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Abstract

J. K. Brooks and P. W. Lewis have established that if E and E∗ have RNP,
then in M(Σ, E), mn converges weakly to m if and only if mn(A) converges
weakly to m(A) for each A ∈ Σ. Assuming the existence of a special kind of
lifting, N. Randrianantoanina and E. Saab have shown an analogous result if
E is a dual space. Here we show that for the space M(P(N), E) where E∗ is
a Grothendieck space or E is a Mazur space, this kind of weak convergence is
valid. Also some applications for subspaces of L(E, F ) similar to the results
of N. Kalton and W. Ruess are given.

1 Introduction

Let E and F be two infinite dimensional Banach spaces. By L(E,F ) (resp. K(E,F ))
we denote the Banach space of all bounded linear (resp. compact linear) operators
from E to F . The ε-product EεF is the operator space Kw∗(E

∗, F ) of compact
and weak∗-weak continuous linear operators from E∗ to F , endowed with the usual
operator norm. Let Σ be a σ-algebra on a non-empty set S, then M(Σ, E) (resp.
ca(Σ, E)) denotes the Banach space of all bounded countably additive vector mea-
sures endowed with the variation norm (resp. semivariation norm). The space E is
said to be Grothendieck if weak∗ and weak sequential convergence in E∗ coincide;
E is called Mazur if any weak∗-sequentially continuous linear functional on E∗ lies
in E. For unexplained notations we refer the reader to [4], [5], [6].
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2 Weak convergence in measure spaces

In the following we use the techniques due to M. Talagrand [18] for the space
M(Σ, E). For the sake of simplicity, we say that M(Σ, E) has the K-property if
a sequence (mn) converges weakly to m in M(Σ, E) if and only if mn(A) converges
weakly to m(A) in E for all A ∈ Σ.

Theorem 2.1. If E∗ is a Grothendieck space, then M(P(N), E) has the K-property.

Proof. Let (mn) be a sequence in M(P(N), E) such that for all A ∈ Σ, (mn(A))
converges weakly. We denote its limit by m(A). The proof of Corollary 1 in [2]
implies that m ∈ M(P(N), E), so we can assume that mn(A) → 0 (weakly). By
the proof of Theorem 17 of [18], there is a probability measure λ′ on P(N) such
that V (mn) ≤ λ′ for each n where V (m) is the variation norm of m. Moreover, the
measure λ defined by λ =

∑ δn
2n

+λ′ is also a bounded positive measure which vanishes
only on ∅ and clearly V (mn) ≤ λ for each n. Let ρ be a lifting on L∞(λ), then

x∗(m(A)) =
∫
N ρ(m)(ω)(x∗)dλ, where ρ(m)(ω) ∈ E∗∗ and ρ(m)(ω)(x∗) = ρ(d(x

∗.m)
dλ

).
But because of our choice of λ, ρ(mn)(ω)(x∗)→ 0 for all ω ∈ N, and for all x∗ ∈ E∗.
Now since E∗ is a Grothendieck space, then ρ(mn)(ω) converges weakly to zero.
Now an appeal to Theorem 15 of [18] completes the proof. �

For the case when E is a Mazur space a similar result is obtained.

Theorem 2.2. If E is a Mazur space, then M(P(N), E) has the K-property.

Proof. We use the same line of proof as the one of Theorem 2.1. One has just to
note that since E is a Mazur space, the elements ρ(m)(ω) and ρ(mn)(ω) are in fact
in E. �

Remarks. (a) A measure theoretical version of Batt’s example in [6, page 103]
shows that the condition (N,P(N)) on σ-algebra is essential.

(b) The following example shows that the hypothesis on E is also essential. Let
mn ∈ M(P(N), `∞) be defined by mn(A) = χ{1,...,n}∩A. The sequence (mn(A))
converges in norm to χA for each A ∈ P(N) and so converges to χ weakly. But (mn)
does not converge weakly to χ. In fact if (mn) converges weakly to χ, then there
is a convex combinations of (mn) say (m′n) such that m′n ∈ co(mn, mn+1, . . . ) and
(m′n) converges in norm to χ. So for ε = 1

2
there is N0 > 0 such that for n ≥ N0,

‖ m′n − χ ‖< 1
2
. Therefore for sufficiently large N we have ‖ (m′n − χ){N} ‖< 1

2
,

which is a contradiction.

L. Drewnownski (Lemma 3 of [7]) has shown that, for a sequence (mn) in ca(P(N), E),
mn(A) → 0 in norm for all A ∈ P(N), implies ‖ mn ‖→ 0. Using this result, we
have the following Schur characterization of ca(P(N), E).
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Theorem 2.3. E is a Schur space if and only if ca(P(N), E) is a Schur space.

Proof. Let E be a Schur space and (mn) be a weak-null sequence in ca(P(N), E).
Therefore (mn(A)) is norm null in E. Then the Lemma 3 of [7] completes the proof.
The other direction is straightforward. �

Remark. Theorem 2.3 also shows that ca(P(N), E) has theK-property. We say that
a subspace S(E,F ) of L(E,F ) has the K-property if the convergence of sequences
coincides under the weak operator topology and weak topology. N. Kalton [10] has
proved that the K(E,F ) has the K-property if and only if E is a Grothendieck
space. The analogous result for Kw∗(E

∗, F ) is given in [16]. It is well known that
Lw∗(E

∗, ca(Σ)) the space of all weak∗-weak continuous bounded operators from E∗

to ca(Σ) is isometrically isomorphic to ca(Σ, E) (cf. [4], [16]). By using this identifi-
cation, Lw∗(E

∗, ca(P(N)) has the K-property. Moreover the compactness condition
on these subspaces of operators given in [10] and [16] is not neccessary.

3 Weak convergence in spaces of operators

G. Emmanuele [8] and R. Ryan [17] have studied the complemented copies of c0 in
some spaces of operators on Banach spaces. Recently J. Zafarani [20] has extended
these results to some spaces of operators between locally convex spaces. Here we give
necessary and sufficient conditions for the inclusion of c0 in the space of operators
with the K-property.

Theorem 3.1. Let S(E,F ) be any closed subspace of L(E,F ) that has the K-
property, then F contains a copy of c0 if and only if S(E,F ) contains a copy of c0.

Proof. We follow the elegant techniques due to H. Rosenthal [15]. Suppose F does
not contain a copy of c0 and (Tn) is a non trivially weak Cauchy sequence. Since
S(E,F ) has the K-property, there are elements x ∈ E, y∗ ∈ F ∗ such that (y∗Tnx)
is non trivial, so (Tnx) is a non trivial weak Cauchy sequence and therefore has a
strongly summing subsequence, hence (Tn) has a strongly summing subsequence.
An appeal to Theorem 1 of [15] shows that S(E,F ) can not have a copy of c0. The
other direction is trivial. �

Corollary 3.2. Let E be a Grothendieck space and K(E,F ) be closed under the weak
operator topology in L(E,F ), then F contains a copy of c0 if and only if K(E,F )
contains a copy of c0.

Proof. By [10], K(E,F ) has the K-property and if it contains a copy of c0, the proof
will follow from Theorem 3.1. The converse is trivial. �

Theorem 3.3. Let M(Σ, E) have the K-property, then E contains a copy of c0 if
and only if M(Σ, E) contains a copy of c0 .
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Proof. Again we use the technique of Rosenthal [15]. Let (mn) be a non trivial weak
Cauchy sequence in M(Σ, E) and suppose E does not contain a copy of c0. From
the K-property of M(Σ, E), there is A ∈ Σ such that (mn(A)) is a non trivial weak
Cauchy sequence. So it has a strongly summing subsequence and by our hypothesis
on M(Σ, E), (mn) will also have a strongly summing subsequence. The Theorem 1
of [15] completes the proof. The converse is direct. �

H. S. Collins and W. Ruess [4] have shown that if E∗ has RNP and F does not
contain a copy of `1, Kw∗(E

∗, F ) will not contain either. The following theorem is
a refinement of this result.

Theorem 3.4. Let E be a separable Banach space. Suppose that S(E,F ) is any
closed subspace of L(E,F ) with the K-property. Then S(E,F ) contains a copy of
`1 if and only if F contains a copy of `1.

Proof. Let T ∈ S(E,F ) and set T ′ : BE → F where T ′ is the restriction of T to BE

and is a Borel measurable map by the Pettis Measurability Theorem [5, page 25].
Let λ =

∑∞
n=1

δxn
2n

where {xn} is a dense subset of BE . By Theorem 1 of [18], there
exists a subset C of BE and for each n a function gn in co(T ′n, T

′
n+1, . . . ) such that

(gn(x)) is a weakly Cauchy sequence for each x ∈ C and λ(C) = λ(BE). By this
assumption (gn(x)) is weakly Cauchy for each x ∈ BE. Therefore gn(x) represents
an element of S(E,F ) such that (gn(x)) is weakly Cauchy for all x ∈ E. Hence by
the assumption (gn) is a weakly Cauchy sequence but by a result of A. Ülger BS(E,F )

is weakly precompact [19]. The `1-Rosenthal theorem shows that S(E,F ) does not
contain a copy of `1. The other direction is easy. �

When S(E,F ) does not contain a copy of `1, we have a representation of its dual.

Theorem 3.5. If S(E,F ) is any separable subspace of L(E,F ) that does not con-
tain a copy of `1 and has the K-property, then S(E,F )∗ = E⊗̂F ∗.

Proof. It is clear that E⊗̂F ∗ ⊆ S(E,F )∗. Now if S(E,F )∗ 6= E⊗̂F ∗, then there is
x∗∗ ∈ S(E,F )∗∗ and x∗ ∈ S(E,F )∗ such that, for every y∗ ∈ E⊗̂F ∗, x∗∗(y∗) = 0
and x∗∗(x∗) = 1 . Now by the Odell-Rosenthal Theorem [5, page 215] there exists
a sequence (xn) in S(E,F ) such that x∗∗ = w∗ − limxn. Therefore limn y

∗xn =
x∗∗y∗ = 0 for all y∗ ∈ E⊗̂F ∗. But S(E,F ) has the K-property, hence xn → 0
(weakly). This shows that x∗xn → 0 and then x∗∗x∗ = 0, which is a contradiction.

�

N. Randrianantoanina [13] posed the following question: Is it true that, if E has
the (V ∗)-property, then M(Σ, E) has the (V ∗)-property ? A partial answer to this
question is given here under. We need the following lemma first.

Lemma 3.6. Let A be a countable set and Σ be the σ-algebra generated by A.
Suppose that (mn) is a sequence of uniformly countably additive of vector valued
measures for which limnmn(A) exits for each A ∈ A. Then (mn(A)) is weakly
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Cauchy for all A ∈ Σ.

Proof. Much of our inspiration here comes from the Vitali-Hahn-Sacks theorem [5,
page 89]. Set Λ = {A ∈ Σ : (mn(A)) is weak Cauchy}, by hypothesis A ⊆Λ. We
claim that Λ is a monotone class which implies that Λ = Σ. Let (Aj) be a monotone
sequence of members of Λ with Am → A. By the uniform countable additivity of
the (mn), mn(A) = limmmn(Am) for all n, so (mp(Am) − mq(Am)) is norm null.
These results show that (mn(A)) is a weak Cauchy sequence for all A ∈ Σ. �

Definition 3.7. [1], [12] A subset H of E is a (V ∗)-set if for any sequence (x∗n)
that is w.u.C, limn supx∈H | x∗nx |= 0. The space E has the (V ∗)-property, if its
(V ∗)-subsets are relatively weakly compact.

Theorem 3.8. Let M(Σ, E) have the K-property then E has the (V ∗)-property if
and only if M(Σ, E) has the (V ∗)-property.

Proof. Let E have the (V ∗)-property and (mn) be a (V ∗)-subset of M(Σ, E). By the
diagonal method there is a subsequence (m′n) of (mn) such that (m′n(Ak)) is weakly
Cauchy for each k. The last lemma implies that (m′n(A)) is weakly Cauchy for each
A ∈ Σ. But E is weakly sequentially complete so m′n(A)→ m(A) (weakly) and the
proof of theorem 1 [2] shows that m lies in M(Σ, E). Therefore by our hypothesis
on M(Σ, E), m′n converges weakly to m. The other direction is trivial. �

Definition 3.9. A Banach space E is said to have the BD-property if every limited
subset is relatively weakly compact.

G. Emmanuele [8] has shown that L1(E) has the BD-property if and only if E has
it. Here we give a similar result for M(Σ, E).

Theorem 3.10. If E is a weakly sequentially complete Banach space and M(Σ, E)
has the K-property, then M(Σ, E) has the BD-property if and only if E has it.

Proof. Let E have the BD-property and (mn) be a limited set. First we show that
(mn) must be uniformly countably additive. Since if not, we can find a sequence (Aj)
of pairwise disjoint elements of Σ such that ‖ mj(Aj) ‖≥ ε and there exist x∗j ∈ BE∗

such that x∗jmjAj ≥ ε, but x∗j ⊗Aj → 0 (weak∗), which contradicts our assumption.
It is easily deduced from a brief outline of the proof of Theorem 1 given in [2] that
we can assume there is a countable algebra (Aj) of Σ such that Σ = σ({Aj}). By
our assumption there is a subsequence which again is denoted by (mn) such that
mn(Aj) converges weakly for all i. But by Lemma 3.6, (mn(A)) is weak Cauchy for
each A ∈ Σ. Since E is weakly sequentially complete, (mn(A)) will converge weakly
to m(A) which by the proof of Theorem 1 of [2] implies m ∈ M(Σ, E), and by the
K-property of M(Σ, E), mn converges weakly to m. The converse of the theorem is
straightforward. �
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