}$. Thus $e_0(\widetilde{B}autX) = \infty$, and $cat(\widetilde{B}autX) = \infty$.

Acknowledgment

This paper is based on a part of my thesis carried out under the supervision of Professor Y. Félix of the Université Catholique de Louvain to whom I express my gratitude for his advises and his help.

References

- H.J. Baues and J.M. Lemaire, *Minimal models in homotopy theory*, Math. Ann. 225 (1977), pp. 219-242.
- [2] A. Dold, *Halbexacte Homotopiefunctoren*, Lectures notes in mathematics, vol.12 (1966), Springer-Verlag.
- [3] Y. Félix and S. Halperin, Rational LS-category and its applications, Trans. A.M.S. 273 (1982), pp. 1-17.
- [4] D.H. Gottlieb, The total spaces of universal fibrations. Pacif. J. 46-2 (1973), pp. 415-417.
- [5] S. Halperin, Lectures on minimal models, Mémoire de la la Société Mathématique de France, 9-10, 1983.
- [6] I. James, On the category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), pp. 39-67.
- [7] S. MacLane, *Homology*, Berlin-Heidelberg-New York, Springer, 1963.
- [8] D. Quillen, *Rational homotopy theory*, Annals of Math. (2) 90 (1969), pp. 205-295.
- [9] M. Schlessinger and J. Stasheff, *Deformations theory and rational homotopy type*, to appear in Publ. I.H.E.S.
- [10] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977), pp. 269-331.

- [11] D. Tanré, *Homotopie rationnelle; modèles de Chen, Quillen, Sullivan, Lecture notes in mathematics, vol. 1025, Springer-Verlag, 1983.*
- [12] G.H. Toomer, Lusternik-Schnirelmann category and Moore spectral sequence, Math. Z. 138 (1974), pp. 123-143.

Institut de Mathématique 2, chemin du cyclotron 1348 Louvain-La-Neuve Belgique