A partition of the Euclidean plane \mathbb{R}^{2} into k pairwise isometric connected subsets.

Pierre Sleewaegen *

Abstract

The purpose of this note is to construct, for any given $k \geq 1$, a partition of the Euclidean plane \mathbb{R}^{2} into k pairwise isometric connected subsets.

It is easy to partition the Euclidean plane \mathbb{R}^{2} into k pairwise isometric subsets. For example, one may take the subsets

$$
S_{i}^{(k)}=\left\{(x, y) \in \mathbb{R}^{2} \mid i-1 \leq y+c . k<i \text { for some } c \in \mathbb{Z}\right\} i \in\{1,2, \cdots, k\}
$$

However, if in addition the subsets of the partition are required to be connected, we have not found any example of such a partition in the literature.

We will then prove the following
Proposition : For any given $k \in \mathbb{N}_{0}$, there exists a partition of the Euclidean plane into k pairwise isometric connected subsets.

Proof: We will construct such a partition explicitly...
For each pair of integers $(m, n) \in \mathbb{Z}^{2}$, let $A_{m, n}$ be the 'vertical spring'

$$
A_{m, n}=\left[(x, y) \in \mathbb{R}^{2} \left\lvert\,\left\{\begin{array}{l}
m<y \leq m+1 \\
x=\frac{1}{3} \sin \left(\frac{2 \pi}{y-m}\right)+n
\end{array}\right]\right.\right.
$$

[^0]For $i \in\{1,2, \cdots, k\}$, let $S_{i}^{(k)}$ be defined as above. We now define the following subsets P_{j} of \mathbb{R}^{2} :

$$
P_{j}=\left[\left(\bigcup_{a, b \in \mathbb{Z}}\left(A_{a, j+k . b}\right)\right) \bigcup S_{j}^{(k)}\right] \backslash\left[\bigcup_{\substack{d, e \in \mathbb{Z} \\ f \in\{1,2, k \backslash\{j\}}}\left(A_{d, f+k . e}\right)\right] \quad(j \in\{1,2, \cdots, k\})
$$

It is easy to check that the subsets P_{1}, \cdots, P_{k} are connected, pairwise disjoint, pairwise isometric (P_{i} is clearly the image of P_{j} under a translation in \mathbb{R}^{2}), and that $\mathbb{R}^{2}=\bigcup_{j \in\{1,2, \cdots, k\}} P_{j}$. Therefore $\left\{P_{j} \mid j \in\{1,2, \cdots, k\}\right\}$ is a partition of \mathbb{R}^{2} satisfying all our requirements...

To make the above construction more explicit, here is a figure describing the case when $\mathrm{k}=3$:

Remark : Note that the subsets P_{1}, \cdots, P_{k} constructed above are not arcwiseconnected. As far as we know, the existence of a partition of \mathbb{R}^{2} into k pairwise isometric arcwise-connected subsets seems to be an unsolved problem...

Acknowledgment

I'm grateful to Professor Jean Doyen who motivated me to look at the problem treated above.

Department of Mathematics,
Free University of Brussels,
Campus Plaine, CP 218
Boulevard du Triomphe, B-1050 Brussels, Belgium.

[^0]: *Supported by a F.R.I.A. grant
 Received by the editors March 1997.
 Communicated by Y. Félix.
 1991 Mathematics Subject Classification : 51M04, 51M20, 54D05.

