
Harmonic morphisms, conformal foliations and

shear-free ray congruences

P. Baird J. C. Wood ∗

Abstract

A shear-free ray congruence is a foliation by null lines (light rays) of an open
subset of Minkowski space satisfying a certain conformality condition. We
show that (i) any real-analytic complex-valued harmonic morphism without
critical points defined on an open subset of Minkowski space is conformally
equivalent to the direction vector field of a shear-free ray congruence, (ii) any
(real-analytic) complex-valued horizontally conformal submersion on an open
subset of R3 is locally the boundary values at infinity of a harmonic morphism
on an open subset of hyperbolic space. This provides a construction of families
of minimal surfaces in hyperbolic 4-space with given boundaries at infinity.

1 Introduction

Harmonic morphisms are smooth (C∞) maps between (semi-)Riemannian mani-
folds which preserve Laplace’s equation in the sense that they pull back germs of
harmonic functions to germs of harmonic functions. They can be characterized as
harmonic maps which are horizontally (weakly) conformal. A smooth foliation on a
Riemannian manifold is called conformal if Lie transport along the leaves of vectors
in the normal space is conformal; locally, smooth conformal foliations are given by
the fibres of horizontally conformal submersions.

A foliation by null lines (light rays) of an open subset of Minkowski space with
tangent distribution V is called a shear-free ray (SFR) congruence if Lie transport
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along the leaves of vectors in a complement of V in V ⊥ (a screen space) is confor-
mal (see below); equivalently the projection of V onto any R3-slice is tangent to a
conformal foliation by curves. We show that the direction vector field of an SFR
congruence is a harmonic morphism with values in the extended complex plane, and
every real-analytic complex-valued harmonic morphism from an open subset of Min-
kowski space which has no critical points arises this way up to conformal equivalence
(Theorem 2.3).

The boundary values at infinity of a complex-valued harmonic morphism from an
open subset of hyperbolic 4-space are horizontally conformal. We show conversely
that a real-analytic horizontally conformal map is locally the boundary values at in-
finity of a hyperbolic harmonic morphism. The construction involves only geometry
and analytic continuation, no equations are solved. We interpret this construction
twistorially and illustrate with an example.

The authors would like to thank U. Pinkall for a suggestion which led to this
investigation, T. Bailey for conversations related to this work and the referee for
useful suggestions. The second author would like to thank the Département de
Mathématiques of the Université de Bretagne Occidentale, Brest for inviting him to
visit enabling this work to be done.

2 Harmonic morphisms and SFR congruences

Harmonic morphisms

For any (semi-)Riemannian manifolds (Mm, g), (Nn, h), a harmonic morphism
φ : Mm → Nn is a map which pulls back germs of harmonic functions on Nn

to germs of harmonic functions on Mm. By [8, 13] for the Riemannian case and
[9] for the semi-Riemannian case, these can be characterized as harmonic maps φ
which are horizontally weakly conformal, i.e. at each point p ∈ M , the adjoint of
dφp is conformal; for a complex-valued map φ = φ1 + iφ2 this is equivalent to the
condition that the gradients of φ1 and φ2 be orthogonal and of the same length,
i.e. that the complex gradient of φ be isotropic (null). In particular, let R4 =
{(x0, x1, x2, x3) : xi ∈ R} with the standard Euclidean metric g =

∑3
i=0 dx

2
i and let

M4 = {(t, x1, x2, x3) : t, xi ∈ R} with the Minkowski metric gM = −dt2 +
∑3
i=1 dx

2
i .

Then a smooth map φ : A4 → C from an open subset of Euclidean space R4 is a
harmonic morphism if and only if it satisfies Laplace’s equation:

∆φ ≡ ∂2φ

∂x2
0

+
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

= 0 (1)

and the horizontal weak conformality condition:(
∂φ

∂x0

)2

+

(
∂φ

∂x1

)2

+

(
∂φ

∂x2

)2

+

(
∂φ

∂x3

)2

= 0 , (2)

whereas a smooth map φ : AM → C from an open subset of Minkowski space M4 is
a harmonic morphism if and only if it satisfies the wave equation:

�φ ≡ −∂
2φ

∂t2
+
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

= 0 (3)
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and the horizontal weak conformality condition:

−
(
∂φ

∂t

)2

+

(
∂φ

∂x1

)2

+

(
∂φ

∂x2

)2

+

(
∂φ

∂x3

)2

= 0 , (4)

i.e. a harmonic morphism from Minkowski space is a ‘null’ solution to the wave
equation (cf. [4]).

For a harmonic morphism φ : Mm → Nn between (semi-)Riemannian manifolds
there are three types of point p ∈Mm:

(a) dφp = 0; we call such points critical points;
(b) dφp 6= 0 and ker dφp is non-degenerate. Then dφp maps the horizontal space

(kerdφp)
⊥ conformally onto Tφ(p)N ;

(c) dφp 6= 0 and kerdφp is degenerate. Then [9] (kerdφp)
⊥ ⊂ kerdφp .

If the last case occurs we call φ degenerate (at p); this case cannot occur if the
domain manifold (Mm, g) is Riemannian. A simple example of a harmonic morphism
φ : M4 → C which is degenerate everywhere is given by φ(t, x1, x2, x3) = f(t− x1)
where f : R → C is any smooth function. Note that this has 1-dimensional image;
in contrast, in the Riemannian case a harmonic morphism is always open [8]. For
more theory and examples, see, for example [1, 22] for the Riemannian case, and [9]
in the semi-Riemannian case. Note, in particular, in the Riemannian case, a smooth
harmonic morphism is always real-analytic [7], but the above example shows that
this is not so in the semi-Riemannian case.

If we include R4 in C4 by (x0, x1, x2, x3) 7→ (x0, x1, x2, x3) and M4 in C4 by
(t, x1, x2, x3) 7→ (−it, x1, x2, x3) (the minus sign is unimportant and is just to avoid
minus signs later on), the pairs of equations (1, 2) and (3, 4) both complexify to the
pair (1, 2) where now (x0, x1, x2, x3) ∈ C4. We call a holomorphic map φ : AC → C
from an open subset of C4 which satisfies (1) a complex-harmonic function and one
which also satisfies (2) a complex-harmonic morphism. We may easily adapt the
argument of [13] to characterize complex-harmonic morphisms AC → C as those
holomorphic maps which pull back germs of holomorphic functions to germs of
complex-harmonic functions.

In all three cases, the equations for a harmonic morphism to a 2-dimensional
codomain are conformally invariant in the codomain, i.e. if φ : A → N2 is a har-
monic morphism to a 2-dimensional Riemannian manifold and ρ : N2 → N ′2 is
a weakly conformal map to another 2-dimensional Riemannian manifold, then the
composition ρ◦φ is a harmonic morphism. Thus, for example, the pair of equations
(3,4) makes sense for a map to a Riemann surface.

Conformal foliations on R3

By a C∞ (resp. Cω) non-zero vector field on an open subset A3 of R3 we mean
a C∞ (resp. Cω) section U : A3 → TR3 \ {zero section}. Without loss of generality
we may assume that U is of unit norm. To such a distribution corresponds a C∞

(resp. Cω) (oriented) foliation C of A3 by curves given by integrating U . Note that
U can be recovered from C as its field of (positive) unit tangents.

Let U⊥ be the distribution of (oriented) subspaces of TR3 perpendicular to U .
Then the distribution U is called shear-free and the corresponding foliation C confor-
mal if Lie transport along U of vectors in U⊥ is conformal. Let J⊥ denote rotation
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through +π/2 on each oriented plane U⊥p (p ∈ A3); then U is shear-free if and only
if LUJ⊥ = 0 where L denotes Lie derivative. Now, for any X ∈ C∞(U⊥),

(LUJ⊥)(X) = {(LU(J⊥X)}⊥ − J⊥{LU (X)}⊥

= {∇U(J⊥X)}⊥ −∇J⊥XU − J⊥{∇UX}⊥ + J⊥∇XU (5)

where { }⊥ denotes orthogonal projection onto U⊥ (noting that, since g(∇XU,U) =
1
2
X
(
g(U,U)

)
= 0, we have ∇XU ∈ C∞(U⊥)). Further, since U⊥ is a Hermitian

connected bundle of rank 2, as for all such bundles we have

{∇U(J⊥X)}⊥ − J⊥{∇UX}⊥ = (∇EndU⊥

U J⊥)(X) = 0 ;

hence U is shear-free if and only if

∇J⊥XU = J⊥∇XU . (6)

A concrete way of obtaining conformal foliations is the following: Let f : A3 → C
be a C∞ (resp. Cω) submersion from an open subset of R3. Then f is horizontally
conformal if and only if (

∂f

∂x1

)2

+

(
∂f

∂x2

)2

+

(
∂f

∂x3

)2

= 0 . (7)

Then we have the simple lemma (cf. [18]):

Lemma 2.1 (i) If f is C∞ (resp. Cω) and horizontally conformal then the foliation
defined by (the fibres of) f is C∞ (resp. Cω) and conformal.

(ii) All C∞ (resp. Cω) conformal foliations are given locally in this way.

Hermitian structures

By an almost Hermitian structure Jp at p ∈ R4 we mean an isometry Jp :
TpR4 → TpR4 with J2

p = −I . Given any orthonormal basis {e0, e1, e2, e3} of TpR4
p,

setting Jp(e0) = e1, Jp(e2) = e3 defines an almost Hermitian structure Jp at p ;
we call Jp positive (resp. negative) according as {e0, e1, e2, e3} is a positively (resp.
negatively) oriented basis. By a smooth almost Hermitian structure on an open
subset A4 of R4 we mean a map J which assigns to each point p of A4 an almost
Hermitian structure at p in a smooth fashion, i.e. J defines a smooth section on A4

of the bundle E = End(TR4)→ R4. We call J integrable if there are local complex
coordinates on A4 with associated almost complex structure J , this is equivalent to
the vanishing of the Nijenhuis tensor. A short calculation (see, e.g. [10, p. 42] or
[17, p. 169]) shows that this is equivalent to

∇E
JXJ = J∇E

XJ ∀X ∈ C∞A4(TR4) , (8)

i.e.
(∇E

JXJ)(Y ) = J
(
(∇E

XJ)(Y )
)
∀X, Y ∈ C∞A4(TR4) ,

where ∇E is the induced connection on the bundle E = End(TR4) given by the
formula (∇E

XJ)(Y ) = ∇X(JY )− J(∇XY ). Such a J is always real-analytic.
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Let σ : S2 → C ∪ {∞} denote stereographic projection from (−1, 0, 0). Given a
smooth almost Hermitian structure J on A4, set

U = J(∂/∂x0) and iµ = σ ◦ U ; (9)

we shall say that µ : A4 → C∪{∞} represents J . Then, in local coordinates, writing
z1 = x0 + ix1, z2 = x2 + ix3, the equations (8) read (see, for example, [21])(

∂

∂z1
− µ ∂

∂z2

)
µ = 0 ,

(
∂

∂z2
+ µ

∂

∂z1

)
µ = 0 . (10)

Let J be a Hermitian structure on an open subsetA4 of R4 and set U = J(∂/∂x0).
Then, by comparing equations (6) and (8) we see that the restriction of U to any R3-
slice: x0 = const. is shear-free and so its integral curves form a conformal foliation.

Shear-free ray congruences

Let ` be a smooth foliation of an open subset AM of Minkowski space by null
lines, let v = ∂/∂t+ U (U a unit vector in R3) be its tangent vector field and write
V = span{v}. The distribution V ⊥ orthogonal to V (with respect to the Minkowski
metric gM ) is three-dimensional and contains V . Choose any complement Σ of V in
V ⊥; such a complement is called a screen space; then the restriction of the Minkowski
metric gM to Σ is positive definite. Let J ∈ C∞(End Σ) denote rotation through
π/2. Then ` (or V ) is said to be a shear-free ray (SFR) congruence [6, 12, 16] if Lie
transport along V of vectors in Σ is conformal, i.e. LvJ⊥ = 0. On calculating the
Lie derivative in a similar way to (5) we see that this is equivalent to

(∇J⊥Xv)Σ = J⊥(∇Xv)Σ for all X ∈ C∞(Σ) (11)

where ( )Σ indicates projection onto Σ along V ; this condition is independent of the
choice of screen space.

Comparing equations (11) and (6) shows that the restriction of U to any R3-
slice: t = const. is shear-free and so its integral curves form a conformal foliation.
Conversely, given a shear-free vector field U on an open set A3 of an R3-slice, the
null lines of M4 tangent to ∂/∂t+U at points of A3 define an SFR congruence ` on
an open neighbourhood of A3 in M4. We shall say that ` extends U .

Write

iµ = σ ◦ U ; (12)

we shall say that µ represents `. Then the shear-free condition is expressed ([14],
[16, II (7.4.6)], [12, p. 50]) by(

∂

∂u
− µ ∂

∂z2

)
µ = 0 and

(
∂

∂z2
+ µ

∂

∂u′

)
µ = 0 , (13)

where u = x1 − t and u′ = x1 + t. It quickly follows from these equations that if
` is a shear-free congruence then the map µ : AM → C ∪ {∞} representing it is a
harmonic morphism.
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Using coordinates z1 = x0 + ix1, z̃1 = x0 − ix1, z2 = x2 + ix3, z̃2 = x2 − ix3 on
C4, so that R4 is given by z̃1 = z1, z̃2 = z2, we see that both these equations and
the equations (10) are restrictions of the equations in C4:(

∂

∂z̃1
− µ ∂

∂z2

)
µ = 0 ,

(
∂

∂z̃2
+ µ

∂

∂z1

)
µ = 0 . (14)

We remark that these equations express the condition that a holomorphic dis-
tribution of 2-dimensional null subspaces integrates to a foliation by null planes.
Thus, given such a foliation, (i) for any R4-slice {(x0, x1, x2, x3) ∈ C4 : Im xi =
const. (i = 0, 1, 2, 3)} the almost Hermitian structure having these null subspaces as
(1, 0)-tangent spaces is integrable, (ii) the foliation given by the intersection of the
null planes with any Minkowski slice {(x0, x1, x2, x3) ∈ C4 : Rex0 = const., Imxi =
const. (i = 1, 2, 3)} is a shear-free ray congruence.

Harmonic morphisms and shear-free ray congruences

In [21, Theorem 1.1] the following result is given:

Theorem 2.2 Let φ : AR → N2 be a harmonic morphism without critical points
from an open subset AR of R4 to a Riemann surface. Then there exists a Hermitian
structure J on AR such that J is parallel along each connected component of the
fibres of φ. Further, for any p ∈ AR , there is a neighbourhood AR

1 of p in AR and a
holomorphic map ρ : V → C∪{∞} from an open subset V of N2 such that µ = ρ◦φ
represents J on AR

1 .

We have the following analogue in Minkowski signature:

Theorem 2.3 Let φ : AM → N2 be a real-analytic harmonic morphism without crit-
ical points from an open subset AM of Minkowski space M4 to a Riemann surface.
Then there is a shear-free ray congruence ` on AM such that each connected compo-
nent of a fibre of φ is the union of parallel null lines of `. Further, for any p ∈ AM ,
there is a neighbourhood AM

1 of p in AM , and a holomorphic map ρ : V → C∪ {∞}
from an open subset V of N2 such that µ = ρ ◦ φ represents ` on AM

1 .

Proof: Let p ∈ AM . By real-analyticity we may extend φ to an open neighbourhood
AC of p in C4 and then restrict it to an open subset A4 of the R4-slice through p. This
restriction is a harmonic morphism with respect to the Euclidean metric. Therefore,
by Theorem 2.2, it is holomorphic with respect to some Hermitian structure J
which is constant along each connected component of a fibre of φ. Replacing z2

by z̃2 if necessary, we can assume that J is positively oriented. Representing J by
µ : A4 → C ∪ {∞} as in (9) then µ and φ satisfy (14) and(

∂

∂z̃1
− µ ∂

∂z2

)
φ = 0 ,

(
∂

∂z̃2
+ µ

∂

∂z1

)
φ = 0 , (15)

at points of A4, (14) expressing integrability of J and (15) holomorphicity of φ
with respect to J (cf. [21]). Extend µ to AC by (15), noting that it is well-defined
since not all the partial derivatives of φ can vanish simultaneously; µ is then a
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holomorphic function which we restrict to a neighbourhood AM of p in M4. By
analytic continuation, (14) holds at all points of AM so that µ represents a shear-
free ray congruence. By (15) φ is constant along any ray of the congruence so that
each fibre of φ is the union of such rays. Further, J , and so µ, is constant along the
connected components of fibres of φ|A4; by analytic continuation, µ : AM → C∪{∞}
is constant along the connected components of the fibres of φ : AM → C ∪ {∞} so
that the null lines of the congruence making up a connected component of a fibre of
φ are all parallel.

Lastly, since µ is constant on the leaves of the foliation given by the fibres of φ,
it factors through local leaf spaces as µ = ρ◦φ. Since φ and µ are both holomorphic
(with respect to i and J), ρ must be holomorphic.

Remarks 2.4 (i) If the fibres of φ are totally geodesic, there are two SFR congru-
ences corresponding to the two Hermitian structures of [21, Theorem 1.1], otherwise
there is just one.

(ii) There is a version of Theorem 2.3 for complex -harmonic morphisms replacing
‘null line’ by ‘null plane’ and ‘shear-free ray congruence’ by ‘holomorphic foliation
by null planes’; indeed the function µ : AC → C in the proof defines such a foliation.

Note that, in the Euclidean case, the condition ‘without critical points’ is equiv-
alent to ‘φ is submersive’. This is not so in the Minkowski case where φ may be
degenerate. We can actually be more precise in that case:

Corollary 2.5 Let φ : AM → N be a real-analytic harmonic morphism from an
open subset AM of M4. Suppose that φ is degenerate at p with dφp 6= 0. Then
there exists a unique null direction Vp ∈ TpM4 such that Vp ⊂ ker dφp. Furthermore,
kerdφp = V ⊥p . If, further, at each point q in the connected component of the fibre
through p, φ is degenerate with dφq 6= 0, then that connected component is the affine
null 3-space tangent to V ⊥p .

Proof: By [9], (kerdφp)
⊥ ⊂ ker dφp. This means that kerdφp must be three-

dimensional. But then (kerdφp)
⊥ is 1-dimensional and null. Set Vp = (kerdφp)

⊥.
Then Vp ⊂ kerdφp and ker dφp = V ⊥p .

To prove uniqueness of Vp, suppose that V ′p ⊂ kerdφp is another null direction.
Then V ′p ⊂ V ⊥p which is easily seen to imply that V ′p = Vp.

This means that the distribution p 7→ Vp must be tangent to the SFR congruence
of the theorem, and so each Vp is parallel for all p in a connected component of a
fibre. The last assertion follows from the fact that the connected component of the
fibre is 3-dimensional and has every tangent space parallel to Vp.

Examples 2.6 (i) The simplest examples of Minkowski harmonic morphisms from
M4 to C are given by (a) (t, x1, x2, x3) 7→ x2+ix3 which is non-degenerate everywhere
and surjective and (b) (t, x1, x2, x3) 7→ x1 − t which is degenerate everywhere and
has 1-dimensional image R ⊂ C. Note that in both cases, the fibres are totally
geodesic; in (a) the SFR congruences of Theorem 2.3 (two by Remark 2.4(i)) have
leaves with (null) directions (1,±1, 0, 0), in (b) the SFR congruence (just one by
Corollary 2.5) has leaves with (null) direction (1, 1, 0, 0).
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(ii) Let f(x1, x2, x3) = −ix1 ±
√
x2

2 + x2
3. This is a horizontally conformal sub-

mersion from A3 = R3 \ {(x1, x2, x3) : x2 = x3 = 0} to C. Its level curves are circles
in planes parallel to the (x2, x3)-plane and centred on points of the x1-axis; these
give a conformal foliation C of A3 whose tangent vector field is the shear-free unit
vector field U : A3 → S2 given by

U(x1, x2, x3) = ± 1√
x2

2 + x2
3

(0,−x3, x2) . (16)

Note that U has 1-dimensional image — the equator of S2. We compute the tangent
vector field to the SFR congruence ` extending U . The affine null geodesic of ` in
M4 through (x1, x2, x3) with direction ∂/∂t+ U is given parametrically by

T 7→
T, x1, x2 + T

 −x3√
x2

2 + x2
3

 , x3 + T

 x2√
x2

2 + x2
3

 (17)

= (T,X1, X2, X3) , say.

Conversely, given (T,X1, X2, X3) ∈M4, the null geodesic of ` hits the R3-slice: t = 0
at (x1, x2, x3) where

x1 = X1, x2 + T

 −x3√
x2

2 + x2
3

 = X2, x3 + T

 x2√
x2

2 + x2
3

 = X3 .

Solving this gives

(x1, x2, x3) =

(
X1,

R

X2
2 +X2

3

(RX2 + TX3),
R

X2
2 +X2

3

(RX3 − TX2)

)
(18)

where R =
√
X2

2 +X2
3 − T 2 . Hence the tangent to the null geodesic of ` through

(t, x1, x2, x3) ∈M4 is given by v = ∂/∂t+ U with

U = Ut(x1, x2, x3) = U(t, x1, x2, x3) =
r√

x2
2 + x2

3

(
0,−x3 +

t

r
x2, x2 +

t

r
x3

)
(19)

where r =
√
x2

2 + x2
3 − t2 .

Of course, again the image of U is the equator of S2. For each t, the integral
curves of Ut give a conformal (in fact, Riemannian) foliation Ct of the R3-slice t =
const.; it is easy to see that the leaves of Ct are the involutes of circles (see [5]).

The vector field U defines a Minkowski harmonic morphism from the cone given
by AM = {(t, x1, x2, x3) ∈ M4 : x2

2 + x2
3 > t2} to S2 which is degenerate everywhere

and has image the equator of S2. Note that U = σ(iµ) with

µ(t, x1, x2, x3) =
r

x2
2 + x2

3

{(
x2 +

t

r
x3

)
+ i

(
x3 −

t

r
x2

)}
giving a harmonic morphism µ : AM → C, also degenerate, with image the unit
circle. The fibre of U (or µ) through any point p is the affine plane perpendicular to
Up; this is spanned by Up, ∂/∂x1 and the vector in the (x2, x3)-plane perpendicular
to Up .
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3 Harmonic morphisms from hyperbolic space and conformal

foliations

We wish to construct harmonic morphisms from hyperbolic space with given bound-
ary values at infinity; since such maps are always holomorphic with respect to some
Hermitian structure (see below), we first examine the boundary values of a holomor-
phic map. For any p = (p0, p1, p2, p3) ∈ R4, denote the R3-slice: x0 = p0 through p
by R3

p. (If p = (0, 0, 0, 0) we shall just write R3.)

Proposition 3.1 Let φ : A4 → C be a submersive map from an open subset of R4

which is holomorphic with respect to a positive Hermitian structure J on A4. Let
p ∈ A4 and let U be the shear-free vector field on the open subset A3 = A4 ∩ R3

p of
R3
p defined by U = J(∂/∂x0). Denote the foliation of A3 given by its integral curves

by C. If
∂φ

∂x0
= 0 on A3 (20)

then f = φ|A3 is a real-analytic horizontally conformal submersion which is constant
on the leaves of C.

Proof: Let q ∈ A3. By holomorphicity, since Uq = Jq(∂/∂x0), the directional
derivative Uq(f) = 0 so that f is constant on the leaves of C. If {e2, e3 =Je2} is a
basis for U⊥q ∩ TqR3

p , holomorphicity of φ implies that e3(f) = i e2(f) so that f is
horizontally conformal. Submersivity of f easily follows from that of φ.

We now interpret such φ. Equip R̆4 ≡ R4 \ R3 with the hyperbolic metric gH =(∑3
i=0 dx

2
i

)
/x2

0 so that each component R4
+, R4

− is isometric to hyperbolic 4-space

H4 with R3 as boundary at infinity. Let Ă4 be an open subset of R̆4, then we call
a smooth map φ : Ă4 → C a hyperbolic harmonic function if it is harmonic with
respect to the hyperbolic metric gH. This holds if and only if

x0

3∑
i=0

∂2φ

∂x2
i

− 2
∂φ

∂x0
= 0 (21)

at all points of Ă4.
Similarly, π : Ă4 → C will be called a hyperbolic harmonic morphism if it is

a harmonic morphism with respect to the metric gH , by [8, 13] such maps are
characterized as solutions to the pair (21, 2). Equation (21) shows that a hyperbolic
harmonic morphism which is, say, C2 up to the boundary satisfies (20). We now
find a converse. Recall ([21], see also [2])

Theorem 3.2 (i) Any submersive hyperbolic harmonic morphism φ : Ă4 → C is

holomorphic with respect to some Hermitian structure J on Ă4 and has superminimal
fibres with respect to J , i.e. kerdφ ⊂ ker∇HJ on Ă4 where ∇H is induced by the
Levi-Civita connection of the hyperbolic metric on R̆4.

(ii) Conversely, let J be a Hermitian structure on an open subset Ă4 of R̆4, and

φ : Ă4 → C a non-constant map which is holomorphic with respect to J . Then φ is
hyperbolic harmonic if and only if, at points where dφ 6= 0, its fibres are superminimal
with respect to J .
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To formulate this analytically, consider the twistor space π : CP 3 \ CP 1
0 →

R4 = C2 where CP 1
0 = {[w0, w1, w2, w3] : w0 = w1 = 0} and π is given by

π[w0, w1, w2, w3] = (z1, z2) with z̃1 = z1, z̃2 = z2 and

w0z1 − w1z̃2 = w2 w0z2 + w1z̃1 = w3 . (22)

When (z1, z̃1, z2, z̃2) represents a point in C4, the equations (22) are the well-
known incidence relations for the twistor correspondence (see, e.g. [19]). Recall the
Kerr Theorem [16]: Given a complex surface ψ(w0, w1, w2, w3) = 0 in CP 3 \ CP 1

0,
local smooth solutions to

ψ(w0, w1, w0z1 − w1z̃2, w0z2 + w1z̃1) = 0 (23)

satisfy (14) and all solutions of (14) are given this way locally. We call S the twistor
surface of µ (or of the quantity J, ` etc. it represents). Now, a solution µ : A4 → C to
(10) on an open subset of R4 represents a Hermitian structure J on A4, this defines
a section w of the twistor bundle with image an open subset of S. Set

N5 = π−1(R3) = {[w0, w1, w2, w3] : w0w2 + w0w2 + w1w3 + w1w3 = 0} ⊂ CP 3 .

Let Θ be the homogeneous holomorphic contact form

Θ = w1dw2 − w2dw1 − w0dw3 + w3dw0 (24)

on CP 3. Then ker Θ gives the horizontal spaces of the restriction of the twistor
projection: π : CP 3 \N5 → (R̆4, gH). Let φ : A4 → C be holomorphic with respect
to J , equivalently Φ = φ ◦ π is holomorphic on an open subset of S. Then φ is
a hyperbolic harmonic morphism if and only if its fibres are superminimal, i.e. the
fibres of Φ are horizontal, this is expressed analytically by

kerdΦ ⊂ ker Θ . (25)

Proposition 3.3 Let A4 be a connected open subset of R4, R4
+ ∪ R3 or R4

− ∪ R3

with A3 = A4 ∩ R3 non-empty, and let φ : A4 → C be a non-constant C1 map
which is holomorphic with respect to a Hermitian structure J on Ă4 = A4 \ R3 and
submersive at almost all points of A3. Then φ satisfies (20) on A3 if and only if
φ|Ă4 is a hyperbolic harmonic morphism.

Proof: It suffices to work at points where φ is submersive. At such points note that
(20) holds if and only if kerφ = span{∂/∂x0, J∂/∂x0}. Now let S be the twistor
surface of J and let Φ : S → C be defined by Φ = φ◦π. We show that the pull-back
θ = w∗Θ to A4 satisfies

span{∂/∂x0, J∂/∂x0} ⊂ ker θ (26)

at all points of A3. Since the (complexified) normal to R3 is given by the annihilator
of span{dz1 − dz̃1, dz2, dz̃2}, it suffices to show that on R3 = {z1 + z̃1 = 0}, θ is a
linear combination of those three forms. To do this, taking differentials in (22) gives

dw2 = z1dw0 + w0dz1 − z̃2dw1 −w1dz̃2 ,

dw3 = z2dw0 + w0dz2 + z̃1dw1 + w1dz̃1 .
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Substituting these into (24) and rearranging gives

θ = (w3−w0z2+w1z1)dw0−(w2+w0z̃1+w1z̃2)dw1+w0w1(dz1−dz̃1)−w2
0dz2−w2

1dz̃2 .

By (22), the coefficients of dw0 and dw1 vanish when z1 + z̃1 = 0 so that (26) follows.
Thus condition (20) is equivalent to the superminimality of the fibres of φ at

points of A3, i.e. kerdφ ⊂ ker θ, or, equivalently, kerdΦ ⊂ ker Θ on the real hy-
persurface N3 = w(A3) of S. But this is a holomorphic condition, so by analytic
continuation, if φ has superminimal fibres at points of A3 then it has superminimal
fibres on the whole of A4 and, on applying Theorem 3.2, we are done.

Theorem 3.4 Let f : A3 → C be a real-analytic horizontally conformal submersion
on an open subset of R3. Then there is an open subset A4 of R4 with A4 ∩R3 = A3

and a real-analytic submersion φ : A4 → C with φ|A3 = f such that φ|A4 \ R3

is a hyperbolic harmonic morphism. In fact φ 7→ f = φ|A3 defines a bijective
correspondence between germs at A3 of real-analytic submersions φ : A4 → C on
open neighbourhoods of A3 in R4 which are hyperbolic harmonic on A4 \ R3 and
real-analytic horizontally conformal submersions f : A3 → C.

Proof: Let C be the conformal foliation on A3 given by the level sets of f and let U
be its unit tangent vector field given by U = gradf1×gradf2/|gradf1×gradf2| where
f = f1 + if2. Let J be the unique positive almost Hermitian structure on A3 with
U = J(∂/∂x0) and set φ = f . Then, as in Section 2, the null lines tangent to the
vectors ∂/∂t+ U define a shear-free ray congruence ` on some open neighbourhood
AM of A3 in M4; we extend J and φ to AM by making them constant along the
leaves of `; this means that they satisfy the restriction of equations (14) to AM . We
then extend them to an open neighbourhoood of AM in C4 by analytic continuation,
i.e. by insisting that they be complex-analytic, and finally we restrict to R4, thus
extending J and φ to an open neighourhood A4 of A3 in R4. Then they satisfy
(10) and the restriction of (15), hence J is a Hermitian structure on A4 and φ is
holomorphic with respect to J , so ∂φ/∂x0 = −iU(φ) = 0. By Proposition 3.3, φ is
hyperbolic harmonic.

Remarks 3.5 (i) The hyperbolic harmonic morphism φ has totally geodesic fibres
if and only if the level sets of f are circles, see [3].

(ii) The extension of f can also be described in a twistorial way, as follows: U
defines a 3-dimensional CR submanifold N3 of N5 which is the intersection of N5

and a complex surface S of CP 3. This defines the extension of J to a neighbourhood
of A3 in R4. Now f defines a CR function F = f ◦ π on N3 which we may extend
to a holomorphic function Φ on a neighbourhood of N3 in S; on a possibly smaller
neighbourhood, Φ is of the form φ ◦ π for a unique function φ on an open subset of
R4. This is the desired extension.

(iii) If f is only C∞ but the normal distribution to the foliation C is nowhere
integrable, then, as in [16, II, p.220 ff.], the CR manifold N3 ⊂ CP 3 has non-zero
Levi form and so, by a theorem of Harvey and Lawson [11], N3 is the boundary of a
complex hypersurface S. Thus we can extend J and f to one side of R3: precisely,
there is an open subset A4 of R4

+∪R3 or R4
−∪R3 with A4∩R3 = A3 and a C∞ map

φ : A4 → C with φ|A3 = f such that φ|A4 \R3 is a hyperbolic harmonic morphism.
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Corollary 3.6 (i) Let C be a real-analytic conformal foliation by curves of an open
subset of R3. Then there is a real-analytic foliation of an open subset A4 of R4

by surfaces which are minimal in A4 \ R4 with respect to the hyperbolic metric and
intersect R3 in leaves of C.

(ii) Let c be a embedded real-analytic curve in R3. Then there is an embedded
real-analytic surface s in an open subset A4 of R4 which is minimal in A4 \R3 with
respect to the hyperbolic metric and intersects R3 in c.

Proof: (i) Representing the leaves of C as the level curves of a real-analytic hor-
izontally conformal submersion f : A3 → C on an open subset of R3, construct
a hyperbolic harmonic morphism φ as in the theorem: its fibres give the desired
foliation.

(ii) Embed c in a real-analytic conformal foliation by curves of an open subset of
R3 as follows: construct the normal planes to c and integrate the vector field given
by the normals to these. This gives a foliation on an open neighbourhood of c in
R3 which has totally geodesic integrable horizontal spaces and so (see, for example,
[20]) is Riemannian. (To get a conformal foliation which is not Riemannian, replace
the planes by spheres, possibly of varying radii.) Now apply (i).

Remark 3.7 It is easily seen from the equations that any C1 surface in an open
subset A4 of R4, R4

+∪R3 or R4
−∪R3 which is minimal with respect to the hyperbolic

metric on Ă4 = A4 \ R3 hits R3 orthogonally.

Example 3.8 Let f be the horizontally conformal submersion of Example 2.6 (ii).
Recall that its level sets are given by the leaves of the conformal foliation C with
tangent vector field U given by (16). The extension of this to a shear-free ray
congruence ` is described by (17). As in the proof of Theorem 3.4, extend f to a
function φ on an open subset of M4 by insisting that it be constant along the leaves
of `. Using (18) we see that this function is

φ(t, x1, x2, x3) = f

(
x1,

r

x2
2 + x2

3

(rx2 + tx3),
r

x2
2 + x2

3

(rx3 − tx2)

)

= ix1 +
√
x2

2 + x2
3 − t2

which is smooth on the cone x2
2 + x2

3 > t2. This extends by analytic continuation to
the function

φ(x0, x1, x2, x3) = ix1 +
√
x2

0 + x2
2 + x2

3 (27)

which is a complex analytic function on suitable domains of C4. Its restriction to R4

is smooth on R4 \ {x1-axis} and defines the hyperbolic harmonic morphism φ with
boundary values at infinity given by f .

We now discuss this example from the twistorial viewpoint.
Choose as twistor surface the quadratic surface S = {[w0, w1, w2, w3] ∈ CP 3 :

w0w3 + w1w2 = 0}. Then equation (23) reads

z2 + µz̃1 + µ(z1 − µz̃2) = 0
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which has solutions

µ =
z1 + z̃1 ±

√
(z1 + z̃1)2 + 4z2z̃2

2z̃2
=

x0 ± s
x2 − ix3

where s =
√
x2

0 + x2
2 + x2

3 . Note that

µ|R3 = ±

√
x2

2 + x2
3

x2 − ix3
= ± x2 + ix3√

x2
2 + x2

3

so that, on R3, U = σ−1(iµ) is given by (16) and is the tangent vector field of the
conformal foliation C discussed above. Further, note that µ|M4 is given by

µ(t, x1, x2, x3) =
−it± r
x2 − ix3

=
r

x2
2 + x2

3

{(
±x2 +

t

r
x3

)
+ i

(
∓x3 −

t

r
x2

)}

where r =
√
x2

2 + x2
3 − t2 and so, on the open set x2

2 + x2
3 > t2, U is given by (19)

and v = U + ∂/∂t gives the tangent field of the shear-free ray congruence `.
To find hyperbolic harmonic morphisms, we parametrize S away from w0 = 0 by

(ζ, η) 7→ [1, w1, w2, w3] = [1, η,−ζ, ζη], then the incidence relations (22) read

z1 − ηz̃2 = −ζ
z2 + ηz̃1 = ζη

}

which have solutions

ζ = −ix1 ± s and η =
x0 ± s
x2 − ix3

;

these describe the section w of the twistor space with image S. In terms of (ζ, η),
we have

Θ = w1dw2 −w2dw1 − dw3 = −ηdζ + ζdη − ζdη − ηdζ = −2ηdζ

so that Θ( ∂
∂η

) = 0 which means that the level surfaces ζ = const. are superminimal.
This implies that ζ defines a hyperbolic harmonic morphism φ whose level sets on
the R3-plane at infinity are the leaves of C, namely the map given by (27) above.
Note that this harmonic morphism has fibres given by the Euclidean spheres having
these circles as diameters, these spheres are totally geodesic in (R̆4, gH) .

If we introduce a parameter a = (a0, a1, a2, a3) ∈ C4 we can find the hyperbolic
harmonic morphism whose level sets at infinity are the leaves of the foliation Ct of
Example 2.6 (ii). For setting

Θa = 2a0dw1 + w1dw2 − w2dw1 − dw3

= 2a0dη − ηdζ + ζdη − ζdη + ηdζ ,



562 P. Baird – J. C. Wood

it is easily seen that ker Θa gives the horizontality condition for (R4
a \R3

a, g
H
a ) where

gHa denotes the hyperbolic metric gHa =
(∑3

i=0 dx
2
i

)/
(x0 − Rea0)2. Then φ is a

hyperbolic harmonic morphism if and only if

η
∂φ

∂η
+ a0

∂φ

∂ζ
= 0

which has a solution
φa = ζ − a0 lnη (28)

giving the complex-valued map on a dense subset of C4 :

φa(x0, x1, x2, x3) = −ix1± s− a0 ln
x0 ± s
x2 − ix3

. (29)

For any a ∈ C4 this restricts to a complex-valued hyperbolic harmonic morphism
on a dense subset of R4

a \ R3
a . Note that when a = 0 this simplifies to (27).

Putting a0 = −it in (29) and restricting to the open set {(x1, x2, x3) : x2
1 + x2

2 >
t2} gives the horizontally conformal map on the R3-slice: t = const. given by

φt = φa = −ix1 + r + it ln
r − it

x2 − ix3

= −ix1 + r − t arg
r − it

x2 − ix3
,

the level curves of this being the leaves of the conformal foliation Ct .
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