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Abstract

We show that the triangular extension of a generalized quadrangle of order
(3,3) is unique. The proof depends upon certain computer calculations.

1 Introduction and the result

Extensions of finite generalized quadrangles (EGQ, for short), or, more generally,
of polar spaces, play a important role as incidence geometries admitting interesting

automorphism groups, such as sporadic simple, or some classes of (extensions of)
classical groups. Buekenhout and Hubaut [3] initiated the study of extensions of
polar spaces from a geometric point of view by proving some characterization the-
orems, in particular they classified locally polar spaces such that the lines of the

residual polar space are of size 3. They also classified locally polar spaces admitting
a classical group acting on point residues, later on these results were generalized in
a more general framework of flag-transitive diagram geometries, see the survey [22]
by Pasini and Yoshiara for an extensive bibliography. However, very few charac-

terizations are known which do not assume group actions. For polar lines of size
3, see already mentioned [3] and [2] by Buekenhout. Blokhuis and Brouwer [1] and
P.Fisher [11] classified EGQ(3,1), The author [16, 18, 19] characterized extensions
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of polar spaces related to some 3-transposition groups, including Fischer’s sporadic
simple groups. In [17] he proved the uniqueness of EGQ(3,9) and classified its further

extensions.

Here we shall be concerned with triangular EGQ(3,3). For basic definitions

and a general account on EGQ see Cameron, Hughes and Pasini [4]. A triangular
EGQ(s, t) may and will be viewed as a graph Γ such that the subgraph Γ(u) induced
on the neighbourhood of any vertex u is isomorphic to the collinearity graph of a

generalized quadrangle of order (s, t), or GQ(s, t), for short. Concerning GQ(s, t), a
standard reference is [23]. There are two nonisomorphic GQ(3,3), dual to each other.
One, usually denoted by W (3), is the point-line system of the totally isotropic, with
respect to a nondegenerate symplectic form, points and lines of the 3-dimensional

projective space over GF(3) (PG(3,3), for short). The other one, usually denoted
by Q4(3), is defined similarly with a nondegenerate symmetric bilinear form instead
of the symplectic one and PG(4,3) instead of PG(3,3).

Let Un be the graph defined on the nonisotropic points on a n-dimensional GF(4)-
space T = T (Un) carrying a nondegenerate hermitian form, two points being adja-
cent if they are perpendicular. Note that U4 is isomorphic to the collinearity graph

of W (3), and Un+1 is locally Un.

We say that a graph Γ is locally D (or ∆), where D is a family of graphs (resp.

∆ a graph), if for any vertex u of Γ the subgraph Γ(u) is isomorphic to a member of
D (resp. to ∆). In our case D consists of the collinearity graphs of W (3) and Q4(3).

Theorem 1.1 Let Γ be a triangular EGQ(3,3) (in other words, Γ is locally D).

Then Γ is isomorphic to U5.

Under the additional assumption that a classical group is induced on Γ(u) for

any vertex u, this statement was proved in [3]. Later on, this was improved in
[12, 25] in the slightly more general framework of the classification of flag-transitive
c.C2-geometries, still involving a strong assumption on group action.

2 Proof

Let Γ be a triangular EGQ(3,3). Our approach is based on the observation made
in [3] that given a point u of Γ and a point v at distance 2 from u, their common
neighbourhood Γ(u, v) (which will be often called a µ-graph of Γ(u)), is a hyperoval
(or a local subspace, in the terminology of [3]) in ∆ = Γ(u), that is a subset Φ of

points of ∆ such that each line of ∆ meets either 0 or 2 points of Φ. Hyperovals of
GQ were studied by several authors, see e.g. [13, 21]. However the results achieved
are concerned mainly with various extreme cases, and nothing like a classification
of hyperovals in GQ, which is required in our approach, exists.

So we classify the hyperovals of Q4(3) and W (3), using a computer. Then we rule
out most of the hyperovals of Q4(3), using some simple criteria. As an immediate

corollary we have that Γ(x) ∼= Γ(y) for any distance two pair of points x, y of Γ such
that |Γ(x, y)| is of certain size. It gives us an opportunity to eliminate most of the
hyperovals of W (3).
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The remaining ones are exactly the 45 hyperovals which appear in U5 as common
neighbourhoods mentioned above. Then we assume that Γ(u) = ∆ ∼= W (3). We

deduce that Γ is a strongly regular graph having the same parameters as U5. Then
we establish that Γ(x) ∼= ∆ for any x ∈ Γ. Moreover, we see that Γ has quadruples,
that is, for each nonadjacent pair of points x, y there are exactly two other points
z, z′ such that Γ(x, y) = Γ(x, y, z, z′). This defines on Γ the structure of a partial

linear space with line size 4. One can then check that the latter partial linear space
is such that the lines and the affine planes on any point form a finite GQ. These
objects were classified in [8]. The application of [8, 5] completes the proof that

Γ ∼= U5 (alternatively, we demonstrate how to use the classification of generalized
Fischer spaces [6, 10] to get the same result).

The remaining case, where Γ(x) ∼= Q4(3) for any x, is dealt with similarly. It
turns out that this assumption leads to a contradiction.

2.1 Preliminaries

The determination of all the hyperovals in a GQ(3,3) ∆ was based on an almost
straightforward backtrack exhaustive search. It is natural to regard a hyperoval Ω
as the subgraph of ∆ induced by Ω. Clearly if Ω is disconnected then each connected
component of Ω is a hyperoval, as well. So we look for the connected hyperovals

only, and then, if possible, glue components together. We note, however, that all
the hyperovals in ∆ turn out to be connected. The main way to reduce the number
of objects found by the search was the use of the group G = Aut(∆). Indeed, for
the set of orbits of G on the hyperovals of ∆ it suffices to find a representative Rk

for each orbit Ok. Moreover, the following idea proved to be highly successful.
Let S be a graph which is a subgraph of Ω for any hyperoval Ω of ∆ (for instance,

S ∼= K2). Let S = {Sj} be a set of representatives of the orbits of S on the subgraphs

of ∆ isomorphic to S. Then a set R = {Rk} of representatives of G-orbits on the
hyperovals may be chosen in such a way that each Rk ∈ R contains some Sj ∈ S.

So the problem is to find such S that the set S is not huge and, on the other
hand, the number of different hyperovals containing a given Sk ∈ S is not huge, as

well. Since any Ω is a triangle-free graph of valence 4, we choose as S the 4-claw,
that is the subgraph induced on the union of {x} and Ω(x). We find a set S. Then
for each Sk ∈ S we perform the exhaustive search of the hyperovals containing Sk.
The resulting set R need not be a minimal one, that is, it may contain several

representatives for one G-orbit. Thus, finally, we construct a minimal set R′.
The computer calculations were carried out using the GAP system for algebraic

computations [14] along with the package GRAPE for computations in graphs [24].

The latter uses the package NAUTY for computations of automorphisms and iso-
morphisms of graphs [15].

Proposition 2.1 The hyperovals Φ of ∆ ∼= U4
∼= W (3) are as follows.

1. 432 of size 20. The 20 points outside Φ are collinear to 8 points of Φ.

2. 540 of size 16.

3. 720 of size 12. There are 2 points outside Φ collinear to 6 points of Φ.
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4. 45 of size 8. The 32 points outside Φ are collinear to 2 points of Φ. Let
v ∈ Φ and Φ′ be a hyperoval containing v. Then Φ(v) = Φ′(v) implies Φ′ = Φ.

Let Φ′ be a hyperoval of type 2. Then Φ ∩ Φ′ 6∼= K2. There is a one-to-one
correspondence between the hyperovals of size 8 and the isotropic points of
T = T (∆) given by Φ = ∆ ∩ p⊥, where p ∈ T is an isotropic point.

The group Aut(∆) acts transitively on the hyperovals of each type.

Note that the first part of Proposition 2.1, contradicts the first (technical) part of
the statement of [3, Proposition 8]. Note that the second part of that statement
remains valid, as we shall see later.

Proposition 2.2 The hyperovals Φ of ∆ ∼= Q4(3) are as follows.

1. 1080 of size 14. There are 8 points outside Φ collinear to 6 points of Φ. There
are only 4 hyperovals intersecting Φ in 3K2.

2. 360 of size 18. There are 12 points outside Φ collinear to 6 points of Φ. All
the hyperovals intersecting Φ in 3K2 are of type 1.

3. 324 of size 20. The points outside Φ are collinear to 8 points of Φ. All the
hyperovals intersecting Φ in 4K2 are of type 2.

4. 135 of size 16. There are 16 points outside Φ collinear to 4 points of Φ, and the
remaining 8 points are collinear to 8 points of Φ. The hyperovals intersecting
Φ in 4K2 are of type 1 or 2.

5. 216 of size 10. There are 20 points outside Φ collinear to 2 points of Φ, and

the remaining 10 points are collinear to 4 points of Φ. There are 60 (resp. 20)
hyperovals of type 5 (resp. of type 1) intersecting Φ in K2.

6. 270 of size 12. There are 24 points outside Φ collinear to 4 points of Φ, and

the remaining 4 points are not collinear to the points of Φ. There are exactly
24 hyperovals of type 6 intersecting Φ in 2K2.

The group Aut(∆) acts transitively on the hyperovals of each type.

Lemma 2.3 In the notation of Proposition 2.2, only hyperovals of types 5 or 6 may
appear as µ-graphs of EGQ.

Proof. It follows from Proposition 2.2, 1, that any hyperoval Φ of type 1 cannot
appear as µ-graph. Indeed, there must be at least 8 hyperovals intersecting Φ in
3K2, but there are only 4 such ones.

Next, if Φ is of type 2 there must be other µ-graphs intersecting Φ in 3K2, but
all of them, by Proposition 2.2, must be of type 1, a contradiction.

Similarly, we reject hyperovals of types 3 and 4.

Now the following statement is immediate.

Corollary 2.4 Let x, y be two points of Γ at distance 2 such that |Γ(x, y)| = 20.
Then Γ(x) ∼= Γ(y) ∼= W (3).
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2.2 A point of W (3)-type exists

Here we assume that Γ(u) = ∆ ∼= W (3) for some u ∈ Γ.

Lemma 2.5 In the notation of Proposition 2.1, only hyperovals of types 2 or 4 may
appear as µ-graphs.

Proof. First, we show that the hyperovals of type 1 cannot appear as µ-graphs. Let
Φ = Γ(u, v) be a type 1 hyperoval. By Corollary 2.4, we have Γ(v) ∼= W (3). The
following facts obtained by means of a computer will be used.

1) There are two orbits O1, O2 of lengths 30 and 10, respectively, in the action

of the stabilizer H of Φ in G = Aut(∆) on the set of edges of Φ.
2) There are 25 hyperovals intersecting Φ in the disjoint union of 4 copies of K2.

All of them are of type 1. The group H has two orbits Ω1, Ω2 of lengths 20 and 5,

respectively, on this set of hyperovals. If Ψ ∈ Ω1 then it contains exactly one edge
from O2. If Ψ ∈ Ω2 then all the edges from Ψ∩Φ belong to O2. Given e ∈ O1, there
exist exactly two hyperovals Ψ ∈ Ω1 such that e ⊂ Ψ.

By Proposition 2.1 there are 20 vertices in Ξ = Γ(v) \ Γ(u) such that for each

x ∈ Ξ we have that Γ(x) ∩ Φ is the disjoint union of 4 copies of K2. Hence Γ(u, x)
belongs to Ω = Ω1 ∪Ω2. So we have constructed a mapping φ from Ξ to Ω. It is an
injection, since the disjoint union of 4 copies of K2 determines four of the lines of ∆,
and ∆ is a partial linear space. We have to choose 20 of the 25 elements of Ω. Since

the line size of GQ(3,3) is 4, for each edge e of Φ there exist exactly two Ψ ∈ φ(Ξ)
such that e ⊂ Ψ. Now it follows from 2) that Ω1 ⊆ φ(Ξ). Hence φ(Ξ) = Ω1.

Now the graph Γ2(u) is isomorphic to a connected component of the graph whose
vertex set is the set ΦG (i.e. the hyperovals of type 1), and the edge set is {ΦG,ΨG},
where Ψ ∈ Ω1. It is easy to check, either by computer or by exploiting its G-
invariance, that the latter graph is connected. This is a contradiction, since the
latter graph has 432 vertices, whereas Γ2(u) has 54. Thus Φ cannot be of type 1.

Let Φ be of type 3. There exists a two-element subset Ξ of Γ(v) \Γ(u) such that
Γ(x) ∩ Φ is the disjoint union of 3 copies of K2 for any x ∈ Ξ. On the other hand,
computer calculations show that each hyperoval Ψ such that Φ ∩ Ψ is the disjoint
union of 3 copies of K2 is of type 1. This is the contradiction.

The following is well known.

Lemma 2.6 Let Ξ be a GQ(3,3). Assume that Ξ has a local hyperoval of type 4,
that is, isomorphic to GQ(1,3). Alternatively, assume that Ξ possess a triple x, y,

z, of pairwise noncollinear points such that Γ(x, y) = Γ(x, z). Then Ξ ∼= W (3).

Lemma 2.7 There exists v ∈ Γ2(u) such that Γ(u, v) is of type 4.

Proof. Suppose that this is not the case. Hence, by Lemma 2.5, for any v ∈ Γ2(u)
the hyperoval Γ(u, v) is of type 2. We have

|Γ2(u)| = 40 · 27/16,

which it not an integer. This is a contradiction.
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By Lemma 2.7, there exists v ∈ Γ2(u) such that Γ(u, v) is of type 4. By Lemma
2.1, 4, for each w ∈ Γ(v) \ Γ(u) the subgraph Γ(u, w) is a hyperoval of type 4. Note

that |Γ(v) \ Γ(u)| = 32 coincides with the number of hyperovals intersecting Ω in
a K2, and all such hyperovals are of type 4. The graph Σ defined on the type 4
hyperovals by the rule that two vertices are adjacent if the intersection of the corre-
sponding hyperovals equals K2 is isomorphic to the complement of the collinearity

graph of GQ(4,2), in particular it is connected. Hence for any x belonging to the
connected component Ξ of Γ2(u) containing v, one has that Γ(u, x) is of type 4.

Clearly Ξ is a cover of Σ. Hence each type 4 hyperoval of Γ(u) is a µ-graph
of Γ. Since µ(Σ) = 24, which is greater than the size of any of hyperovals, Ξ is a

connected proper cover of Σ. It implies that for any x ∈ Ξ there exists y ∈ Ξ such
that Γ(u, x) = Γ(u, y). Let w ∈ Γ(u, x) = Ω. Since Ω is a graph of valence 4, we
have for Θ = Γ(w) that Θ(u, x) = Θ(u, y). Note that x is not adjacent to y. Hence
by Lemma 2.6, Θ ∼= W (3). Therefore there exists a fourth point t ∈ Θ not collinear

to u, x, or y, such that Θ(u, x) = Θ(u, t). By Lemma 2.1 4), Γ(u, t) = Γ(u, x). Thus
for any type 4 hyperoval Ω of ∆ there exist three distinct points x1, x2, x3 of Γ2(u)
such that Γ(u, xi) = Ω for i = 1, 2, 3. Now, counting in two ways the edges between
Γ(u) and Γ2(u), one has that for any x ∈ Γ2(u) the hyperoval Γ(u, x) is of type 4.

In particular, |Γ2(u)| = |Γ| − 40− 1 = 135.

Note that for any z ∈ ∆ we have Γ(z) ∼= W (3). Since there exists p ∈ Γ2(z) such
that Γ(z, p) is of type 4, the repetition of the above argument gives us that for any
q ∈ Γ2(z) the hyperoval Γ(z, q) is of type 4. Therefore Γ is a strongly regular graph

(SRG, for short) with the same parameters as U5.

To summarize, we state the following.

Proposition 2.8 Let Γ be a triangular EGQ(3,3) such that Γ(u) ∼= W (3) for some
u ∈ Γ. Then Γ(v) ∼= W (3) for any v ∈ Γ. Moreover, Γ is an SRG with the same
parameters as U5, and for any distance two pair of vertices x, y there exist two more

vertices w = wxy, w
′ = w′xy such that Γ(x, y) = Γ(x, w) = Γ(x, w′).

Using the above mentioned quadruples of points of Γ, we may define the structure

of a partial linear space L of line size 4 on Γ. The idea to consider L is due to Hans
Cuypers [7].

To complete the current case it suffices to show that L is a (finite) locally GQ
with affine planes. This means the following. Consider the set of minimal-by-
inclusion subspaces generated by the pairs of intersecting lines of L (such subspaces

are usually called planes). We require all the planes which are linear spaces to be
affine planes. Now the incidence system of lines and affine planes through a given
point should be isomorphic to a (finite) GQ.

Proposition 2.9 Let Γ be a triangular EGQ(3,3) such that Γ(u) ∼= W (3) for some

u. Then L = L(Γ) is a locally GQ(4,2) with affine planes, and therefore Γ ∼= U5.

Proof. Choose w ∈ Γ. Let l = wu, m = wv be two distinct lines of L on w
such that u and v are nonadjacent, and let p(l), p(m) be the corresponding isotropic
points (cf. Proposition 2.1) of T (Γ(w)).
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Let x ∈ l, y ∈ m such that x and y are not equal to w. Since x and y lie at
distance 2 in Γ, there is a line through them. Where are the other points, say z,

on this line? Clearly z 6= w. We claim that z 6∈ Γ(w), as well. Suppose it is false.
Then by Proposition 2.1 z is adjacent to some vertex t of Γ(w, x). Since Γ(t) is a
subspace of L and xz is a line of this subspace, we have y ∈ Γ(t), a contradiction
to Γ(w, x, y) = ∅. So z ∈ Γ2(u), moreover Γ(w, x, z) = Γ(w, y, z) = ∅. Hence p(z)

belongs to the totally isotropic line of T (w) generated by p(x) and p(y). We have
shown that all the points in the subspace of L generated by l and m and distinct
from w belong to the set Π = {t ∈ Γ2(w) | p(t) ⊥ p(x), p(t) ⊥ p(y)}. Clearly, Π

generates a linear space on 16 points with line size 4, that is the affine plane of order
4. On the other hand, l and m generate a subspace of 〈Π〉. But any two lines in
this plane generate it. So 〈l,m〉 ∼= AG(2, 4).

It is easy to check that a pair of lines through w corresponding to the pair of
nonorthogonal isotropic points of T (Γ(w)) does not generate a linear subspace of
L. Thus the only planes of L are the affine ones. Moreover, the planes on w are

in one-to-one correspondence with the totally isotropic lines of T (Γ(w)). So L is a
locally GQ(4,2) with affine planes.

The rest of the proof is straightforward and consists of implementation of the
corresponding classification result [8], which says that the locally (finite) GQ with
affine planes are in one-to-one correspondence with the standard quotients of the

corresponding affine polar spaces, see [5, 9]. It is easy to deduce from [5, 8] that our
object is the desired U5.

Remark. Alternatively, it suffices to show that L is a generalized Fischer space,
and then apply their classification. A generalized Fischer space is a connected partial

linear space such that each of its planes is either affine or dual affine. Also, we know
that there are only finitely many lines (points) on a given point (resp. line) and
the cocollinearity graph of L (that is, Γ) is connected. Such spaces are called finite

and irreducible. Let us prove that L is a generalized Fischer space. It was shown
above that if l = wu, m = wv are two distinct lines on w such that u and v are not
adjacent in Γ, then 〈l,m〉 ∼= AG(2, 4). Thus it suffices to prove that if u and v are
adjacent, then 〈l,m〉 ∼= AG∗(2, 3). Indeed, in this case we may pick t ∈ Γ(w, u, v)

and consider Γ(t) as a subspace of L. Since 〈l,m〉 ∩Γ(t) is isomorphic to AG∗(2, 3),
so is 〈l,m〉.

Now it easily follows from the classification of finite, irreducible Fischer spaces
given in [6, 10] that Γ ∼= U5.

2.3 The remaining case

Here we assume that Γ(u) ∼= Q4(3) for any point u of Γ. It follows from Lemma

2.6 that Γ has distinct µ-graphs, that is, if Γ(x, y) = Γ(x, z), where y and z both at
distance two from x, then y = z.

We claim that hyperovals of type 5 must appear as µ-graphs of EGQ. Assume
to the contrary that all the µ-graphs are arising from hyperovals of type 6. By
a standard counting argument, there must be 90 such µ-graphs. It follows from
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Proposition 2.2 that there are exactly 24 µ-graphs intersecting the given one in 2K2,
and all with such intersection must be taken from the set X of type 6 hyperovals.

So we may define an O5(3)-invariant graph on X of valence 24, two vertices being
adjacent if the corresponding hyperovals intersect in 2K2. A union of connected
components of this graph must be of size 90. But the maximal possible size of the
blocks of imprimitivity of O5(3) on X is 10. This implies a contradiction, since the

valence of X is greater than 10. We are done.

Finally, we prove that, to the contrary, hyperovals of type 5 cannot appear as

µ-graphs of EGQ. We need one more statement rectifying the embedding of a type
5 hyperoval Φ in ∆.

Lemma 2.10 Let Φ ⊂ ∆, X be the set of vertices of ∆ outside Φ such that each
vertex x ∈ X satisfies ∆(x) ∩ Φ ∼= K2. Φ is isomorphic to the two-fold antipodal

cover of K5 with the antipodal equivalence relation φ = φΦ. X is a connected graph
of valence 6, x, y ∈ X being adjacent if ∆(y) ∩ Φ ∩ φ(∆(x) ∩ Φ) is of size one.

Now assume that given u ∈ Γ, v ∈ Γ2(u), we have Γ(u, v) of type 5. Let W ⊂
Γ(v)\Γ(u) such that Γ(u, v, w) ∼= K2 for any w ∈W . The subgraph W is isomorphic
to X defined in Lemma 2.10. Then Γ(u, w) is of type 5, by Proposition 2.2 and

Lemma 2.1 The set Y of type 5 hyperovals of Γ(u) intersecting Γ(u, v) in K2 is
of size 60 (Proposition 2.2), and the stabilizer of Γ(u, v) in O5(3) acts transitively
on Y . So in our attempt to select 20 of them we could start from any element
of Y . Let Φ1 be such a hyperoval. We try to form a graph isomorphic to the

graph X defined in Lemma 2.10. There are exactly 6 elements Φ′ of Y such that
Φ′ ∩ Γ(u, v) ∩ φΓ(u,v)(Φ1 ∩ Γ(u, v)) ∼= K1 and Φ1 ∩ Φ′ ∼= K2 or 2K2 (the latter is a
necessary condition for the vertices in W associated with Φ1 and Φ′ to be adjacent,
see Proposition 2.2, for the former see Lemma 2.10). Since X is of valence 6, we are

forced to pick up all the 6 possible elements of Y . Proceeding in this manner (i.e.
considering Φ′ instead of Φ1, etc.), we however do not end up with 20 elements of
Y , but with all 60 of them. Therefore it is impossible to assign to each vertex in W

a hyperoval from Y , a contradiction.

The consideration of the case ∆ ∼= Q4(3) is complete. Hence the proof of Theo-
rem 1.1 is complete.

Note added in proof.

A step towards giving a computer-free proof of the result of this paper was made
in A.A.Makhnev. Finite locally GQ(3,3)-graphs (in Russian). Siberian Math. J.

35(1994) 1314-1324.
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