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Abstract

The purpose of this note is to construct, for any given k ≥ 1 , a partition
of the Euclidean plane R2 into k pairwise isometric connected subsets.

It is easy to partition the Euclidean plane R2 into k pairwise isometric subsets.
For example, one may take the subsets

S
(k)
i = {(x, y) ∈ R2

∣∣∣ i− 1 ≤ y + c.k < i for some c ∈ Z} i ∈ {1, 2, · · · , k}

However, if in addition the subsets of the partition are required to be connected, we
have not found any example of such a partition in the literature.

We will then prove the following
Proposition : For any given k ∈ N0 , there exists a partition of the Euclidean
plane into k pairwise isometric connected subsets.

Proof : We will construct such a partition explicitly...
For each pair of integers (m,n) ∈ Z2 , let Am,n be the ’vertical spring’

Am,n =

[
(x, y) ∈ R2

∣∣∣ { m < y ≤ m+ 1
x = 1

3
sin( 2π

y−m ) + n

]
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For i ∈ {1, 2, · · · , k} , let S
(k)
i be defined as above. We now define the following

subsets Pj of R2 :

Pj =

(
⋃
a,b∈Z

(Aa,j+k.b))
⋃
S

(k)
j

 \
 ⋃

d,e∈Z
f∈{1,2,··· ,k}\{j}

(Ad,f+k.e)

 (j ∈ {1, 2, · · · , k})

It is easy to check that the subsets P1, · · · , Pk are connected, pairwise disjoint,
pairwise isometric (Pi is clearly the image of Pj under a translation in R2), and that

R2 =
⋃
j∈{1,2,··· ,k} Pj . Therefore

{
Pj
∣∣∣ j ∈ {1, 2, · · · , k}} is a partition of R2 satisfying

all our requirements... �

To make the above construction more explicit, here is a figure describing the case
when k = 3 :

P1 P2 P3

Remark : Note that the subsets P1, · · · , Pk constructed above are not arcwise-
connected. As far as we know, the existence of a partition of R2 into k pairwise
isometric arcwise-connected subsets seems to be an unsolved problem...
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