Weak convergence in spaces of measures and operators

Mohsen Alimohammady

Abstract

J. K. Brooks and P. W. Lewis have established that if E and E^* have RNP, then in $M(\Sigma, E)$, m_n converges weakly to m if and only if $m_n(A)$ converges weakly to m(A) for each $A \in \Sigma$. Assuming the existence of a special kind of lifting, N. Randrianantoanina and E. Saab have shown an analogous result if E is a dual space. Here we show that for the space $M(\mathcal{P}(\mathbb{N}), E)$ where E^* is a Grothendieck space or E is a Mazur space, this kind of weak convergence is valid. Also some applications for subspaces of L(E, F) similar to the results of N. Kalton and W. Ruess are given.

1 Introduction

Let E and F be two infinite dimensional Banach spaces. By L(E, F) (resp. K(E, F)) we denote the Banach space of all bounded linear (resp. compact linear) operators from E to F. The ϵ -product $E\epsilon F$ is the operator space $K_{w^*}(E^*, F)$ of compact and weak*-weak continuous linear operators from E^* to F, endowed with the usual operator norm. Let Σ be a σ -algebra on a non-empty set S, then $M(\Sigma, E)$ (resp. $ca(\Sigma, E)$) denotes the Banach space of all bounded countably additive vector measures endowed with the variation norm (resp. semivariation norm). The space E is said to be Grothendieck if weak* and weak sequential convergence in E^* coincide; E is called Mazur if any weak*-sequentially continuous linear functional on E^* lies in E. For unexplained notations we refer the reader to [4], [5], [6].

Received by the editors September 1997.

Communicated by J. Schmets.

1991 Mathematics Subject Classification: 46B20, 46E27, 47D15.

Key words and phrases: Grothendieck spaces, spaces of measures, spaces of operators.

2 Weak convergence in measure spaces

In the following we use the techniques due to M. Talagrand [18] for the space $M(\Sigma, E)$. For the sake of simplicity, we say that $M(\Sigma, E)$ has the \mathcal{K} -property if a sequence (m_n) converges weakly to m in $M(\Sigma, E)$ if and only if $m_n(A)$ converges weakly to m(A) in E for all $A \in \Sigma$.

Theorem 2.1. If E^* is a Grothendieck space, then $M(\mathcal{P}(\mathbb{N}), E)$ has the K-property.

Proof. Let (m_n) be a sequence in $M(\mathcal{P}(\mathbb{N}), E)$ such that for all $A \in \Sigma$, $(m_n(A))$ converges weakly. We denote its limit by m(A). The proof of Corollary 1 in [2] implies that $m \in M(\mathcal{P}(\mathbb{N}), E)$, so we can assume that $m_n(A) \to 0$ (weakly). By the proof of Theorem 17 of [18], there is a probability measure λ' on $\mathcal{P}(\mathbb{N})$ such that $V(m_n) \leq \lambda'$ for each n where V(m) is the variation norm of m. Moreover, the measure λ defined by $\lambda = \sum \frac{\delta_n}{2^n} + \lambda'$ is also a bounded positive measure which vanishes only on \emptyset and clearly $V(m_n) \leq \lambda$ for each n. Let ρ be a lifting on $L^{\infty}(\lambda)$, then $x^*(m(A)) = \int_{\mathbb{N}} \rho(m)(\omega)(x^*) d\lambda$, where $\rho(m)(\omega) \in E^{**}$ and $\rho(m)(\omega)(x^*) = \rho(\frac{d(x^*.m)}{d\lambda})$. But because of our choice of λ , $\rho(m_n)(\omega)(x^*) \to 0$ for all $\omega \in \mathbb{N}$, and for all $x^* \in E^*$. Now since E^* is a Grothendieck space, then $\rho(m_n)(\omega)$ converges weakly to zero. Now an appeal to Theorem 15 of [18] completes the proof.

For the case when E is a Mazur space a similar result is obtained.

Theorem 2.2. If E is a Mazur space, then $M(\mathcal{P}(\mathbb{N}), E)$ has the K-property.

Proof. We use the same line of proof as the one of Theorem 2.1. One has just to note that since E is a Mazur space, the elements $\rho(m)(\omega)$ and $\rho(m_n)(\omega)$ are in fact in E.

Remarks. (a) A measure theoretical version of Batt's example in [6, page 103] shows that the condition $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ on σ -algebra is essential.

- (b) The following example shows that the hypothesis on E is also essential. Let $m_n \in M(\mathcal{P}(\mathbb{N}), \ell_{\infty})$ be defined by $m_n(A) = \chi_{\{1,\dots,n\} \cap A}$. The sequence $(m_n(A))$ converges in norm to χ_A for each $A \in \mathcal{P}(\mathbb{N})$ and so converges to χ weakly. But (m_n) does not converge weakly to χ . In fact if (m_n) converges weakly to χ , then there is a convex combinations of (m_n) say (m'_n) such that $m'_n \in co(m_n, m_{n+1}, \dots)$ and (m'_n) converges in norm to χ . So for $\epsilon = \frac{1}{2}$ there is $N_0 > 0$ such that for $n \geq N_0$, $\|m'_n \chi\| < \frac{1}{2}$. Therefore for sufficiently large N we have $\|m'_n \chi\| < \frac{1}{2}$, which is a contradiction.
- L. Drewnownski (Lemma 3 of [7]) has shown that, for a sequence (m_n) in $ca(\mathcal{P}(\mathbb{N}), E)$, $m_n(A) \to 0$ in norm for all $A \in \mathcal{P}(\mathbb{N})$, implies $||m_n|| \to 0$. Using this result, we have the following Schur characterization of $ca(\mathcal{P}(\mathbb{N}), E)$.

Theorem 2.3. E is a Schur space if and only if $ca(\mathcal{P}(\mathbb{N}), E)$ is a Schur space.

Proof. Let E be a Schur space and (m_n) be a weak-null sequence in $ca(\mathcal{P}(\mathbb{N}), E)$. Therefore $(m_n(A))$ is norm null in E. Then the Lemma 3 of [7] completes the proof. The other direction is straightforward.

Remark. Theorem 2.3 also shows that $ca(\mathcal{P}(\mathbb{N}), E)$ has the \mathcal{K} -property. We say that a subspace S(E, F) of L(E, F) has the \mathcal{K} -property if the convergence of sequences coincides under the weak operator topology and weak topology. N. Kalton [10] has proved that the K(E, F) has the \mathcal{K} -property if and only if E is a Grothendieck space. The analogous result for $K_{w^*}(E^*, F)$ is given in [16]. It is well known that $L_{w^*}(E^*, ca(\Sigma))$ the space of all weak*-weak continuous bounded operators from E^* to $ca(\Sigma)$ is isometrically isomorphic to $ca(\Sigma, E)$ (cf. [4], [16]). By using this identification, $L_{w^*}(E^*, ca(\mathcal{P}(\mathbb{N})))$ has the \mathcal{K} -property. Moreover the compactness condition on these subspaces of operators given in [10] and [16] is not neccessary.

3 Weak convergence in spaces of operators

G. Emmanuele [8] and R. Ryan [17] have studied the complemented copies of c_0 in some spaces of operators on Banach spaces. Recently J. Zafarani [20] has extended these results to some spaces of operators between locally convex spaces. Here we give necessary and sufficient conditions for the inclusion of c_0 in the space of operators with the \mathcal{K} -property.

Theorem 3.1. Let S(E, F) be any closed subspace of L(E, F) that has the K-property, then F contains a copy of c_0 if and only if S(E, F) contains a copy of c_0 .

Proof. We follow the elegant techniques due to H. Rosenthal [15]. Suppose F does not contain a copy of c_0 and (T_n) is a non trivially weak Cauchy sequence. Since S(E, F) has the K-property, there are elements $x \in E$, $y^* \in F^*$ such that (y^*T_nx) is non trivial, so (T_nx) is a non trivial weak Cauchy sequence and therefore has a strongly summing subsequence, hence (T_n) has a strongly summing subsequence. An appeal to Theorem 1 of [15] shows that S(E, F) can not have a copy of c_0 . The other direction is trivial.

Corollary 3.2. Let E be a Grothendieck space and K(E, F) be closed under the weak operator topology in L(E, F), then F contains a copy of c_0 if and only if K(E, F) contains a copy of c_0 .

Proof. By [10], K(E, F) has the K-property and if it contains a copy of c_0 , the proof will follow from Theorem 3.1. The converse is trivial.

Theorem 3.3. Let $M(\Sigma, E)$ have the K-property, then E contains a copy of c_0 if and only if $M(\Sigma, E)$ contains a copy of c_0 .

Proof. Again we use the technique of Rosenthal [15]. Let (m_n) be a non trivial weak Cauchy sequence in $M(\Sigma, E)$ and suppose E does not contain a copy of c_0 . From the \mathcal{K} -property of $M(\Sigma, E)$, there is $A \in \Sigma$ such that $(m_n(A))$ is a non trivial weak Cauchy sequence. So it has a strongly summing subsequence and by our hypothesis on $M(\Sigma, E)$, (m_n) will also have a strongly summing subsequence. The Theorem 1 of [15] completes the proof. The converse is direct.

H. S. Collins and W. Ruess [4] have shown that if E^* has RNP and F does not contain a copy of ℓ_1 , $K_{w^*}(E^*, F)$ will not contain either. The following theorem is a refinement of this result.

Theorem 3.4. Let E be a separable Banach space. Suppose that S(E, F) is any closed subspace of L(E, F) with the K-property. Then S(E, F) contains a copy of ℓ_1 if and only if F contains a copy of ℓ_1 .

Proof. Let $T \in S(E, F)$ and set $T' : B_E \to F$ where T' is the restriction of T to B_E and is a Borel measurable map by the Pettis Measurability Theorem [5, page 25]. Let $\lambda = \sum_{n=1}^{\infty} \frac{\delta_{x_n}}{2^n}$ where $\{x_n\}$ is a dense subset of B_E . By Theorem 1 of [18], there exists a subset C of B_E and for each n a function g_n in $co(T'_n, T'_{n+1}, \ldots)$ such that $(g_n(x))$ is a weakly Cauchy sequence for each $x \in C$ and $\lambda(C) = \lambda(B_E)$. By this assumption $(g_n(x))$ is weakly Cauchy for each $x \in B_E$. Therefore $g_n(x)$ represents an element of S(E, F) such that $(g_n(x))$ is weakly Cauchy for all $x \in E$. Hence by the assumption (g_n) is a weakly Cauchy sequence but by a result of A. Ülger $B_{S(E,F)}$ is weakly precompact [19]. The ℓ_1 -Rosenthal theorem shows that S(E, F) does not contain a copy of ℓ_1 . The other direction is easy.

When S(E, F) does not contain a copy of ℓ_1 , we have a representation of its dual.

Theorem 3.5. If S(E, F) is any separable subspace of L(E, F) that does not contain a copy of ℓ_1 and has the K-property, then $S(E, F)^* = E \hat{\otimes} F^*$.

Proof. It is clear that $E \hat{\otimes} F^* \subseteq S(E,F)^*$. Now if $S(E,F)^* \neq E \hat{\otimes} F^*$, then there is $x^{**} \in S(E,F)^{**}$ and $x^* \in S(E,F)^*$ such that, for every $y^* \in E \hat{\otimes} F^*$, $x^{**}(y^*) = 0$ and $x^{**}(x^*) = 1$. Now by the Odell-Rosenthal Theorem [5, page 215] there exists a sequence (x_n) in S(E,F) such that $x^{**} = w^* - \lim x_n$. Therefore $\lim_n y^* x_n = x^{**}y^* = 0$ for all $y^* \in E \hat{\otimes} F^*$. But S(E,F) has the \mathcal{K} -property, hence $x_n \to 0$ (weakly). This shows that $x^*x_n \to 0$ and then $x^{**}x^* = 0$, which is a contradiction.

N. Randrianantoanina [13] posed the following question: Is it true that, if E has the (V^*) -property, then $M(\Sigma, E)$ has the (V^*) -property? A partial answer to this question is given here under. We need the following lemma first.

Lemma 3.6. Let A be a countable set and Σ be the σ -algebra generated by A. Suppose that (m_n) is a sequence of uniformly countably additive of vector valued measures for which $\lim_n m_n(A)$ exits for each $A \in A$. Then $(m_n(A))$ is weakly

Cauchy for all $A \in \Sigma$.

Proof. Much of our inspiration here comes from the Vitali-Hahn-Sacks theorem [5, page 89]. Set $\Lambda = \{A \in \Sigma : (m_n(A)) \text{ is weak Cauchy}\}$, by hypothesis $\mathcal{A} \subseteq \Lambda$. We claim that Λ is a monotone class which implies that $\Lambda = \Sigma$. Let (A_j) be a monotone sequence of members of Λ with $A_m \to A$. By the uniform countable additivity of the (m_n) , $m_n(A) = \lim_m m_n(A_m)$ for all n, so $(m_p(A_m) - m_q(A_m))$ is norm null. These results show that $(m_n(A))$ is a weak Cauchy sequence for all $A \in \Sigma$.

Definition 3.7. [1], [12] A subset H of E is a (V^*) -set if for any sequence (x_n^*) that is w.u. C, $\lim_n \sup_{x \in H} |x_n^*x| = 0$. The space E has the (V^*) -property, if its (V^*) -subsets are relatively weakly compact.

Theorem 3.8. Let $M(\Sigma, E)$ have the K-property then E has the (V^*) -property if and only if $M(\Sigma, E)$ has the (V^*) -property.

Proof. Let E have the (V^*) -property and (m_n) be a (V^*) -subset of $M(\Sigma, E)$. By the diagonal method there is a subsequence (m'_n) of (m_n) such that $(m'_n(A_k))$ is weakly Cauchy for each E. The last lemma implies that $(m'_n(A))$ is weakly Cauchy for each E. But E is weakly sequentially complete so $m'_n(A) \to m(A)$ (weakly) and the proof of theorem 1 [2] shows that E lies in E lies in

Definition 3.9. A Banach space E is said to have the BD-property if every limited subset is relatively weakly compact.

G. Emmanuele [8] has shown that $L^1(E)$ has the BD-property if and only if E has it. Here we give a similar result for $M(\Sigma, E)$.

Theorem 3.10. If E is a weakly sequentially complete Banach space and $M(\Sigma, E)$ has the K-property, then $M(\Sigma, E)$ has the BD-property if and only if E has it.

Proof. Let E have the BD-property and (m_n) be a limited set. First we show that (m_n) must be uniformly countably additive. Since if not, we can find a sequence (A_j) of pairwise disjoint elements of Σ such that $||m_j(A_j)|| \ge \epsilon$ and there exist $x_j^* \in B_{E^*}$ such that $x_j^*m_jA_j \ge \epsilon$, but $x_j^* \otimes A_j \to 0$ (weak*), which contradicts our assumption. It is easily deduced from a brief outline of the proof of Theorem 1 given in [2] that we can assume there is a countable algebra (A_j) of Σ such that $\Sigma = \sigma(\{A_j\})$. By our assumption there is a subsequence which again is denoted by (m_n) such that $m_n(A_j)$ converges weakly for all i. But by Lemma 3.6, $(m_n(A))$ is weak Cauchy for each $A \in \Sigma$. Since E is weakly sequentially complete, $(m_n(A))$ will converge weakly to m(A) which by the proof of Theorem 1 of [2] implies $m \in M(\Sigma, E)$, and by the K-property of $M(\Sigma, E)$, m_n converges weakly to m. The converse of the theorem is straightforward.

Acknowledgment. The author wishes to express his gratitude to his research supervisor Professor Jafar Zafarani of the University of Isfahan, Iran, for his valuable suggestions and encouragement.

References

- [1] F. Bombal, $On(V^*)$ sets and Petczyński's property (V^*) , Glasgow Math. J. 32(1990), 109-120.
- [2] J. K. Brooks, Weak compactness in the space of vector measures, Bull. Amer. Math. Soc. **78**(1972), 284–287.
- [3] J. K. Brooks and P. W. Lewis, *Linear operators and vector measures*, Trans. Amer. Math. Soc. **192**(1974), 139–162.
- [4] H. S. Collins, W. Ruess, Weak compactness in the space of compact operators of vector valued functions, Pacific J. Math. **106**(1983), 45–71.
- [5] J. Diestel, Sequence and series in Banach spaces, Graduate Texts in Math. Springer Verlag, New York, 1984.
- [6] J. Diestel, J. J. Ulh, Jr., *Vector measures*, Math Surveys, Vol. **15**, Amer. Math. Soc. Providence, 1977.
- [7] L. Drewnowski, When does $ca(\Sigma, E)$ contain a copy of ℓ_{∞} or c_0 ?, Proc. Amer. Math. Soc. 109(1990), 747–752.
- [8] G. Emmanuele, The BD-property in $L^1(\mu, E)$, Indiana University Math. J. 36(1987), 229–230.
- [9] G. Emmanuele, A remark on the containment of c_0 in the space of compact operators, Math. Proc. Camb. Phil. Soc. **111** (1992), 331–335.
- [10] N. J. Kalton, Space of compact operators, Math. Ann. 208(1974), 267–278.
- [11] J. Mendoza, Copies of classical sequence spaces in vector valued function Banach spaces, Lecture Notes in Pure and Appl. Math. 172(1996), 311–320.
- [12] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Pol. Sci. **10**(1962), 641–648.
- [13] N. Randrianantoanina, Complemented copies of ℓ_1 and Pełczyński's property (V^*) in Bochner function spaces, Preprint.
- [14] N. Randrianantoanina, E. Saab, Weak compactness in the space of vector valued measures of bounded variation, Rocky Mountain J. Math., 24(1994), 681–688.
- [15] H. Rosenthal, A subsequence principle characterizing Banach spaces containing c_0 , Bull. Amer. Math. Soc. **30**(1994), 227–233.

- [16] W. Ruess, Duality and Geometry of spaces of compact operators, Math. Studies **90**, North Holland, (1984), 59–78.
- [17] R. A. Ryan, Complemented copies of c_0 in space of compact operators, Proc. R. Ir. Acad. $\mathbf{91A}(1991)$, 239–241.
- [18] M. Talagrand, Weak Cauchy sequence in $L^1(E)$, Amer. J. Math. 106(1984), 703–724.
- [19] A. Ülger, Continuous linear operators on C(K, X) and pointwise weakly precompact subsets of C(K, X), Math. Proc. Camb. Phil. Soc. **111**(1992), 143–150.
- [20] J. Zafarani, Grothendieck space of compact operators, Math. Nach. 174(1995), 317–322.

Department of Mathematics University of Isfahan Isfahan 81745-163 Iran