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Abstract

In this paper the singular integral operator on Ahlfors-David surfaces is
shown to have an invariant subspace of the generalized Hölder continuous
function space. We study the problem in the context of Quaternionic Analysis.
Two equivalent norms on certain quaternionic monogenic functions subspace
are treated.

1 Introduction

It is well known that when an operator or class of operators is shown to have in-
variant subspaces, a general structure theory usually emerges. We refer the reader
to [2] for more information about the invariant subspace problem. To show that
the singular integral operators over surfaces in Rn has nontrivial invariant subspace
has received a lot of attention lately. In [21] by using results on Ten space by Coif-
man, Meyer and Stein, see [6], Murray proved the L2 boundedness of the singular
integral of Cauchy’s type over Lipschitz graphs with small Lipschitz constant. For
all Lipschitz constant, McIntosh in [18] proved also such a result. Recently, the L2

boundedness of the singular Cauchy integral involving Ahlfors -David surfaces and
rectifiability has been studied by a prominent group of mathematicians: David [7];
Mattila [19];[20] and Semmes [22];[23]. The notion of rectifiability arises in nature
in connection with Lp estimates for singular integral operator cf. [8];[9].
In Hölder continuous spaces the boundedness of the singular integral of Cauchy type
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on Liapunov surfaces in the case n = 3 was proved by Gegelia in [12]. Singular in-
tegral of Cauchy type over compact Liapunov surfaces in Rn can be found in [17],
also in spaces of Hölder continuous functions.
The boundedness of the singular integral operator in Hölder spaces in the context of
the Quaternionic analysis were presented by the authors in [1], attempts were made
regarding Ahlfors David surfaces.
This work can be considered as a continuation and a refinement of that in [1] and
also of those obtained in [4], where we have involved ourselves with the study of the
behavior of the Cauchy type singular integral operators over non-smooth surfaces
in generalized Hölder spaces.
The purpose of the present paper is aimed at the constructing of a proper invariant
subspace of the generalized Hölder spaces relative to the singular integral operator
on Ahlfors-David surfaces in the Quaternionic analysis setting. Such invariant sub-
space on Ahlfors-David curves in the complex plane was first proved in 1977 by Issa
[16] (for curves with additional condition) and in 1985 by Gonzalez and Bustamante
[13] in the general case.

2 Some known definitions and results

Let e1, e2, e3 be unit vectors in the real quaternionic skew field H. Assume the
generating relations eiej + ejei = −2δij, i, j = 1, 2, 3 with δij the Kronecker delta.
Furthermore, let e1e2 =: e3. The unit element of the algebra will be denoted by e0.
An arbitrary element a ∈ H is given by a = a0e0 +

∑3
j=1 ajej and the conjugated

quaternion a := a0e0 −
∑3
j=1 ajej. For each a ∈ H we have the norm |a|2 = aa =

aa = a2
0 + a2

1 + a2
2 + a2

3.
We suppose Ω ⊂ R3 is a bounded simply connected domain with an Ahlfors-David
boundary Γ = ∂Ω, i.e. there exists a positive number c such that

c−1r2 ≤ H2(Γ ∩ B(z, r)) ≤ cr2,

for all z ∈ Γ, 0 < r ≤ diamΓ, where H2(F ), F ⊂ R3 is the 2-dimensional Hausdorff
measure of the set F and B(z, r) stands for the closed ball with center z and radius
r.
We use a first order differential operator, the Dirac operator D =

∑3
j=1 ej

∂
∂xj
, which

has a fundamental solution E(x) = 1
4π

x
|x|3 .

Any function u : Ω → H has the representation u =
∑3
j=0 ujej, with R-valued

coordinates uj. The notation u ∈ Ck(Ω,H), k ∈ N∪{0}, might be understood both
coordinate wisely and directly. We consider in Ω the equation Du = 0 and look for
its C1(Ω,H) solutions in term of (left) monogenic functions in Ω.
The reader is referred to [5;14;15] for more information about these topics and
general quaternionic analysis. Using the function E(x) we are going to deal with
the following integral operators

(CΓu)(x) =
∫
Γ

E(x− y)n(y)u(y)dH2(y), x /∈ Γ,
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(Cauchy type operator)

(SΓu)(x) = 2
∫
Γ

E(x− y)n(y)(u(y)− u(x))dH2(y) + u(x), x ∈ Γ,

(singular integral operator)

where n(y) is the outward pointing normal vector to the boundary Γ at the point
y due to Federer [11]. The integral, which defines the operator SΓ is understood
in the sense of Cauchy’s principle value. The operator P+

Γ := 1
2
(I + SΓ) denotes

the projection into the space of all H-valued functions, which allows, a monogenic
extension onto the domain Ω. P−Γ := 1

2
(I−SΓ) denotes the projection into the space

of all H-valued functions, which allows, a monogenic extension into the domain R3\Ω
and vanishes at infinity. I stands for the identity operator.
In order to state the results, we require some more notation. As in [3], let S(Γ,H)
denotes the space of continuous H-valued functions on Γ such that∫

Γε(z):=Γ∩B(z,ε)

E(z − y)n(y)(u(y)− u(z))dH2(y)→ 0,

when ε→ 0, uniformly for z ∈ Γ.
Given a positive real number d, a continuous function w : (0, d]→ R+ with w(0+) =
0, will be called a majorant if w(δ) is increasing and w(δ)/δ is non increasing for
δ > 0. If, in addition, there is a constant cw such that

δ∫
0

w(τ )

τ
dτ + δ

d∫
δ

w(τ )

τ 2
dτ ≤ cww(δ),

whenever 0 < δ < d, then we say that w is a regular majorant.
Here and in the sequel, notations cw, c, etc will be used for positive constants, which
may vary from one occurrence to the next. Subscripts, such as w in cw, are used to
stress dependence of constants.
If F is a closed subset of R3 and u is a bounded quaternionic-valued function on F
we define the modulus of continuity wu by

wu(δ) := δ sup
r≥δ

r−1 sup
|z1−z2|≤r, z1,z2∈F

|u(z1)− u(z2)|,

whenever δ ≥ 0. Given a majorant w, then we define the generalized Hölder space
of functions being quaternionic-valued continuous on F by

Λw(F ) := {u : F → H, ∃c > 0;wu(δ) ≤ cw(δ), δ ≥ 0}.

One can endows this space with the norm

‖u‖Λω(Γ) := ‖u‖C(Γ,H) + sup
0<τ≤d

wu(τ )

w(τ )
.

We shall be concerned also with the space

Sw(Γ,H) := S(Γ,H) ∩ Λw(Γ).
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Throughout the paper, Γ denotes an Ahlfors David surface with diameter d.
The following fundamental statements, which are well know in the classical function
theory of one complex variable were proved by the authors in previously works, see
the references [1;3 and 4].

Lemma 2.1 (Borel-Pompeiu’s formula). Let u ∈ C1(Ω,H) ∩ C(Ω ∪ Γ,H).
Then we have∫

Γ

E(x− y)n(y)u(y)dH2(y)−
∫
Ω

E(x− y)Du(y)dL3(y) =

=

u(x), if x ∈ Ω

0, if x ∈ R3 \ Ω
,

where L3 denotes the usual Lebesgue measure in R3.

Remark: The singular integral SΓ and the limiting values of the Cauchy type
integral CΓ are connected by

Lemma 2.2 (Plemelj-Sokholzkij’s formulas). Let u ∈ S(Γ,H). Then we have

i) lim
Ω3x→z∈Γ

(CΓu)(x) = (P+u)(z)

ii) lim
R3\Ω3x→z∈Γ

(CΓu)(x) = −(P−u)(z),

for any z ∈ Γ.

Lemma 2.3. Let w be a regular majorant. Then Λω(Γ) represents an invariant
subspace for the operator SΓ. Moreover it holds that

‖SΓu‖Λω(Γ) ≤ cw‖u‖Λω(Γ).

We remark that if u ∈ S(Γ,H), reviewing lemma 2.2 and lemma 2.3, it is possible
to extend the function CΓu by continuity to Ω ∪ Γ to a function of class Λw(Ω ∪ Γ).
As such an extension exists, it seems to be convenient to replace CΓu by C+

Γ u, when
CΓu is considered as a function defined inside and on the boundary of the domain
Ω. In the sequel, we will identify CΓu and C+

Γ u when it does not lead to confusion.
The next result is part of the folklore we shall need more than one time later, we
included it without proof (see for instance [1, p.13]) for the sake of brevity.

Lemma 2.4. Let ϕ(t) be a nonnegative function that does not increase in (0, d].
Then, for every positive numbers r1, r2 ∈ (0, d], r1 < r2, the following formula
holds: ∫

Γr2 (x)\Γr1 (x)

ϕ(|y − x|)dH2(y) =

r2∫
r1

ϕ(τ )dH2(Γτ (x)).
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3 Equivalent Norms on S(Γ,H)

Taking into account the Painlevé argument on removable singularities for continuous
monogenic functions, see [4, p.139] and the theorem 2 in [3, p.85], it is not difficult to
see that each u ∈ S(Γ,H) admits a unique decomposition of the form u = u+ + u−,
where u± ∈ ImP±Γ , so that we can define the following norms in S(Γ,H) :

‖u‖1 := ‖u+‖C(Γ,H) + ‖u−‖C(Γ,H),

‖u‖2 := ‖u‖C(Γ,H) + sup
0<ε<d

‖
∫

Γ\Γε(z)

E(z − y)n(y)(u(y)− u(z))dH2(y)‖C(Γ,H).

With each of the above norms the space S(Γ,H) becomes a Banach space.
The space S(Γ,H) is connected with singular integral operator SΓ in the following
way. If u = u+ + u−, then u+ = u+ ũ, where

ũ(z) =
∫
Γ

E(z − y)n(y)(u(y)− u(z))dH2(y).

Theorem 3.1. In S(Γ,H) the norms ‖u‖1 and ‖u‖2 are equivalent.

We proceed by estimating the norms involved. Let z ∈ Γ, we have

|u+(z)| ≤ ‖u‖C(Γ,H) + | lim
ε→0

∫
Γ\Γε(z)

E(z − y)n(y)(u(y)− u(z))dH2(y)| ≤

‖u‖C(Γ,H) + sup
0<ε≤d

‖
∫

Γ\Γε(z)

E(z − y)n(y)(u(y)− u(z))dH2(y)‖C(Γ,H) = ‖u‖2.

By analogy we obtain
‖u−‖C(Γ,H) ≤ ‖u‖2,

whence ‖u‖1 ≤ ‖u‖2. We proceed now by estimating the contrary inequality. To
this end in view of theorem 3 in [3 p. 87] and the application of the maximum
modulus theorem we obtain

‖
∫

Γ\Γε(z)

E(z − y)n(y)(u(y)− u(z))dH2(y)‖C(Γ,H) ≤

≤ ‖
∫

Γ\Γε(z)

E(z − y)n(y)(u+(y)− u+(z))dH2(y)‖C(Γ,H) +

+‖
∫

Γ\Γε(z)

E(z − y)n(y)(u−(y)− u−(z))dH2(y)‖C(Γ,H).

Let us denote respectively by I1 and I2 the summands in the right side of the above
inequality.
We have

I1 = ‖
∫

Γ\Γε(z)

E(z − y)n(y)(u+(y)− u+(z))dH2(y)‖C(Γ,H) ≤

≤ max
x∈∂B(z,ε)∩Ω

|u+(x)− u+(z)| ≤ c‖u+‖C(Γ,H).
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In a similar way I2 ≤ c‖u−‖C(Γ,H). Consequently,

sup
0<ε≤d

|
∫

Γ\Γε(z)

E(z − y)n(y)(u(y)− u(z))dH2(y)‖C(Γ,H) ≤ ‖u‖1.

Since ‖u‖C(Γ,H) ≤ ‖u‖1, we conclude that ‖u‖2 ≤ c‖u‖1, which proves the equiva-
lence of the norms. �

If the surface Γ is such that the operator SΓ is a bounded operator mapping from
Λw(Γ), into itself (for instance to be Ahlfors David and w is regular majorant) thus
the decomposition

Sw(Γ,H) = ImP+
Γ ∩ Λw(Γ)⊕ ImP−Γ ∩ Λw(Γ)

is actually a decomposition of Sw(Γ,H) into the spaces P±Γ (Λw(Γ)), and we can
define a norm on it by the equality

‖u‖3 := ‖u+‖Λw(Γ) + ‖u−‖Λw(Γ).

We can no longer presume the boundedness of the singular integral operator SΓ

on the space Sw(Γ,H) with the norm ‖u‖3, and assure that it is unitary.

4 Preliminarily Inequalities

In this section we will show some auxiliaries lemmas, which play a crucial role in what
follows. Before stating them we define a special characteristic metric of S(Γ,H) as

Θu(δ) = δ sup
r≥δ

r−1 sup
0<ε<r, z∈Γ

‖
∫

Γε(z)

E(z − y)n(y)(u(y)− u(z))dH2(y)‖.

Lemma 4.1. Let x, z ∈ Γ, ε = |z − x|. Then

‖
∫

Γ\Γε(z)∪Γε(x)

E(x− y)n(y)dH2(y)‖ ≤ c,

and

‖
∫

Γ\Γε(z)∪Γε(x)

(E(z − y)− E(x− y))n(y)(u(y)− u(z))dH2(y)‖ ≤ cε

d∫
ε

wu(τ )

τ 2
dτ

Proof : The proof is essentially a version of lemma 8.2 from [1, p.14]. It’s last
inequality can be verified by a similar calculation like the one shown in [1, p.16]. �

Lemma 4.2. Let u ∈ S(Γ,H). Then for z ∈ Γ

sup
|z−x|=ε, x∈Ω∪Γ

|C+
Γ u(z)− C+

Γ u(x)| ≤ c(wu(ε) + Θu(ε) + ε

d∫
ε

wu(τ )

τ 2
dτ ).
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Proof : Let us distinguish two cases.
CASE 1. We assume that |z − x| = ε, x ∈ Ω. Denote by zx a point of Γ such that
δ = |x− zx| = infz∈Γ |x− z|. It is easily seen that

|C+
Γ u(z)− CΓu(x)| ≤ c(|

∫
Γδ(zx)

E(x− y)n(y)(u(y)− u(zx))dH2(y)‖+

+|
∫

Γ\Γδ(zx)

(E(x− y)− E(zx − y)n(y)(u(y)− u(zx))dH2(y)‖+

+|
∫

Γδ(zx)

E(zx − y)n(y)(u(y)− u(zx))dH2(y)‖+

+wSΓu(|zx − z|) + wu(|zx − z|)

By using the arguments similar to the proof of the theorem 1 of [3, p.85] we can
derive the inequality

|C+
Γ u(z)− CΓu(x)| ≤ c(wu(δ) + Θu(δ) + δ

d∫
δ

wu(τ )

τ 2
dτ ) ≤

≤ c(wu(ε) + Θu(ε) + ε

d∫
ε

wu(τ )

τ 2
dτ ).

CASE 2. Let x ∈ Γ. Putting ε = |z − x| and taking into account that CΓu(x) =
u(x) + ũ(x) we obtain

|C+
Γ u(z)− C+

Γ u(x)| ≤ c(wu(|z − x|) + wũ(|z − x|)).

Following certain estimates like those given in the proof of theorem 8.1 in [1 p.15],
it is possible to prove that

|C+
Γ u(z)− C+

Γ u(x)| ≤ c(wu(ε) + Θu(ε) + ε

d∫
ε

wu(τ )

τ 2
dτ ).

Since, for x ∈ Ω ∪ Γ

|C+
Γ u(z)− C+

Γ u(x)| ≤ |C+
Γ u(z)− C+

Γ u(zx)|+ |C+
Γ u(zx)− C+

Γ u(x)|,

the statement of the lemma 4.2 follows now from the above inequalities. �

Lemma 4.3. Let w be a majorant, u ∈ S(Γ,H) and ε ∈ (0, d]. Then

ΘSΓu(ε) ≤ c(wu(ε) + Θu(ε) + ε

d∫
ε

wu(τ )

τ 2
dτ ).

Proof: For z ∈ Γ we can write (SΓu)(z) = 2(C+
Γ u)(z)− u(z). Then

|
∫

Γε(z)

E(z − y)n(y)(SΓu(y)− SΓu(z))dH2(y)| ≤ c(Θu(ε) +

+|
∫

Γε(z)

E(z − y)n(y)((C+
Γ u)(y)− (C+

Γ u)(z))dH2(y)|)
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As a consequence of the theorem 3 in [3, p.87] we get

|
∫

Γε(z)

E(z − y)n(y)((C+
Γ u)(y)− (C+

Γ u)(z))dH2(y)| ≤

≤ sup
|z−x|=ε, x∈Ω∪Γ

|(C+
Γ u)(z)− (C+

Γ u)(x)|

With the aid of lemma 4.2 the proof is therefore complete. �

5 Invariant Subspace

Now we shall prove the main result of the paper.

Theorem 5.1. Let w be a majorant such that ε
d∫
ε

w(τ )
τ2 dτ ≤ cww(ε). Then the singular

integral operator SΓ is bounded on the subspace

Zw(Γ) := {u ∈ Sw(Γ,H) : sup
0<δ≤d

Θu(δ)

w(δ)
< +∞}.

Therefore, Zw(Γ) represents an invariant subspace for the operator SΓ. The norm
in Zw(Γ) is given by

‖u‖Zw(Γ) := [‖u‖Λw(Γ) + sup
0<δ≤d

Θu(δ)

w(δ)
.

Before proving the theorem itself, let us look at some connections between the spaces
Λw(Γ) and Zw(Γ).
The following proposition is a version of lemma 1 in [10, p.148], see also [16].

Proposition 5.2. Let w be a majorant such that
δ∫
0

w(τ )
τ
dτ ≤ ∞. Then w1, defined

by w1(δ) =
δ∫
0

w(τ )
τ
dτ, δ > 0,

is a majorant and Λw(Γ) ⊂ Zw1(Γ).

Proof : w1 is an increasing continuous differentiable function, moreover, w(0+) =
0 and such that w1(δ) ≥ w(δ), δ > 0, which can be directly seem from its definition.
Furthermore, differentiating w1 gives

d

dδ
(
w1(δ)

δ
) = − 1

δ2

δ∫
0

w(τ )

τ
dτ ) +

w(δ)

δ
,

it follows that
d

dδ
(
w1(δ)

δ
) ≤ −w(δ)

δ2
+
w(δ)

δ2
= 0.

Thus, w1 is indeed a majorant. Finally, if u ∈ Λw(Γ), the last statement of the
proposition is an immediate consequence of the inequalities:

wu(δ) ≤ ‖u‖Λw(Γ)w(δ); Θu(δ) ≤ c‖u‖Λw(Γ)w1(δ), δ > 0.

�
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Remark: In connection with the proposition above it is not hard to see that if
w is a regular majorant, then Λw(Γ) = Zw(Γ).
Proof of the Theorem 5.1: According to lemma 4.3 we have

ΘSΓu(ε) ≤ c(wu(ε) + Θu(ε) + ε

d∫
ε

wu(τ )

τ 2
dτ ).

Let u ∈ Zw(Γ) and let x, z ∈ Γ, δ = |x− z|. We can write

(SΓu)(x)− (SΓu)(z) = 2


∫

Γδ(x)

E(x− y)n(y)(u(y)− u(x))dH2(y)−

−
∫

Γδ(z)

E(z − y)n(y)(u(y)− u(z))dH2(y) +

+
∫

Γ\(Γδ(x)∪Γδ(z))

(E(z − y)−E(x− y))n(y)(u(y)− u(z))dH2(y) +

+
∫

Γ\(Γδ(x)∪Γδ(z))

E(z − y)n(y)(u(y)− u(x))dH2(y) +

+
∫

Γδ(z)

E(x− y)n(y)(u(y)− u(x))dH2(y) +

−
∫

Γδ(x)

E(z − y)n(y)(u(y)− u(z))dH2(y)

+ u(x)− u(z).

Using the lemma 2.4 and lemma 4.1, we get

wSΓu(δ) ≤ c(wu(δ) + Θu(δ) + δ

d∫
δ

wu(τ )

τ 2
dτ ).

Combining the above estimate we obtain that SΓu ∈ Zw(Γ) and the operator SΓ

is bounded. �
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