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Abstract
The framework of this paper is Internal Set Theory (IST in [6]). Let

P be an interval of RN . We give a characterization of functions f ∈ Lp(P )
(1 ≤ p < +∞) which are near-standard with respect to the norm of Lp(P ) (i.e.

∃stf0 ∈ Lp(P ) such that
∫
P
|f − f0|p ≈ 0). We shall find some applications

of this result in reaserch of compact sets in Lebesgue’s spaces, but also in
operator theory because an operator of Lp(P ) is compact if, and only if, it
transforms any limited function into a near-standard one.

1 Introduction.

Some mathematicians have already established necessary and sufficient conditions
to prove the integrability of the shadow, according to a different definition, of a
given function. Peter Loeb is the reference on this subject (see [4], [5]). He defines
a specific notion, the ”Loeb integral” and a notion of S-integrability, which makes
sure we obtain an integrable function by a sort of projection on the standard. More
exactly, Loeb works in an ℵ1 saturated enlargement V (∗S) of a superstructure V (S).
Fix an internal probability space (Λ,A, µ) of V (∗S). The Loeb space associated
to (Λ,A, µ) is denoted by (Λ, Lµ(A), µ̂). An arbitrary subset N ⊂ Λ (N may be
external) is called a µ̂-nullset, if the outer measure ofN equals 0, i.e. inf{ oµ(T ), N ⊂
T ∈ A} = ′.

If T ∈ A and U ⊂ Λ, then T is called a µ̂-approximation of U, if T4U is
a µ̂-nullset. The Loeb σ-algebra Lµ(A) is the set of all subsets U ∈ Λ with µ̂-
approximations in A and the Loeb measure µ̂ on Lµ(A) is defined by setting µ̂(U) =
oµ(T ), if T is a µ̂-approximation of U .
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We say that a function f : Λ→ ∗R is Sµ-integrable if and only if for all A ∈ A,

•

∫
A
|f | is limited,

• µ(A) ≈ 0 =⇒
∫
A
|f | ≈ 0.

We can find many equivalent definitions of the Sµ-integrability. This notion is
one of the most important ideas in non standard measure theory. We could use this
notion to define the usual integrability of functions f : Λ→ R∪ {−∞,+∞}. These
functions are called µ̂-integrable, if there exists an Sµ-integrable lifting F : Λ→ ∗R
of f . One theorem of the theory ensures that f is Lµ(A)-measurable if f is µ̂-
integrable. The integrale of f could be defined by setting∫

Λ
fdµ̂ = o

∫
Λ
Fdµ.

It can be seen that this definition of integrability coincides with the usual defi-
nition. For arbitrary Sµ-integrable function F : Λ → ∗R, oF , the standard part of
F is µ̂-integrable. Moreover, ∫

Λ

oFdµ̂ = o
∫

Λ
Fdµ.

But there is nothing to prove that oF is close to F with respect to ”the topology
defining by the norm of L1”; in fact, it is not always right.

In this article, we want to characterize the strongly near standard functions of
Lp(P ). The solution requires some results about signed measures which will prove in
the first part. Finding characterizations of existence of a strong shadow can help us
in research of relatively compact sets in the Lebesgue spaces more directly than by
the classical theorem of Frechet-Kolmogorov. We shall also find other applications
in the study of compact operators of Lp(P ). An operator of Lp(P ) is compact if
and only if it transforms any limited function ( in Lp(P )) into a near-standard one
(with respect to the norm of Lp(P )).

Let us give some notations and definitions.

Consider N a standard natural. If x and y are two points of RN , we say that x is
infinitely close to y, and we denote by x ≈ y, if and only if, for any standard ε > 0,
‖x−y‖RN < ε. We call shadow of x and we denote by ox, the unique standard point
of RN (if it exists) such that x ≈ ox. We say that x is near-standard if it admits a
shadow.

Let P be a standard interval of RN ( P = [a, b] =
N∏
n=1

[an, bn], where an and bn

are possibly ∞). A function f : P → R is said to be S-continuous if and only if for
any standard x ∈ P , for any y ∈ P , [x ≈ y =⇒ f(x) ≈ f(y)]. We can easily extend
this definition to the R valued functions if we admit that ox = +∞ (resp −∞) if x
is illimited and x > 0 (resp x < 0).

If f is a S-continuous function, we can define a standard R valued function of
such that for any standard x ∈ P , f(x) ≈ ( of)(x). We say that of is the shadow
of f .
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A function f : P → R is said to be of the class S0, if and only if, it is S-continuous
and takes near-standard values at standard points. We have the important following
theorem.
Continuous shadow theorem. Any function f of the class S0 admits a continuous
shadow on P . (see [2] for the proof).

The definition of of implies that for any standard x ∈ P , f(x) ≈ ( of)(x); but
if x is not standard, it is quite possible that f(x) is not infinitely close to ( of)(x).
We say that f admits a uniform shadow on P if and only if there exists a standard
function (which is usually denoted by of) such that ∀x ∈ P , f(x) ≈ ( of)(x). If f
admits a uniform shadow, it clearly admits a shadow and of = of .

In the following, we denote by O(P ) the set of open sets of P , by Ofin(P ) the
set of finite union of open intervals of P and by µ the Lebesgue measure on P . We
put Ω ≈ ∞ if, for all x ∈ Ω, ‖x‖RN ≈ +∞ and we denote by A(P ) the class of
µ-measurable sets of P .

A signed measure is an extended real valued, countably additive set function F
on A(P ) such that µ(φ) = 0 and F assumes at most one of the values +∞ or −∞
(see [3]).

If F is a signed measure, there exists a decomposition F = F+− F−, where F+

and F− are measures and are called respectively, the upper variation and the lower
variation of F . We define the total variation of F as the function defined on A(P )
by |F |(A) = F+(A) + F−(A). We say that a signed measure is of S-bounded total
variation if and only if |F | is bounded by a standard real.

We say that a signed measure F is absolutely continuous if and only if F (A) = 0
for any nullset of A(P ). It is easy to show that F is absolutely continuous if and
only if for any ε > 0, it exists δ > 0 such that for any Ω ∈ Ofin(P ) (resp Ω ∈ A(P )),
µ(Ω) < δ =⇒ |F |(Ω) < ε.

A signed measure is said to be S-absolutely continuous if and only if

∀Ω ∈ A(P ), µ(A) ≈ 0 =⇒ |F |(A) ≈ 0.

Remark. We easily show that this notion is equivalent to the following,
∀Ω ∈ Ofin(P ), µ(A) ≈ 0 =⇒ |F |(A) ≈ 0.

Moreover, this notion is equivalent, for standard signed measure, to the absolute
continuity.

2 Some results about signed m easures.

Now we shall give some sufficient conditions so that the shadow of a signed measure
be an absolutely continuous signed measure.

Proposition 1 Let F be a S-absolutely continuous signed measure, of S-bounded
total variation such that, for any Ω ≈∞, |F |(Ω) ≈ 0, then oF is a signed measure
on A(P).

Proof. It suffices to consider the case of a finite measure (and so positive). If F is a
finite measure, it is easy to show that oF is an additive set function on A(P ). We
must show the complete additivity of oF .
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Let (Ai)i∈N be a standard sequence of nonoverlapping measurable sets of P . Put

B =
⋃
i∈N

Ai and, for any k ∈ N, Bk =
k⋃
i=1

Ai. The definition and the additivity of oF

imply that for any standard k, ( oF )(Bk) ≈ F (Bk), ( oF )(B − Bk) ≈ F (B − Bk)

and ( oF )(Bk) =
k∑
i=1

( oF )(Ai). Then, for any standard k, oF (B) = ( oF )(Bk) +

( oF )(B − Bk) ≈ ( oF )(Bk) + F (B − Bk). We deduce that, for any standard finite
subset k of N, there exists k0 ∈ N (k0 = 1 + max(k, k ∈ k)) such that

∀k ∈ k, [k < k0 and ∀m ≤ k0,
oF (B) ≈ ( oF )(Bm) + F (B − Bm)]

We find with the principle of idealisation of I.S.T. (see [2] for example), an
illimited ω such that ( oF )(Bω) ≈ F (Bω) and oF (B) ≈ ( oF )(Bω) + F (B − Bω) ≈
ω∑
i=1

( oF )(Ai) + F (B − Bω).

The increasing standard sequence

(
n∑
i=1

( oF )(Ai)

)
n∈N

is bounded by |F |(P ) + 1,

so it converges. If we prove that F (B − Bω) ≈ 0, the limit of this sequence will
be ( oF )(B) and we will conclude that ( oF )(B) =

∑
i∈N

( oF )(Ai) which correspond

to the complete additivity of oF for standard sequence. We will conclude with a
transfer.

So, let us show that F (B − Bω) ≈ 0. For any p ∈ N, put Kp =
N∏
i=1

[−p, p].

For any standard p, µ(B ∩ Kp) is limited, so µ((B − Bω) ∩ Kp) ≈ 0; the Fehrele
principle (see [2]) gives us an illimited p0 which satisfies µ((B − Bω) ∩ Kp0) ≈ 0.
But P − Kp0 ∈ Ofin(P ) and P − Kp0 ≈ ∞ imply that F (P − Kp0) ≈ 0; as F is
increasing, F ((B − Bω) ∩ (P −Kp0)) ≈ 0. So we conclude that F (B − Bω) ≈ 0. �

Proposition 2 Let F be a S-absolutely continuous signed measure, of S-bounded
total variation such that, for any Ω ≈ ∞, |F |(Ω) ≈ 0, then oF is an absolutely
continuous signed measure.

Proof. We know with proposition 1 that oF is a signed measure. The definition
of oF and the S-absolute continuity of F imply that for any standard nullset A,
( oF )(A) ≈ F (A) = 0. As oF (A) is standard we deduce ( oF )(A) = 0. By transfer,
this property is true for any nullset A. �

Now, let us recall the classical Radon-Nicodym theorem (see [3]).

Theorem.Let F be a signed measure; F is absolutely continuous if and only if it
exists a measurable function f : P → R such that for any mesurable set A of P ,

F (A) =
∫
A
f . The function f , called density of F , is unique in the sense that if also

F (A) =
∫
A
g, A ∈ A(P ), then f = gµ almost everywhere.
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3 Necessary and sufficiency of str ongly near-standardn ess.

In the following, if f and g are two functions of Lp(P ), we say that f ≈Lp g if and

only if
∫
P
|f − g|p ≈ 0.

a) Functions which are strongly infinitely close to 0.

Theorem 1. Let P be a standard compact interval of RN and f : P → R be a
function of Lp(P ). For any ε > 0, we denote by Eε = {x ∈ P, |f(x)| > ε}. We
have

f ≈Lp 0⇐⇒ ∃ε ≈ 0; µ(Eε) ≈ 0 and
∫
Eε
|f |p ≈ 0.

Proof. Suppose
∫
P
|f |p ≈ 0; it is obvious that

∫
Eε
|f |p ≈ 0 for all ε > 0. Moreover,

for any standard ε > 0, we have 0 ≈
∫
Eε
|f |p > (ε)pµ(Eε) ≥ 0. As ε and p are

standard, we deduce µ(Eε) ≈ 0. Consider the internal set {n ∈ N;µ(E 1
n
) < 1

n
}. It

contains all standard naturals. The permanence principle (see [2]), ensures us that
it contains an illimited.

The converse is obvious if we write P = Eε∪ (P −Eε) and if we use Minkowsky’s
inequality. �

In what follows, theorem 3 gives a characterization of strongly near standardness
when P is a bounded interval and 1 ≤ p < +∞. We begin to expose the case of
p = 1 because we need this result to prove theorem 3, but also because it is not
necessary, in this case, to restrict our considerations to P bounded.

b) Strongly near standardness in L1(P ).

Theorem 2. Let f be a Lebesgue-integrable function on P , then f admits a shadow
with respect to the norm of L1(P ) if and only if

1) ∀Ω ∈ Ofin(P ), µ(Ω) ≈ 0 or Ω ≈ ∞ =⇒
∫

Ω
|f | ≈ 0,

2)
∫
P
|f | is limited,

3) ∀Ω ∈ Ofin(P ),
∫

Ω
f = F (Ω) ≈ ( oF )(Ω).

Proof. Necessary; if f0 is the strong shadow of f on P , then, for any measurable

set A of P ,
∫
A
f ≈

∫
A
f0 and

∫
A
|f | ≈

∫
A
|f0|. These properties imply obviously

conditions 1), 2) and 3); moreover we obtain that f0 is the density of oF .
For the converse, we have two problems; first, the existence of a density function

f0 of oF . Second, if such a f0 exists, have we got
∫
P
|f − f0| ≈ 0 ?

Conditions 1) and 2) of the theorem and proposition 2 imply that oF is abso-
lutely continuous. By using the Radon Nicodym theorem, we can conclude to the
existence of a standard integrable function on P , f0, such that, for all measurable

sets of P , E, ( oF )(E) =
∫
E
f0. Now, let us prove that

∫
P
|f − f0| ≈ 0.
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We put E1 = {x ∈ P ; f(x) ≥ f0(x)} and E2 = {x ∈ P ; f(x) < f0(x)}. These
sets are measurable and P = E1 ∪ E2. As the Lebesgue measure is regular, there
exists an open set W in P such that E1 ⊂ W and µ(W −E1) ≈ 0.

Consider W =
⋃
i∈N

Ui a decomposition of W where each Ui is an open interval of

P , and put Wk =
k⋃
i=1

Ui. We deduce from property 3) that for any k,
∫
Wk

f − f0 ≈ 0

and consequently
∫
W
f − f0 ≈ 0.

Absolute continuity of the functions F and oF , and the property µ(W −E1) ≈ 0

imply that
∫
W−E1

f − f0 ≈ 0.

As
∫
W
f − f0 =

∫
W−E1

f − f0 +
∫
E1

f − f0, we have
∫
E1

f − f0 ≈ 0.

Similarly, we find
∫
E2

f ≈
∫
E2

f0 and finally

∫
P
|f − f0| =

∫
E1

f − f0 +
∫
E2

f0 − f ≈ 0.

�

c) Case of P is bounded.

Theorem 3. Let f be a Lebesgue-integrable function on P , then f admits a shadow
with respect to the norm of Lp(P ) (1 ≤ p < +∞) if and only if


1p) ∀Ω ∈ Ofin(P ), µ(Ω) ≈ 0 =⇒

∫
Ω
|f |p ≈ 0,

2p)
∫
P
|f |p is limited,

3) ∀Ω ∈ Ofin(P ),
∫

Ω
f = F (Ω) ≈ ( oF )(Ω).

Proof. Necessary; suppose that the strong shadow of f in Lp(P ) exists and denote by

f0 this function. We have
(∫

A
|f |p

) 1
p

≈
(∫

A
|f0|p

)1/p

for any A ∈ A(P ). Moreover,

the standard signed measure with a density |f0|p is absolutely continuous, and of
bounded total variation. These facts imply conditions 1p) and 2p).

Let q be the real such that 1
p
+ 1

q
= 1, the Hölder inequality gives us

∫
P
|f−f0| ≤(∫

P
|f − f0|p

)1/p

(µ(P ))1/q. As P is bounded and f ≈Lp f0, we deduce condition 3).

Conversely; the conditions 1p) and 2p) are true if p = 1 (Hölder) on P . As F is
absolutely continuous and has a S-bounded total variation, the signed measure oF
admits a density function g, which is the strong shadow of f in L1(P ) (see theorem
2). Now, it suffices to prove that f ≈Lp g.

First, suppose that
∫
P
|g|p is limited. This hypothesis implies the absolute con-

tinuity of the standard signed measure of density |g|p. We deduce from theorem 1
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the existence of a positive infinitesimal ε such that µ(Eε) ≈ 0 and
∫
Eε
|f − g| ≈ 0

where Eε = {x ∈ P ; |f(x)− g(x)| > ε}. Now, we have(∫
P
|f − g|p

)1/p

≤
(∫

Eε
|f − g|p

)1/p

+
(∫

P−Eε
|f − g|p

)1/p

.

But,
∫
P
|f − f0|p ≤ εpµ(P ) ≈ 0, and

(∫
Eε
|f − g|p

)1/p

≤
(∫

Eε
|f |p

)1/p

+
(∫

Eε
|g|p

)1/p

.

In this last sum, all terms are infinitesimals because of the S-absolute continuity

of the signed measures of density |f |p and |g|p. So, in the case of
∫
P
|g|p is limited,

we have f ≈Lp g.
Now, it suffices proving that g ∈ Lp(P ) to finish the proof. Let n be a natural

and consider the functions fn = inf(n, sup(f,−n)) and gn = inf(n, sup(g,−n)). For
any standard n, fn and gn are in Lp(P ). The first part of the present proof implies
that fn ≈Lp gn. Moreover, the property∣∣∣∣∣

(∫
P
|fn|p

)1/p

−
(∫

P
|gn|p

)1/p
∣∣∣∣∣ ≤

(∫
P
|fn − gn|p

)1/p

≈ 0,

implies that for any standard n ∈ N,
(∫

P
|gn|p

)1/p

≤
(∫

P
|f |p

)1/p

+ 1, which is

limited. By the transfer principle and the monotone convergence theorem, we find
that g ∈ Lp(P ). �

The easy proof of the following proposition is left to the reader.

Proposition 3. Let P be a standard bounded interval of RN , and q a standard real
number which is strictly greater than 1. If f : P → R satisfies

a)
∫
P
|f |q is limited,

b) ∀Ω ∈ Ofin(P ),
∫

Ω
f = F (Ω) ≈ ( oF )(Ω),

then, for all p ∈ [1, q[, f is strongly near standard in Lp(P ).

Remarks.
1) Practically, condition 3) of the previous theorems is not easy to check, but

is essential. Let us give an example. Put P = [0, 1] ⊂ R; we denote by N an even
illimited natural and we construct the subdivision (In = [xn, xn+1[)n=1..N−1 of P
such that x0 = 0 < x1 = 1

N
< ... < xi = i

N
< ... < xN = 1. Now, let us consider

the non-negative real function f on P defined by f = 1 +
N−1∑
n=0

(−1)n1IIn; as a step

function, f is integrable on P . Let us prove that f satisfies conditions 1) and 2) of
the theorem 2. ∫

P
|f | =

∫
P
f = 1 +

N∑
n=1

(−1)n

N
= 1 <∞;
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then 2) is right.
Let Ω =

⋃
k∈N

Ik be an open set of P such that µ(Ω) ≈ 0. We have

∫
Ω
f =

∫
Ω

1 +
N∑
n=1

(−1)n
∫

Ω∩In
1 ≤ 2µ(Ω) ≈ 0.

Then 1) is right.

We have, for any x in P , F (]0, x[) = x+
∫

[0,x]

N−1∑
n=0

(−1)n

N
1IIn ≈ x, so, ( oF )(]0, x[) =

x; this implies f0 = 1 almost everywhere. It is clear that if we suppose f strongly
near standard in L1, its strong shadow is f0 (almost everywhere ). But,

∫
P
|f − 1| =

N∑
n=1

1

N
= 1,

then f is not infinitely closed to 1 in L1(P ). So f is not strongly near standard in
L1(P ).

2) It is interesting to see that condition 3) does not depend on p.

3) We can solve our problem without using the measure theory. We only need
of Ofin(P ).

d) When P is unbounded.

Consider p > 2. The real function defined by f(x) = εx1/p1I[ 1
ε
, 2
ε

], (ε a nonnegative

infinitesimal) is strongly infinitely close to 0 in Lp(R) but f does not satisfy the
condition 3) of the theorem 2 (or theorem 3). So this condition is not adapted to
the general case if P is unbounded.

4 Special cases.

We shall now study special, but useful cases.

Proposition 4. If P is a standard compact interval of RN , p is a standard natural
greater than 1 and f ∈ Lp(P ) is a function of the class S0 on P , then, of which is
continuous on P , is the strong shadow of f in Lp.

Proof. Hypothesis on f imply that for any x ∈ P , |f(x)− ( of)(x)| ≈ 0, so, for any
standard ε > 0, for any x ∈ P , |f(x)− ( of)(x)|p < ε.

We deduce
∫
P
|f(x)− ( of)(x)|p < εµ(P ) for all standard ε > 0. �

Proposition 5. Let P be a standard compact interval and p be a standard natural
greater than 1. Let f ∈ Lp(P ) be a S-continuous function which satisfies conditions
1p) and 2p) of theorem 3, then of (as a R valued function ), is the strong shadow
of f in Lp.

Proof. Suppose that f is S-continuous on a standard compact interval of RN , P . It
is clear that, for any n ∈ N, the functions fn = inf(n, sup(f,−n)) are S-continuous.
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Then, for any standard n, fn is of the class S0, so we can apply proposition 4
and obtain a standard continuous function gn such that for all standard ε > 0,∫
P
|gn − fn|p < ε.

The construction principle infers the existence of a standard sequence of con-
tinuous functions (gn)n∈N such that, for any standard n, gn = o(fn) and for any

standard ε > 0,
∫
P
|gn − fn|p < ε.

It is easy to show that this sequence converges to of , which is in L1(P ).

The monadic collection {n ∈ N; ∀stε > 0
∫
P
|gn− fn|p < ε} contains all standard

points of N and by the Fehrele principle, we deduce the existence of an ω ≈ +∞
such that

∫
P
|gω − fω|p ≈ 0. But,

(∫
P
|g0 − f |p

)1/p

≤
(∫

P
|g0 − gω|p

)1/p

+
(∫

P
|gω − fω|p

)1/p

+
(∫

P
|fω − f |p

)1/p

.

In this last sum, all terms are infinitesimals. The second according to the defini-
tion of ω, the third as a consequence of hypothesis 1p) et 2p), since 2p) implies that
the set Eω = {x; |f(x)| ≥ ω} has an infinitesimal measure and, moreover, we have(∫

P
|fω − f |p

)1/p

≤
(∫

Eω
|f |p

)1/p

. And the first because of the absolute continuity

of the signed measure of density |g|p and the assertion
∫
P
|g|p ≥ ωpµ(Eω

g ) where

Eω
g = {x; |g(x)| ≥ ω} ( ω is any illimited ), which implies that µ(Eω

g ) ≈ 0.
So f ≈Lp g. �

Remark. We can easily generalize this proposition to the case of any standard
interval but also for quasi-S-continuous functions on P . One function f is said to
be quasi S-continuous on P if and only if there exists a standard subdivision of P ,
S = (P0, P1, ..., Pn), such that f be S-continuous on each Pi.

We can apply these results for example to show that any function which is M-
Lipschitz on P (M is a standard real) is strongly near standard in Lp(P ).

Proposition 6 Let Ω be a standard bounded interval of R, M be a standard integer
and f be a bounded function in L1(Ω), which is derivable on Ω; let us suppose its
derivative is finite, integrable on Ω and bounded by M in Lr(Ω) ( r > 1 ). Then
f is strongly near-standard in Lp(Ω) for any p and near-standard in C0(Ω) to the
uniform topology.

Proof. As before, Hölder’s inequality implies, for any x and y in Ω,

|f(y)− f(x)| = |
∫

[x,y]
f ′| ≤

∫
[x,y]
|f ′| ≤M(µ([x, y]))1− 1

r ;

so we deduce the S-continuity of f on Ω. As f ∈ L1(Ω), it exists a ∈ Ω such that
f(a) is limited. Then, for any standard natural p,

|f(x)− f(a)|p = |
∫

[a,x]
f ′|p ≤

(∫
[a,x]
|f ′|

)p
≤Mpµ(Ω)p(1−

1
r

).
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This implies that f is limited on Ω; so f is of the class S0 on the compact
interval Ω; we deduce that f is near-standard in C0(Ω) with respect to the norm of
the uniform convergence, and strongly near-standard in L1(Ω).

We can also write

(∫
A
|f |p

)1/p

≤
(∫

A
|f − f(a)|p

)1/p

+
(∫

A
|f(a)|p

)1/p

≤Mµ(Ω)(1−1/r)µ(A)1/p + |f(a)|µ(A)1/p.

This last sum is infinitesimal if µ(A) ≈ 0 and limited if A = Ω. Then |f |p satisfies
conditions 1) and 2) of theorem 2; this implies the strongly near-standardness of f
in Lp(Ω). �

Remark. We can easily generalize these results when P is any measurable set of
RN : we extend f by setting it equal to zero outside P and we integrate the extension
over RN .

N.B. If we admit the framework of T.R.E.( see [9]), all our results can be generalized
to non standard functions and non-standard spaces. If f is a non standard function,
the propositions of T.R.E. allow us to attribute a level α of standardicity and we will
then solve the problem with a change of indexes in the formulation of the definitions
so that we can ”adjust to level α”. In particular, we can choose N infinitely large.
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