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Abstract

We continue the classification of flag–transitive c.c∗–geometries (Γ, G) started
in [Ba1, Ba2]. We consider those geometries which admit a duality. We show
that, if Γ is not covered by a truncated Coxeter complex of type Dn and if the
stabilizer of a point Gp has no regular normal subgroup, then (Γ, G) is one
of 4 exceptional examples or the stabilizer Gp is a linear group L2(q), where
(q−1) ≡ 0(4) or q = 2r, r even or Gp is a unitary group. Moreover, we reduce
the problem to determine the geometries with Gp ∼= U3(q) to the problem to
determine those with Gp ∼= L2(q), q = pr, r even. We apply our results to
flag–transitive C2.c–geometries having exactly two points on a line.

1 Introduction.

We follow [Bue2] for the terminology and notation of diagram geometry. A c.c∗-
geometry is a geometry with diagram as follows:

(c.c∗) • • •
c c∗

1 n 1

0 1 2

where n is a positive integer, called the order of the geometry. The integers above
the nodes are the types. As usual we also call the elements of type 0 points, those
of type 1 lines and those of type 2 circles. We recall that the stroke
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• •
c

1 n

means the class of circular spaces with n + 2 points and

• •
c∗

n 1

has the dual meaning. We also recall that a circular space is a complete graph with
at least three vertices, viewed as a geometry of rank 2 with vertices and edges as
points and lines, respectively. Let P be the set of points and C the set of circles of
Γ. A duality of Γ is an incidence preserving bijective map of Γ which exchanges the
points and circles.

A class of c.c∗–geometries is provided by the semibiplanes, where a semibiplane
is a connected incidence structure satisfying:

(i) any two points are incident with 0 or 2 common blocks;
(ii) any two blocks are incident with 0 or 2 common points.
(see for example [Wi]). A semibiplane where each pair of points is incident with
exactly two blocks, is called biplane.

In [Ca] and [CaKa] biplanes Γ are considered which admits some polarity, i.e. a
duality of order two. They also assume that all points of Γ are absolute points. There
are biplanes having a polarity without any or only some absolute points, for example
the unique biplanes with 4 or 11 points, respectively. In this paper we classify the
flag-transitive c.c∗-geometries which admit a duality. As an application we obtain a
classification of the flag-transitive C2.c-geometries with thin lines. The main result
of this paper is used in the general classification of flag-transitive c.c∗-geometries,
see [BaBue].

Notation. Let G act flag–transitively on Γ and let {p, l, c} be a maximal flag.
Then for x ∈ {p, l, c}, we denote by Gx the stabilizer of x in G and by Kx the kernel
of the action of Gx on Γx, the residue of x in Γ. In order to simplify the notation
we will also write G0, G1 and G2 instead of Gp, Gl and Gc. As usual we denote by
B the stabilizer of the maximal flag {p, l, c} and abbreviate Gi ∩ Gj by Gi,j .

Let Γ = Γ(G, (G0, G1, G2)) be the group geometry whose objects of type i are
the cosets of Gi in G, 0 ≤ i ≤ 2; incidence being non trivial intersection. As Γ is
isomorphic to Γ we are sometimes identifying both geometries.

According to [Ba1] the stabilizer of a point, G0, is a doubly transitive permuta-
tion group, so either an affine or an almost simple group, [Ca]. The known examples
of c.c∗-geometries are given in [Ba2], but see also [BaPa] or [BaBue].

In [Ba2] the following has been shown. If G0 is an almost simple group, then
G0 is a group of Lie–type of rank 1 in its natural action or G0

∼= L3(2), L2(11), A7

of degree 7, 11, 15, respectively, or Γ is covered by a {1, . . . , n − 3}–truncation of
the dual Coxeter complex of type Dn, Tr(∆n). If G0

∼= L3(2), L2(11), A7, then
G ∼= U3(3), M12, M22 or 3M22 and Γ has 36, 144, 176 or 352 points, respectively,
see [Ba2, Theorems A and B]. Theorem B of [Ba2] moreover states, if G0 is a group
of Lie–type of rank 1 in its natural action and if Γ is of order at most 20, then
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soc(G0) ∼= L2(q) and one of the following holds:

(i) q = 4, G ∼= L2(11) and Γ has 11 points;

(ii) q = 5, E(G) ∼= A6 or 3A6 and Γ has 6 or 18 points, respectively;

(iii) q = 9, E(G) ∼= L3(4) or 2L3(4) and Γ has 56 or 112 points, respectively;

(iv) q = 11, E(G) ∼= M12 and Γ has 144 points.

See also the paper of Grams and Meixner [GM], where they studied some of the
geometries assuming n ≤ 10.

Notice, that all known flag–transitive c.c∗–geometries having an almost simple
stabilizer of a point admit a duality except the example (iv).

The flat flag–transitive c.c∗–geometries are determined in [BaPa], where flat
means that each point is incident with each circle. They are either a gluing of
two copies of an affine n–dimensional space over GF (2) or the flat JvT -geometry
(the geometry which is listed in (ii) having 6 points).

In [BaBue] the following situation is considered. Suppose G0 is not an affine
group. If (Γ, G) is a minimal not known example with respect to its order and
for that order with respect to the number of points, then G is a group of Lie-type
[BaBue, Theorems 1 and 2].

We prove

Theorem 1.1. Let (Γ, G) be a simply connected flag–transitive c.c∗–geometry. Sup-
pose that Γ admits a duality α which fixes a flag of type {0, 2}. Then one of the
following holds.

(1) Γ is the truncated dual Coxeter-complex of type Dn, Tr(∆n);

(2) G0 is an affine group;

(3) soc(G0) ∼= L2(q), (q − 1) ≡ 0(4) or q = 2r, r even or soc(G0) ∼= U3(q). In both
cases soc(G0) acts naturally on the circles in res(x0);

(4) G0
∼= L3(2)(in its action of degree 7) and G ∼= U3(3)

G0
∼= L2(11) (in its action of degree 11) and G ∼= M12 or

G0
∼= A7 (in its action of degree 15) and G ∼= M22 or 2M22.

This theorem can be applied to flag–transitive C2.c–geometries. A C2.c-geometry
is a geometry having the following diagram.

(C2.c) • • •
c

m 1 n

0 1 2

where m and n are positive integers. Here we call the elements of type 0, points,
those of type 1 lines and those of type 2 quads.

Since any simply connected flag–transitive C2.c–geometry gives rise to a simply
connected flag–transitive c.c∗–geometry which admits a duality α which fixes a flag
of type {0, 2}, (see Section 5), Theorem 1.1 yields the following result.
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Corollary 1.2. Let (Λ, G) be a flag–transitive C2.c–geometry, whose lines are inci-
dent with exactly two points. Then one of the following holds.

(1) Λ is covered by the {1, ..., n− 3}–truncation of the dual of the Coxeter complex
of type Cn;

(2) G0 is an affine group;

(3) soc(G0) ∼= L2(q), (q − 1) ≡ 0(4) or q = 2r, r even or soc(G0) ∼= U3(q). In both
cases soc(G0) acts naturally on the circles in res(x0);

(4) G0
∼= L3(2) and G ∼= U3(3)× 2

G0
∼= L2(11) (in its action of degree 11) and G ∼= Aut(M12) or

G0
∼= A7 and G ∼= Aut(M22) or 2Aut(M22).

The method of proof of Theorem 1.1 will be as follows. According to [Ba2,
Theorems A and B] we are only considering soc(G0) a group of Lie–type of rank 1.
In [Ba2] the generators and relations of the groups acting flag–transitively on the
truncation Tr(∆n) where given. For any c.c∗–geometry Γ with soc(G0) ∼= L2(q), q =
pr, r odd and p − 1 6≡ 0 mod 4 or soc(G0) ∼= Sz(q) or soc(G0) ∼= R(q) we show
that these relations have to hold, which will prove Theorem 1.1. This will be done
in Sections 2,3 and 6. In Section 4 we consider soc(G0) ∼= U3(q). We construct
some subgeometry, which is again a flag–transitive c.c∗–geometry whose stabilizer
of a point is isomorphic to L2(q). In Section 5 we discuss the relation between c.c∗

and C2.c-geometries. Corollary 1.2 will be proved in Section 6.

2 Flag–transitive c.c∗–geometries.

First we list some known facts.

Lemma 2.1. [Ba1] A group G acts flag–transitively on a c.c∗–geometry Γ, if and
only if there are pairwise distinct subgroups G0, G1, G2 ≤ G, satisfying the following
conditions:

(1) Gi is a doubly transitive permutation group on {G0,2g, g ∈ Gi}, i ∈ {0, 2}.

(2) B �G1, G1/B ∼= E4, G1i/B ∼= Z2 and Gi = 〈ai, G0,2〉, ai ∈ G1,i \B, i ∈ {0, 2},
and B = G0,1,2.

(3) G0,2 ∩Gai
0,2 = B.

(4) G = 〈G0, G2〉.

Proposition 2.2. [Ba1, Corollary 3.5] The geometry Γ is covered by Tr(∆n) if and
only if there exist a flag–transitive subgroup G of Aut(Γ) and an isomorphism ϕ
from G0 onto G2 such that ϕ centralizes G0,2 and such that (a0a

ϕ
0 )2 = 1 for some

a0 ∈ NG0(B) \B.

Lemma 2.3. Suppose that G0 is an almost simple group of Lie type of rank 1 and
suppose G0 6∼= R(3) ∼= L2(8) : 3. Then H = 〈soc(G0), soc(G2)〉 acts flag–transitively
on Γ.
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Proof. Let K be the two point stabilizer of G0 in its doubly transitive permutation
representation. As G0 is an almost simple group of Lie type of rank 1 and G0 6∼= R(3),
we have G0 = Ksoc(G0). Since the Borel subgroup B is a two point stabilizer in G0

and in G2 as well, we obtain G0 = soc(G0)B and G2 = soc(G2)B. Hence G = HB,
which yields that H acts flag–transitively. �

We are also able to prove the converse as is shown next.

Lemma 2.4. Let Γ be simply connected and suppose that G0 is isomorphic to L2(q),
q odd, acting naturally on the circles in res(x0). Then Γ admits as group of auto-
morphisms a group G̃, such that |G̃ : G| = 2 and G̃0

∼= PGL2(q).

Proof. We have

G0
∼= L2(q) ∼= G2, G1

∼= Z(q−1)/2E4, Gi,1
∼= D2(q−1)/2, i = 0, 2, G0,2

∼= EqZ(q−1)/2

and the Borel subgroup B is isomorphic to Z(q−1)/2. Due to [Ba2, Lemma (4.4)]
there are elements a0, c, d, a2 ∈ G, such that

G0 = 〈a0, c, d〉, G1 = 〈a0, d, a2〉, G2 = 〈a2, c, d〉, G0,2 = 〈c, d〉,

Gi,1 = 〈ai, d〉, i = 0, 2, B = 〈d〉,

where o(d) = (q − 1)/2, o(ai) = 2, dai = d−1, i = 0, 2 and o(c) = p. Further there is
an isomorphism φ : G0 →G2 with φ|G0,2 = id, cf. [Ba], and we may suppose a2 = aφ0 .
Since Γ is simply connected, G is the universal completion of this amalgam, [Pa1].

Let e be a diagonal automorphism of G0 such that e2 = d. Then ce ∈ 〈c〈d〉〉,
[d, e] = 1, ea0 = e−1 and ae0 = a0d.

We claim that e extends to an automorphism of G by setting ae2 = a2d. For any
relation R(a0, c, d, a2) in G, we have to show that the relation R(ae0, c

e, de, ae2) holds
in G, as well.

By the existence of φ and by our choice of a2 the map e defines not only an
automorphism of G0, but also an automorphism of G2, G0,1 and G2,1. In G there is
one further relation, namely (a0a2)

2 = di for some i ∈ {1, ..., (q − 1)/2}, cf. [Ba2,
p.17] or Lemma 2.1. As (a0a2)

2e = die = di and (ae0a
e
2)

2 = (a0da2d)2 = (a0a2)
2 =

((a0a2)
2)e, the map e extends to an homomorphism of G.

It remains to show that e is an automorphism of G. Obviously e is a surjection.
Since e is surjective and G finite (see [Wi]), indeed e defines a bijection.

Hence e is an automorphism of G which normalizes G0, G1 and G2 and therefore
e induces an automorphism on Γ which proves the lemma. �

Observe that in Lemma 2.4 the condition that Γ is simply connected is neccessary.
There is for example a quotient of Tr(∆16) with 28 points, which admits as a point
stabilizer L2(17), but not PGL2(17).

Using exactly the same argumentation as in Lemma 2.4 we obtain the following.

Lemma 2.5. Let Γ be simply connected and suppose that G0 is isomorphic to U3(q)
with (q + 1, 3) = 3. Then Γ admits as group of automorphisms a group G̃, such that
|G̃ : G| = 3 and G̃0

∼= PGU3(q).
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3 c.c∗–geometries with point stabilizer a linear, a Suzuki group

or a group of Ree type.

Let G = Aut(Γ).

Lemma 3.1. Let (Γ, G) be a simply connected flag–transitive c.c∗–geometry. If Γ
admits a polarity α which interchanges G0 and G2 and which centralizes G0,2, then
(a0a

α
0 )4 = 1 for any a0 ∈ NG0(B) \B.

Proof. Set a2 = aα0 . Then (a0a2)
2 = (a0a2)

2α = (a2a0)
2 = (a0a2)

−2. Hence (a0a2)
4 =

1. �

Proposition 3.2. Let (Γ, G) be a simply connected flag–transitive c.c∗–geometry
and let soc(G0) ∼= L2(q), q = pr, r odd, Sz(q) or R(q). If Γ admits a duality α
which fixes a flag of type {0, 2}, then there is a polarity π which acts trivially on
soc(G0) ∩ soc(G2). Moreover, (a0a

π
0)4 = 1 for any a0 ∈ NG0(B) \B .

Proof. Let α be chosen such that its order is a power of 2 and let {x0, x2} be a flag,
such that α interchanges x0 and x2. Hence α interchanges G0 and G2 and normalizes
G0,2.

For soc(G0) 6∼= L2(q) set Hi = soc(Gi) and for soc(G0) ∼= L2(q) set Hi
∼=

PGL2(q), respectively. By [Ba2] we may assume G0 6∼= R(3) ∼= L2(8)3 of degree
28. Note that according to Lemma 2.3 〈soc(G0), soc(G2)〉 acts flag–transitively on
Γ. So, by Lemma 2.4 H = 〈H0, H2〉 is a flag–transitive subgroup of G. Moreover,
as Hi char Gi, the automorphism α interchanges H0 and H2.

Since H0
∼= PGL2(q), Sz(q) or R(q) we have H0,2 = Op(H0,2) : B and B ∼= Zq−1.

Set Q = Op(H0,2). For Φ(Q) the Frattini subgroup of Q we have Q = Q/Φ(Q) ∼=
Eq and B acts regularly on Q

∗
= Q \ {1}, cf. [HuIII, XI, 3.1 and 13.2].

As α normalizes Q and H0,2, the group Bα is a complement in H0,2 to Q. Hence
by the Theorem of Schur–Zassenhaus there is a q ∈ Q with [B, qα] ≤ B.

We have Q : B ∼= ΓL1(q). Hence qα ∈ NGLr(p)(B) ∼= Zq−1 : Zr [HuI, II, 7.3].

Assume qα 6∈ B as an automorphism of Q. As r is odd, O2(NGLr(p)(B)) =
O2(B). Since α induces on Q an automorphism whose order is a power of 2, we have
α ∈ O2(B) in contradiction to our assumption.

Thus qα ∈ B as an automorphism of Q and there exists an b ∈ B such that
[Q, qbα] = 1 and due to the Three–Subgroup–Lemma [B, qbα] ≤ CB(Q) = 1. Set
π = qbα. We claim that [H0,2, π] = 1. The restriction of π on H0,2 induces an
automorphism β on H0,2, which normalizes B. Hence due to [Ba2] β can be extended
to some automorphism γ of H2. Then γ centralizes the semidirect product X of Q
with B. Hence γ ∈ CAut(H0)(B) = B and γ ∈ CNAut(H0)(Q)(Q) = Q, so γ ∈ B∩Q = 1
and γ = 1. This gives β = 1 and [H0,2, π] = 1 as claimed.

As qb ∈ H0,2 the automorphism π interchanges H0 and H2. Since CAut(Hi)(H0,2) =
1, it follows that π2 acts trivially on Hi, for i = 0, 2. Thus π2 = 1. This proves the
first part of the proposition.

As π is of order 2, it interchanges a0 and a2. Now Lemma 3.1 implies the last
part of the assertion. �
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Corollary 3.3. Let Γ be simply connected and suppose that soc(G0) ∼= L2(q),
(q − 1) ≡ 2(4) or q = 2r, r odd or soc(G0) ∼= Sz(q). If Γ admits a duality α
which fixes a flag of type {0, 2}, then Γ is Tr(∆n).

Proof. We may assume Gi = soc(Gi) for i = 0, 2. By Proposition 3.2 (a0a
α
0 )4 = 1

for any a0 ∈ NGi(B) \ B. Since (a0a
α
0 )2 ∈ B and O2(B) = 1, in fact (a0a

α
0 )2 = 1.

Thus Proposition 2.2 yields the assertion. �

Next let us consider soc(G0) ∼= R(q). Then the Borel subgroup B is of even order.
Hence, we have to use more elaborated arguments as for L2(q), (q − 1) ≡ 2(4) or
q = 2r, r odd or Sz(q) to show that Γ is covered by Tr(∆n). We first use the fact
that (a0a

α
0 )4 = 1 for the polarity α (Proposition 3.2) which reduces the problem to

the determination of the c.c∗-geometries with point stabilizer isomorphic to R(3).
The latter was already done in [Ba2].

Let G = 〈soc(G0), soc(G2)〉 ≤ Aut(Γ). By Lemma 2.3 G acts flag–transitively
on Γ and we have

G0
∼= G2

∼= R(q), G1
∼= Zq−1E4, G0,2 = Op(G0,2)B, B ∼= Zq−1

and Gi,1
∼= D2(q−1), i = 0, 2.

Corollary 3.4. Let Γ be simply connected and suppose soc(G0) ∼= R(q). If Γ admits
a duality α which fixes a flag of type {0, 2}, then Γ is Tr(∆n).

Proof. If G0
∼= R(3) of degree 28, then according to [Ba2, page 19] Γ is isomorphic

to Tr(∆26). Therefore by Lemma 2.3 we may assume G0 = soc(G0). According to
Proposition 3.2 we may assume that α is a polarity, which exchange G0 and G2 and
centralizes G0,2. Let g ∈ B be an involution. Then (a0a

α
0 )2 ∈ 〈g〉 by Proposition 3.2.

Let H0 be a subgroup of G0 isomorphic to R(3) and let a0 be chosen such that
a0 ∈ H0. Set H = 〈H0, H

α
0 〉. Then, as g ∈ H0, the group geometry

Γ(H, (H0, 〈a0, H0 ∩B, aα0 〉, Hα
0 ))

is a c.c∗-geometry with point stabilizer isomorphic to R(3). By ([Ba2, page 19])
(a0a

α
0 )2 = 1, so Proposition 2.2 yields that Γ is covered by Tr(∆n). �

Remark 3.5. If (Γ, G) is a c.c∗-geometry which does not admit a duality and whose
stablizer of a point is isomorphic to R(q), then we would be able to determine Γ under
the assumption that we know all flag-transitive c.c∗-geometries with point stabilizer a
linear group L2(q), using the same method as described in the next section. There we
consider an element g of order q + 1, here we would have to consider an involution.

4 c.c∗–geometries with point stabilizer a unitary gr oup.

If G0 is a unitary group, then q = pr with r even. Therefore we can not use the
idea of the proof of Proposition 3.2 to determine the flag-transitive c.c∗-geometries
whose point stabilizers are unitary groups. But we can reduce this problem to the
problem to determine the c.c∗-geometries whose point stabilizers are isomorphic to
L2(q).
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Let soc(G0) ∼= U3(q). By Lemma 2.3 we may assume G0
∼= G2

∼= PGU3(q).
Then,

G0
∼= G2

∼= PGU3(q), G1
∼= Z(q2−1)E4, , G0,2 = Op(G0,2)B, B ∼= Z(q2−1)

and Gi,1
∼= D2(q2−1), i = 0, 2.

Let g ∈ B be an element of order q + 1 and let B be the stabilizer of the flag
{x0, x1, x2} in Γ. Then g fixes q + 1 circles on the point x0 and q + 1 points on
the circle x2 [HuI, II. (10.12)]. Moreover, E(Ki) ∼= L2(q), where Ki = CGi(g)/〈g〉
(i = 0, 2).

Let ∆ be the subgeometry of Γ whose set of elements of type i are the elements
of Γ of type i which are fixed by g, i = 0, 2, and whose lines are the lines of Γ,
whose residue is fixed elementwise by g. Let incidence be the one inherited from Γ.
For i = 0, 2 set Ci = E(Ki).

Lemma 4.1. Let ∆̃ be a connected component of ∆ containing the flag {x0, x1, x2}.
Then ∆̃ is a c.c∗–geometry with flag–transitive group of automorphism C = 〈C0,C2〉
and point stabilizer C0

∼= L2(q).

Proof. Let y0 be a point in ∆̃. Let y2, z2 be two circles being incident with the point
y0. Then there is exactly one line y1 in Γ in res(y0) which is incident with y2 and
z2. Hence y1 is fixed by g and, as a line is incident with two points and two circles,
g fixes the residue of y1 elementwise. So y1 ∈ ∆̃.

Thus by the definition of the lines in ∆̃, the residue of a point is a complete
graph with at least 3 vertices. Then the same holds for the residue of a circle. Thus,
as the residue of a line is a generalized two–gon, ∆̃ is a c.c∗–geometry.

In ∆̃ the residue of a plane (resp. point) contains q + 1 points (resp. planes)
on which C2 (resp. C0) acts faithfully. Therefore, Ci acts doubly transitively on
Res(xi) (i = 0, 2) and C acts flag-transitively on ∆̃. �

Suppose that we know all flag-transitive simply connected geometries of type c.c∗

with point stabilizer a linear group L2(q). We conjecture that they are truncations
Tr(∆q−1) for q ≥ 27. Let (Γ, G) be a flag-transitive c.c∗-geometry with soc(G0) ∼=
U3(q) and let a0 ∈ NG0(B) \ B. Then, if the conjecture holds, the previous Lemma
implies that there is an a2 ∈ NG2(B) \B such that (a0a2)

2 ∈ 〈g〉 and that ∆̃ would
be a quotient of Tr(∆q−1). Therefore, CG(g) would have as a factor either 2qL2(q)
or 2(q−1)/2L2(q). In [BaBue] we consider the minimal not known examples whose
stabilizer of a point is not an affine group; minimal with respect to the order n and
for that n with a minimal number of points. We proved

Theorem 4.2. [BaBue, Corollary (1.3)] Let (Γ, G) be a flag-transitive c.c∗-geometry.
Suppose that (Γ, G) is a minimal not known example whose stabilizer of a point is
not an affine group. Then G is a group of Lie-type.

Moreover, it is well known that a c.c∗-geometry of order n has at most 2n−1

points and is isomorphic to Tr(∆n−1) if and only if Γ has exactly 2n−1 points.
Hence, if the conjecture holds, then it remains to determine those groups of Lie-

type G, which contains a subgroup U isomorphic to U3(q) such that |G : U | < 2q
3

and which possess an element g of order q + 1 whose centralizer in G has a factor
as described above.
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5 Relation between c.c∗ and C2.c–geometries.

To any c.c∗–geometry Γ a C2.c–geometry is related in a natural way. Relate to a
c.c∗–geometry Γ the following rank three geometry Λ = Λ(Γ).
Let ∆ be the point–circle incidence graph of Γ and call a quadrangle of ∆ geometric
if its four vertices are incident with a common line in Γ. Define the rank three
geometry Λ = Λ(Γ) as follows. Take as points, lines and quads of Λ the vertices,
the edges and the geometric quadrangles of ∆, respectively.

Lemma 5.1. The geometry Λ is of type C2.c. Further if Γ is flag–transitive and
possesses a duality which fixes a flag of type {0, 1, 2}, then Λ is flag–transitive, as
well.

Proof. It is straightforward to check that Λ is of type C2.c.
If G acts flag–transitively on Γ, then G extended by the duality acts transitively

on the maximal flags of Λ. �

Observe that those C2.c–geometries whose point–line truncation is a bipartite
graph are exactly those obtained from a c.c∗–geometry. If Λ is a C2.c–geometry
whose point–line truncation is a bipartite graph, then we get a c.c∗–geometry Γ by
taking as set of points one part, as set of circles the other part of the bipartition and
as set of lines the quads of Λ. A point is incident to a circle if and only if they are
on a common line in Λ and incidence between points (circles) and lines is defined
by inclusion.

Lemma 5.2. Let Λ be a C2.c–geometry with two points on a line. Then the point–
line truncation of the universal cover Λ̃ of Λ is a bipartite graph.

Proof. This follows immediately from [Neu] or [Ri, Theorem 1]. �

Corollary 5.3. Each simply connected C2.c–geometry with two points on each line
is related to exactly one simply connected c.c∗–geometry up to exchange of ‘points’
and ‘circles’. Moreover, if Λ is related to a c.c∗–geometry than each cover of Λ is
related to a c.c∗–geometry. �

Recall the two properties of geometries. The first condition is equivalent to the
Intersection Property in [Bue1].

(IP) For any two elements x and y, the set of points incident with x and y coincide,
if not empty, with the set of points incident with some element z, which is
incident with both x and y;

and

(LL) Each pair of points is incident with at most one line.
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Lemma 5.4. The following statements are equivalent.

(i) (LL) holds in Γ.

(ii) (IP) holds in Γ.

(iii) (IP) holds in Λ(Γ).

(iv) ∆ is a rectagraph, that is each path of length three lies in a unique quadrangle.

Proof. According to [Pa2, Lemma (7.25)] (i) and (ii) are equivalent.
Now we want to prove the euivalence of (iii) and (i). Assume first (i). Since in Λ

the points and the lines are the vertices and the edges of ∆ and since ∆ is a bipartite
graph, (IP) holds for x or y a point or a line. Two quads intersect in 0, 1, 2 or 4
points, since in ∆ each path of length 3 lies in exactly one geometric quadrangle. If
two different quads intersect in exactly two points, then, by (i), these two points are
incident with a line. Hence (iii) holds. Assume that (i) does not hold. Then there
are two points, which are incident with at least two lines. Hence in Λ(Γ) there are
two points at distance two which are incident with two quads. Thus for these two
quads the Intersection Property does not hold, i.e. (iii) implies (i).

Finally we claim that ∆ is a rectagraph under the assumption of (i). Since in
∆ each path of length 3 lies in a geometric quadrangle, we have to show that ∆
only contains geometric quadrangles. Assume that {c1, c2, c3, c4} are the vertices of
a non–geometric quadrangle, ci being a neighbour of ci+1. Then c1, c2, c3 as well as
c1, c4, c3 lie in a geometric quadrangle. Hence in Γ the elements c1 and c3 are incident
with two lines. Since c1 and c3 are either points or circles, in both cases the property
(LL) does not hold in contradiction to our assumption. If ∆ is a rectagraph, then
obviously (i) holds. This proves the lemma. �

Remark. Let Λ be a C2.c–geometry, whose lines are incident with exactly two
points. Then obviously (IP) holds if and only if the point–line truncation of Λ is a
rectagraph.

6 Proofs of Theorem 1.1 and Corollary 1.2.

In order to show Theorem 1.1 we still need the following statement.

Lemma 6.1. Let Γ be a flag–transitive c.c∗–geometry. Suppose that Γ possesses a
duality, which fixes a flag of type {0, 2}. Then the universal cover Γ̃ of Γ possesses
as well a duality which fixes a flag of type {0, 2}.

Proof. Associate to Γ the C2.c–geometry Λ = Λ(Γ). Then by Lemma 5.1 Λ is flag–
transitive as well. According to Lemma 5.3 the universal cover Λ̃ of Λ is related to
the universal cover Γ̃ of Γ. As Aut(Λ̃) = Corr(Γ̃) the assertion follows. �

Remark 6.2. As pointed out by Pasini [pers. comm.] Lemma 6.1 is part of a
general fact: Any correlation of a geometry can always be lifted to a correlation of
the universal cover.
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Proof of Theorem 1.1.
According to [Ba2, Theorems A and B] else (1),(2) or (4) holds or soc(G0) is a simple
group of Lie–type of rank 1. Hence assume that soc(G0) is a group of Lie–type of
rank 1. Now Lemma 6.1 yields that we may assume Γ to be simply connected. Then
the Corollaries 3.3 and 3.4 prove the assertion. �

Proof of Corollary 1.2.
Let Λ̃ be the universal cover of Λ. Then by Lemma 5.3 Λ̃ = Λ̃(Γ) for some simply
connected c.c∗–geometry. Moreover Γ is flag–transitive admitting a duality, which
fixes a flag {p, l, c} of type {0, 1, 2} and the stabilizer of a point is isomorphic to G0.

Notice, if Γ is Tr(∆n), then Λ̃ is the {1, ..., n− 3}–truncation of an apartment
of type Cn. Therefore, application of Theorem 1.1 proves the corollary. �
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