Generalized reduction of the Poincaré
differential equation to Cauchy matrix form

Ice B. Risteski

Abstract

In this paper the Poincaré differential equation of order n with multiple
regular singularities is reduced to the Cauchy matrix form.

1 Introduction

Using the transformation of H.L.Turrittin [1, p. 494] we will prove that the Poincaré
differential equation of n-th order with multiple regular singularities, can be reduced
to the Cauchy matrix form [2, p. 369]. In this paper the results obtained in [3] are
generalized.

2 Generalized reduction

Now we will prove the following result.
Theorem. The Poincaré differential equation

n—1

Pu(a)y™ =3 Pila)y?, (1)

where
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I1<rm<r1<---<rn<n

Y

reduces to the Cauchy matriz form

dY
I — D)— = QY. 3
(oI = D) = Q. 3
where
D =diag(dy,--- ,dy,da, -+ ,doy -+ dg, -+, dg), (rankD > 1) (4)
Q1 1 0 -+ 0]
Qy 1 -+ 0
— ' 5
@ qij ( )
L Q.
and
Y = <y17y27 e 7yn>T‘ (6)

Proof. The regular singularities in the equality (1) are x = d;, (1 < i < k) and
the following functions

(# = dj)' Poi(x)/ Po(x), (1 <4<n)

are holomorphic for x = dj, i.e. the polynomials P,_;(xz) must contain the factor
(x —d;)"7%, (1 <4 <rj). Hence it follows

Poilw) = P @) [[(— )y, (0<i<n)

j=1

s—1
P i(x)=P, () ||(z— dj)rj_i, (rs <i<rs1; k>s>2) (7)

n—i
J=1

Bui(w) = By(x),  (m<i<n)

such that if ry <i <ryq, (1 <s<k+1;rg=n,rz+1 = 0) the polynomials P’ ,(z)
in the best case have degree
s—1
(n—i)=> ri+i(s—1)=n— Ny 1 +i(s—2),

=1

where
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In the block matrix (5), each of the blocks Qs, (1 < s < k) has format rg X 7
and its form is

0 1 0 0 0
0 1 1 0 0
Qs = ' : (8>
o o0 0 - ry—2 1
_asl Qg2 Qg3 -+ Qgry—1 Qg + Ts — 1_

If we introduce the following substitutions

7=1
ty=t""s = [[(@—d)), (9)
j=1
(t) =t po=2_(r —4) [ (v = dw),
j=1 m=1
(1<s<k)

then the equality (7) takes the form

Poi(z) =t Py j(2), (rs<i<ren; k+12s2>2)
Poi(x) = Pii(x), (r1<i<n)
(10)

and in the linear transformation of H.L.Turrittin [1]

[41] M1 0 0 0 071 [ v ]
Y2 ca0() ©1 0 0 0 Y
Y3 cao(x) csi(x) o 0 0 "
L= . . , (11)
Yi Cz‘o(l“) Cz‘1(33) Cz‘z(ﬂf) s Yi—1 0 y(z_l)
LYn ] LCno (l‘) Cni1 (l‘) Cn2 (l‘) ot Cpp—2 (l‘) Pn—1] _y(”_l)_

where degc;;(z) < j, it will be

pi = 19(x — dy)' ™ = tlpy(w — d)TN = tipea (w — d) T,
gr = to(x —dy) "V [(x = ds)pp_y + (i — Noo1)ths—1], (12)
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(Ng—1 <i < Ng;1 <s<k).

Applying the previous substitutions, according to [3] ¢; and ¢;;—2(x) can be calcu-
lated. First it determines

Cn,n—2(x) = (.CL' - dk>_1[an90n—1 - Pn—l(x)] - 90;1—1 =

= (v —di) " gunti(@—di) " =ty P (2)] = ti(w—di) (2 —di)ppy + (e —orn] =
= (2 — di) " [(Gun — 7%+ Doe—1 — Py (2) — (2 — di)pp_y].

If we substitute x = dj, in the last equation we obtain

Gnn = Tk—1+Py 1 (di) [ r—1(dk),
Cnm—2(x) = t4ch o (2), (13)

where ¢, is a polynomial of the form

n,n—2
Crma(®) = (@ = d) 7 [(qun — 70+ D01 — Py (2) — (@ —di)pp_g]. (14)
Now let be Ny_1 < i < N — 1. According to [3], by substituting
Cia—2(2) =tz — i)'~ ci; () (15)
and by using of (9), we obtain
t(a — dk)i_NkC;‘k,z‘—2(37) =
= ty(z — di)' ™" [, (2) — Pra) + (= di) T e g — (6 = Ny = 1),
and hence it follows that
Qi = @ — Ng—1 — 1,
Ciia(®) = i1 (@) — Pt = Crn—2(@) — (0 — Pty (16)
(N1 <@ < Ni_1).
For i = Ny_1, Ciy1,-1(x) = t}_1¢iyy (@) from (15) and
i =10 (@ —da) =t e (z —dia) T = b o,
i =ty (r — di-1) 7 [(@ = di-1)phy + ey — D],
according to (12), we obtain the equation
Cii—2(2) =ty (2 — di—1) " {00 () + (g — (rem1 — D]vu—2} — tiphs,
which yields to

Qi = Tr—1 — 1=ci 111 (de—1) [tPp—2(dp—1),
Ciima () =t 165 0 (2), (17)
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(’L — Nk—l)
where
C;‘k,z‘—2(5’7) = (v — dk)_l{c;‘k+1,z‘—1(~’l7) + [qii — (rr—1 — D]} — Pg—m (18)
(’L == Nk—l)-
Hence we can suppose that for Ny_1 < < Ng, (k—12> s> 1) it holds

Ciio(@) =tz —d)" N, (). (19)

i,i—2
Indeed, for N,_; < i < N, the equation
Ciia(z) = (x — ds) Meirri1(2) + qipia] — i1,
can be reduced to the form
Crio(T) = Cii1i(7) — P+ (= dg) Msa[gii — (i — No—y — 1)].

Using the substitution
Qi =1 — Ns—1 — 1, (20)

can be determined the polynomial

*

Cia(®) = iy (@) — Po1 =

= ¢y, No—2(T) = (Ns — DYy, (Neox <i < N,). (21)
Since it is ¢i1,i-1(2) = ti_ ¢y (%), for i = N,y and
pic1 =ty 1Ps,

90;‘—1 = ti—l(x - ds—l)_l[(x - dS)pg—Z + (rs — 1)tps—2],

we obtain

cii-2(z) = ti—l(x - d8—1>_1[c;k+1,z‘—1(x> + (qii — 751+ 1)hs 2] — ti—1pg—2a

and hence we can determine

Gis = Ts—1 — 1 — C:+1,i_1(ds—1)/ws—2 (ds—1>7 (22)
obtaining
Cii2(T) = ti—lc;k,i—2(x>7 (1= Ns1) (23)
where
C;‘k,z‘—2(5’7) = (v — d5—1>_1[0:+1,i—1(x> + (i — 151 + 1)hs 2] — PS—2- (24)

Thus we determined the polynomials ¢;;—o(z), (n > ¢ > 2) which have the form
(19) and the constants g;;, (n > i > 2) together with ¢1; = —co0(z) = 0, uniquely
from P, (x).
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Now we can see that the polynomials ¢;;_;(x) can be expressed as
Ciimj(x) = tg_l(x —dg) N Ciij (x), (25)

(N3_1<’i§N3;1§S§k),

where it understands that the factor (x —d;) up to potention of nonpositive integers
is equal to 1, i.e.

(x —dg) N =1, (ry— Ny+i+1<j)

(x—dy)" 7t =1, (r;+1<5).

For j = 2, from the formulas (16) can be obtained the formulas (19), and hence
for i =n + 1 the formulas (10) correspond to the formulas (16), i.e.

Cntimi1—(2) = P (z) = ti_lpﬁk—jﬂ(x)'

The equality (25) will be proved by induction with respect to the subdiagonal
row j. Now we will consider the rows ¢;;—j(x) for N,y < i < N,. In this case it
holds

(@ = d)lciij () + ¢ (x)] =
j—2
= Ciy1ig(T) + D GiivCivi(T) + Giijrpij, (Ne <i < Ny). (26)
v=0

Let us suppose that equations (22) hold for i = Ng + 1, then we can prove by
induction of j, (j = 2,3,---) that the ry x ry matrix [¢;;—;], (0 < j <ry—1)isa
joint matrix. Indeed, for j = 2 we have

(iL“ - ds)Cz‘,z‘—3(£C) - Cz‘+1,z‘—2(£€) =

= tg(x_ds)i_NSH{[(Qii—’i‘i‘Ns)ws—l+Pi]c;k,z‘—2(33)_¢SC:,;—2(33)}+Qi,i—1t§(37_ds)i_Nswg—1-
(27)
From the assumption ciy1,2(x) = t2¢f 1, o(z) for i = N, we can substitute

Qi1 = —Ci11,; 9(ds) Y0 (ds), (i =N.) (28)

and we will prove that ¢;;_s(z) can be determined in the form

ciis(x) = t2c,_4(x), (i = N,). (29)

574,1—3

Substituting the equation (29) in (27) for i = Ny — 1 we obtain ¢;;—1 = 0 and the
equation (25) for ¢ = Ny — 1. The equation (27) for Ny — 1 >4 > Ny_; + 2 reduces
to

(z — ds)[c;*’i_g(x) - C;‘k+1,z‘—2(x)] =
= (2 — do){[(qii — 1 + No)hs—1 + pilg]cj,i—2(5’3) - wsc¥,2_2(:v)} + Qi,i—1¢§—1a
(Z:Ns_ 17N8_27”' 7Ns—1+2>

where it follows that

qm‘—lzoa (i:Ns_laNs_Qa’” 7Ns—1+2>‘ (3(])
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For i = N,_1 + 1 the expressions ¢;;_o(x) = t}_,¢};_o(x) and p;_y = t}_j1hs_5 does
not contain the factor (z —d;). In this case ¢;;,—1 can be determined, if we substitute
x = ds in (26). We will also prove that the polynomials ¢;;_3(z) contain the factor
2.

The previous calculations can be used for all blocks (Ns—1 < i < Ng; k> s> 1),
which means that the first subdiagonal determines from P,_(z).

Now we will assume that the polynomials (25) are valid until the first (j —2)-nd
subdiagonal rows. Then we will prove that (25) holds for the (j —1)-st part together
with the constants g;;—j41.

For N,y < i < Ny according to the assumption, it follows that

iy (@) = tl(w = do) M [P (2 — da)+

i,0—1

ipeoi (i — j 4 1= Neoa)leh, (@) + o (@ — do)ei;_(2)},

Civi—j(T) = tj 1 1( - dsy TN C;‘k—u,z‘—j(x> =
=t W (x — d TN (2)
(31)
ij =10 (x—d) Nt = (x — dy) N (32)

Let 2 < j < 7. Then for ¢y, j(x) =t (x — dy)™ ey (@), (0 = Ny) from
(26), (31) and (32) we obtain

Qiji—j+1 = — ;k—i—lz j(ds>/wg—1(ds>a
Ci,i—j+1( ) tsczz —j— l(x) (2 = NS)
(33)

By substituting (33) in (26), by continuing of this procedure, can be determined
Cii—j—1(x) in the form (25). For Ny —1 > i > N,_; + j we obtain

(w=do){c} i joa (@) H L1 (2 =di) Fpsr (it L= Nomn) )i () Hhsms (2 —di) ey (2)}

= (.CL' - dS)[C:—I—l,i —j + Z dii— szy—’—ll ;k v,i— j( )] + qi,i—j-f-lwg—l’
and hence it follows that
qZ‘,z‘—j—l—lzoa (i:Ns_laNs_Qa’” 7Ns—1 +.7) (34)

and ¢;;—j—1(z) can be determined uniquely.
Thus, we verified that the matrix

_QNS_1+1,NS_1+1 1 0 . 0
0 N, 1 +2,No_1+2 1 e 0

qNs,Ns—l‘f'l qNs,Ns—1+2 qNs,Ns—1+3 o qNs,Ns_
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is a joint matrix.

From (31) and (32), if Ny_1 <@ < Ng_1+j—1orif j > rs, the right term of (26)
does not contain the factor (z — ds) longer. From these cases can be determined the
constants ¢; ;—j+1, if © = d, substitutes in (26), and then it obtains ¢;;—;_1(x) from
the expressions of dividing of the right side of (26) by (z — d,). We also note that
for j < rq, the factor t_; = #J | (j < rp) moves in the next block. The previous
calculations can be applied to all blocks Ns_1 < i < Nj, (k> s > 1), which means
that the (j — 1)-st subdiagonal parts are determined from P,_;(z). ||

Ezxample. For the Poincaré differential equation

2o -1y =@ -1y +(@-1)y +y

where
Py(z) =2*(x — 1), Py(2) = 2(x — 1), Pi(x) =2 — 1, Py(z) = 1,

di =dy = 07d3 = 17901(3:) = anOQ(:C) = 33'2,
the coefficients of the matrix @, given by the equation (5) have values
q11 =0,¢21 = —2,¢22=4,¢31 = 1,q32 = 0, ¢33 = 0,
and the coefficients of the matrix of transformation (11) are

cs1(z) = =3z, cz0(x) = 2, co0(x) = 0.
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