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Abstract

We introduce a basic two-unit cold standby system subjected to a pri-
ority rule and attended by two different repairmen. In order to determine
the invariant measure of the twin system, we employ a stochastic process en-
dowed with probability measures satisfying general Hokstad-type differential
equations. The solution procedure is based on advanced methods of complex
analysis (sectionally holomorphic functions). Finally, we derive the long-run
availability of the system.

1 Introduction

Standby redundancy provides a powerful tool to increase the reliability, availability
and safety of operational plants, e.g. [1], [4], [12], [17 - 18].

However, redundant systems are often subjected to an appropriate priority rule.
For instance, the external power supply station of a technical plant has usually
overall priority in operation with regard to an internal (local) power generator in
standby. The local generator is only used when the external unit is down.

Two-unit (cold or warm [1]) standby systems subjected to a priority rule and
attended by a repair facility have received considerable attention in the current
Literature [3], [6], [8 - 9], [13 - 16].
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As a variant, we consider a twin system composed of a priority unit (the p-unit)
and a non-priority unit (the n-unit) in cold standby. The p-unit has overall (break-
in) priority in operation with regard to the n-unit, i.e. the n-unit is only used when
the p-unit is down. In order to avoid undesirable delays in repairing failed units, we
suppose that the entire system (henceforth called a T-system) is attended by two
different repairmen.

The T-system satisfies the usual conditions, i.e. independent identically dis-
tributed random variables, instantaneous and perfect switch [1] and perfect repair
[5].

Each repairman has his own particular task. Repairman N is skilled in repairing
the n-unit, whereas repairman P is an expert in repairing the p-unit. Both repairmen
are jointly busy if, and only if, both units (p-unit and n-unit) are down. In any other
case, at least one repairman is idle.

In order to determine the invariant measure of the T-system, we introduce a
stochastic process endowed with probability measures satisfying general Hokstad-
type differential equations. The exact solution procedure is based on advanced
methods of complex analysis, e.g. [2], [7]. Finally, we derive the long-run availability
of the T-system.

2 Formulation

Consider a T-system satisfying the usual conditions. The p-unit has a constant
failure rate λ > 0, [10] and a general repair time distribution R(.), R(0) = 0 with
mean ρ and variance σ2.

The operative n-unit has a constant failure rate λs > 0, but a zero failure rate in
standby (the so-called ”cold” standby state) and a general repair time distribution
RS(.), RS(0) = 0 with mean ρS and variance σ2

S.

Figure 1. A sample path (trajectory) of {Nt, t ≥ 0}.

The corresponding repair times are denoted by r and rS .
Characteristic functions (and their duals) are formulated in terms of a complex

transform variable. For instance,

Eeiωr =
∫ ∞

0
eiωxdR(x), Im ω ≥ 0.
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But note that

Ee−iωr =
∫ ∞

0
e−iωxdR(x) =

∫ 0

−∞
eiωxd(1− R((−x)−)), Im ω ≤ 0.

The corresponding Fourier-Stieltjes transforms are called dual transforms. Without
loss of generality (see our forthcoming remarks), we may assume that both repair
time distributions have bounded densities (in the Radon-Nikodym sense) defined on
[0,∞).

In order to analyse the random behaviour of the T-system, we introduce a
stochastic process {Nt, t ≥ 0} with arbitrary discrete state space {A,B,C,D}, char-
acterized by the following events:

{Nt = A}: The p-unit is operative and the n-unit is in cold standby at
time t.
{Nt = B}: The n-unit is operative at time t.
{Nt = C}: The p-unit is operative and the n-unit is in repair at time t.
{Nt = D}: Both units are simultaneously down at time t.

Figure 1 displays a right-continuous sample path Nt, where N0 = A a.s.; A = 1,
B = 2, C = 3, D = 4. An upwards (resp, downwards) jump corresponds to a failure
(resp. repair) of a unit. Our priority rule entails that a transition from A to C is
only possible via D.

A Markov characterization of the process {Nt, t ≥ 0} is piecewise and condition-
ally defined by:

{Nt}, if Nt = A (i.e. if the event {Nt = A} occurs).
{(Nt, Xt)}, if Nt = B, where Xt denotes the remaining repair time of
the p-unit in progressive repair at time t.
{(Nt, Yt)}, if Nt = C , where Yt denotes the remaining repair time of the
n-unit in progressive repair at time t.
{(Nt, Xt, Yt)}, if Nt = D.

The state space of the underlying Markov process is given by

{A} ∪ {(B, x); x ≥ 0} ∪ {(C, y); y ≥ 0} ∪ {(D, x, y); x ≥ 0, y ≥ 0}.

Next, we consider the T-system in stationary state (the so-called ergodic state) with
invariant measure {pK ;K = A,B,C,D}, ∑K pK = 1, where

pK := P{N = K} := lim
t→∞

P{Nt = K|N0 = A}.

Finally, we introduce the measures

ϕB(x)dx := P{N = B,X ∈ dx} := lim
t→∞

P{Nt = B,Xt ∈ dx|N0 = A},
ϕC(y)dy := P{N = C, Y ∈ dy} := lim

t→∞
P{Nt = C, Yt ∈ dy|N0 = A},

ϕD(x, y)dxdy := P{N = D,X ∈ dx, Y ∈ dy} := lim
t→∞

P{Nt = D,Xt ∈ dx, Yt ∈ dy|N0 = A}.

Notations The indicator of an event E is denoted by 11(E), i.e.

11(E) :=

{
1, if E occurs,
0, otherwise.
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Note that, for instance,

E{eiωXeiηY 11(N = D)} =
∫ ∞

0

∫ ∞
0

eiωxeiηyϕD(x, y)dxdy, Im ω ≥ 0, Im η ≥ 0.

So that,

pD =
∫ ∞

0

∫ ∞
0

ϕD(x, y)dxdy.

The real line and the complex plane are denoted by R and C, with obvious super-
script notations, such as C+,C−,C+ ∪R,C− ∪ R. For instance, C+ := {ω ∈ C :
Im ω > 0}.

3 Differential equations

In order to determine the ϕ-functions, we first construct a system of steady-state
Hokstad-type differential equations based on a time independent version of Hok-
stad’s supplementary variable technique (see e.g. Ref [13, p 526]). For x > 0, y > 0,
we obtain

λpA = ϕB(0) + ϕC(0),(
λS −

d

dx

)
ϕB(x) = ϕD(x, 0) + λpA

d

dx
R(x),(

λ− d

dy

)
ϕC(y) = ϕD(0, y),(

− ∂

∂x
− ∂

∂y

)
ϕD(x, y) = λSϕB(x)

d

dy
RS(y) + λ ϕC(y)

d

dx
R(x).

4 Solution procedure

It should be noted that our equations are well adapted to an integral transforma-
tion. As a matter of fact, the integrability of the ϕ-functions and their correspond-
ing derivatives implies that each ϕ-function vanishes at infinity irrespective of the
asymptotic behaviour of the underlying repair time densities! Applying a routine
Fourier transform technique to the equations and invoking the boundary condition
λpA = ϕB(0) + ϕC(0), reveals that

λpA(1− Eeiωr) + (λS(1− EeiηrS) + iω)E{eiωX11(N = B)} +

(λ(1−Eeiωr) + iη)E{eiηY 11(N = C)}+ i(ω + η)E{eiωXeiηY 11(N = D)} = 0. (1)

Observe that Eq (1) holds for any pair (ω, η) ∈ C × C : Im ω ≥ 0, Im η ≥ 0.
Therefore, substituting ω = t, η = −t (t ∈ R) into Eq (1), yields the functional
equation

E{eitX11(N = B)}ψ+(t)−E{e−itY 11(N = C)}ψ−(t) = ψ(t), (2)

where for all t ∈ R,

ψ+(t) :=
p−1
A

1 + λρϕ+(t)
, ψ−(t) :=

p−1
A

1 + λSρSϕ−(t)
,
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ϕ+(t) :=
Eeitr − 1

itρ
, ϕ+(0) := 1,

ϕ−(t) :=
1− Ee−itrS

itρS
, ϕ−(0) := 1,

ψ(t) :=
λρϕ+(t)

(1 + λρϕ+(t))(1 + λSρSϕ−(t))
.

Note that

ψ(0) =
λρ

(1 + λρ)(1 + λSρS)
.

Eq (2) constitutes a Plemelj boundary value problem on R which can be solved by
the theory of sectionally holomorphic functions. As a matter of fact, a straightfor-
ward application of Rouché’s theorem reveals that the function 1+λρϕ+(ω), Im ω ≥
0, has no zeros in C+∪R, whereas 1+λSρSϕ

−(ω), Im ω ≤ 0, has no zeros in C−∪R.
Consequently, the function

E{eiωX11(N = B)}ψ+(ω), Im ω ≥ 0,

is analytic in C+, bounded and continuous on C+ ∪R and

lim
|ω| → ∞

0 ≤ argω ≤ π

E{eiωX11(N = B)}ψ+(ω) = 0.

On the other hand, the function

E{e−iωY 11(N = C)}ψ−(ω), Im ω ≤ 0,

is analytic in C−, bounded and continuous on C− ∪R, whereas

lim
|ω| → ∞

π ≤ arg ω ≤ 2π

E{e−iωY 11(N = C)}ψ−(ω) = 0.

Moreover, ψ is (uniformly) Lipschitz continuous on R. (Simply note that |ψ′(t)| is
bounded on R. Therefore, our assertion follows from the mean value theorem.)

Finally, ψ is Hölder continuous at infinity, i.e. |ψ(t)| = O(|t|−1), if |t| → ∞.
Consequently, the Cauchy-type integral

1

2πi

∫
Γ
ψ(τ )

dτ

τ − ω ,

(see Appendix) exists for all ω ∈ C (real or complex), and defines a sectionally
holomorphic function which vanishes at infinity.

An application of the Cauchy formulae for the regions C+ and C−, entails that

E{eiωX11(N = B)} =
1

ψ+(ω)

1

2πi

∫
Γ
ψ(τ )

dτ

τ − ω , ω ∈ C+ ,

E{e−iωY 11(N = C)} =
1

ψ−(ω)

1

2πi

∫
Γ
ψ(τ )

dτ

τ − ω , ω ∈ C−.
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In particular, we obtain
pB = pA(1 + λρ)Φ+(0) , (3)

pC = pA(1 + λSρS)Φ
−(0) , (4)

where

Φ+(0) := lim
ω → 0

ω ∈ C+

1

2πi

∫
Γ
ψ(τ )

dτ

τ − ω , Φ−(0) := lim
ω → 0

ω ∈ C−

1

2πi

∫
Γ
ψ(τ )

dτ

τ − ω .

Applying the Sokhotskii-Plemelj formulae yields

Φ+(0) =
1

2
ψ(0) +

1

2πi

∫
Γ
ψ(τ )

dτ

τ
, Φ−(0) = −1

2
ψ(0) +

1

2πi

∫
Γ
ψ(τ )

dτ

τ
.

Subtracting both equations reveals that

Φ+(0)− Φ−(0) =
λρ

(1 + λρ)(1 + λSρS)
. (5)

On the other hand, we have

pD = lim
ω → 0

ω ∈ C+

lim
η → 0

η ∈ C+

E{eiηY eiωX11(N = D)}.

Applying the limit procedure to Eq (1), and invoking the condition pA + pB + pC +
pD = 1, yields the additional relation

pA + pB(1 + λSρS) = 1 . (6)

Substituting Eq (3) into Eq (6) yields

pA =
1

1 + (1 + λρ)(1 + λSρS)Φ+(0)
.

Finally, eliminating Φ+(0) and Φ−(0) by means of the equations (3), (4) and (5),
entails that

pA + pC =
1

1 + λρ
, pB + pD =

λρ

1 + λρ
.

Note that we have completely determined the invariant measure simply and solely
depending upon Φ+(0).
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5 Long-run availab ility

We recall that the T-system is only available (operative) in states A, B or C .
Therefore, the long-run availability of the T-system, denoted by A, is given by
A = 1− pD. We summarize explicitly as follows.
Result

A =
1

1 + λρ
+

(1 + λρ)Φ+(0)

1 + (1 + λρ)(1 + λSρS)Φ+(0)
,

where

Φ+(0) = lim
ω → 0

ω ∈ C+

1

2πi

∫
Γ
ψ(τ )

dτ

τ − ω .

Remarks It should be noted that the kernel ψ(t), t ∈ R, preserves all the relevant
properties to ensure the existence of the Cauchy integral for arbitrary repair time
distributions with finite mean and variance. First of all, the order relation |ψ(t)| =
O(|t|−1), |t| → ∞, also holds for arbitrary characteristic functions. Moreover, the
H-continuity of ψ on R does not depend on the canonical structure (decomposition)
of R or RS. For instance, the Hölder inequality

|Eeit2r − Eeit1r| ≤ ρ|t2 − t1|, (t2, t1 ∈ R),

always holds for any r with mean ρ.
The requirement of finite variances is extremely mild. As a matter of fact,

the current probability distributions employed to model repair times [1], even have
moments of all orders!

Consequently, our initial assumptions concerning the existence of repair time
densities are totally superfluous to ensure the existence of an invariant measure.

6 Evaluation

Next, we propose a (brief) outline to evaluate the C-type integral for an arbitrary
RS (or R). Let, for instance,

Eeitr =
Qp(t)

Qq(t)
, 0 ≤ p < q,

where Qk(t); k = p, q is a polynomial of degree k. D.R. Cox has shown that this
family is surprisingly large. Furthermore, let RS be arbitrary. Evaluating

λρϕ+(t)

1 + λρϕ+(t)
,

in terms of Qk(t), entails that

Φ+(0) = lim
ω → 0

ω ∈ C+

1

2πi

∫
Γ

1

1 + λSρSϕ−(t)

λ(Qp(t)−Qq(t))

itQq(t) + λ(Qp(t)−Qq(t))

dt

t− ω .



362 E. J. Vanderperre

Note that

0 < ρ =
Q′p(0)−Q′q(0)

iQq(0)
<∞,

so that t = 0 is a removable singularity of the integrand.
The equation

izQq(z) + λ(Qp(z)−Qq(z)) = 0,

has (apart from the removable pole z = 0) q roots zj; j = 1, . . . , q located in the
lower half plane C−. (We recall that the function 1 + λSρSϕ

−(z) has no zeros in
C− ∪R). Evaluating the integral in terms of the so-called operating characteristics
(Cf [17], for further details), yields

Φ+(0) = −
∑
j

Resz=zj

{
1

1 + λSρSϕ−(z)

λ(Qp(z)−Qq(z))

izQq(z) + λ(Qp(z)−Qq(z))

1

z

}
.

Observe that the minus sign appears due to the clockwise integration along a suitable
semi-circle enclosing the poles zj.

The simplest case occurs when R(x) = 1− e−ρ−1x, i.e. let

Eeitr =
1

1− iρt .

Some algebra reveals that

Φ+(0) =
λ

λ + ρ−1 + λS(1− Ee−(λ+ρ−1)r)
.

Finally, we remark that a repair time distribution with a complicated FST (such as
the Weibull of Log-normal distribution) could be substituted by an accurate finite
mixture of Coxian distributions (see e.g. [17, Ref 15]). Consequently, our proposed
technique allows to compute Φ+(0) for an arbitrary RS (or R) by exact methods
based on approximations.

7 Conclusion

A concatenation of Hokstad’s supplementary variable technique and the theory of
sectionally holomorphic functions provides a powerful tool to analyse our proposed
T-system.

The invariant measure holds for arbitrary repair time distributions with finite
mean and variance. Moreover, the evaluation of the Cauchy-type integral

1

2πi

∫
Γ
ψ(t)

dt

t− ω ,

does not actually impose an insuperable computational problem. As a matter of
fact, there exists a huge Literature to evaluate the integral by exact or numerical
computer aided routines.
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Appendix

Let f(t), t ∈ R be a bounded and continuous function. f is called Γ-integrable, if

lim
T → ∞
ε ↓ 0

∫
ΓT,ε

f(t)
dt

t− u , u ∈ R,

exists, where ΓT,ε := (−T, u− ε] ∪ [u+ ε, T ).
The corresponding integral, denoted by

1

2πi

∫
Γ
f(t)

dt

t− u,

is called a Cauchy principal value in double sense.
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