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Abstract

Existence varieties (or e-varieties) were introduced by Hall as classes of
regular semigroups closed for direct products, homomorphic images and regu-
lar subsemigroups. They can be characterized by the identities satisfied by all
regular unary semigroups (S, ′ ), that is a → a′ is an inverse unary operation
on S, where S is in the given e-variety. In this way, we may speak of a basis
of (identities of) an e-variety.

We provide several bases for a number of sub-e-varieties of the e-variety SR
of strict semigroups. The latter are best characterized as subdirect products of
completely (0-) simple semigroups. These sub-e-varieties of SR include those
of all of whose members are: completely regular, E-solid, orthodox, inverse,
overabelian, combinatorial and semigroups whose core is either overabelian or
combinatorial. These e-varieties are depicted in two diagrams.

1 Introduction and summary

For basic concepts, we freely follow the development of Hall [3] to which we refer for
a complete discussion of the subject. We consider only regular semigroups the class
of which we denote by RS. A subclass V of RS is an existence variety (for short
e-variety) if it is closed under direct products, homomorphic images and taking of
regular subsemigroups. A unary semigroup S is a semigroup on which is given a
unary operation. If S is a regular semigroup and the unary operation a → a′ is
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inverse in the sense that for every a ∈ S, we have a = aa′a and a′ = a′aa′, then S
is a regular unary semigroup. The class of these is denoted by RUS. Members of
RS ought to be denoted by (S, ·) and members of RUS by (S, ·, ′ ); however, we will
generally abbreviate both by writing simply S.

A unary identity is of the form u = v where u and v are unary words, that is
words in which figure both multiplication and unary operation. Then S ∈ RS is
said to satisfy a unary identity u = v if for all choices of inverse unary operations on
S, the regular unary semigroup (S, ′ ) satisfies u = v. For a set I of unary identities,
the class

[I ] = {S ∈ RS | S satisfies all identities in I}.
is an e-variety. Conversely, for every e-variety V , the set

[V ] = {u = v | for every S ∈ V , S satisfies u = v}

is the set of all unary identities satisfied by all S ∈ V . If B is a basis for [V ], we say
that B is a basis for (the identities of) V and write V = [B].

This dichotomy should cause no confusion: there are regular semigroups and
some of their classes are called e-varieties, and there are unary semigroups and
the identities satisfied by them in the usual sense. The principal novelty here is
the concept of a regular (that is non-unary) semigroup satisfying certain unary
identities, and the notion of an e-variety essentially closed under the usual Birkhoff
operations (relative to semigroup homomirphisms). We will not dwell here upon
lucky and unlucky incidences of these, quite original, new concepts and constructions
but proceed instead with concrete definitions needed for our development.

A regular semigroup S satisfies D-majorization if for any idempotents e, f, g of
S, e ≥ f, e ≥ g and f D g imply that f = g. Such a semigroup is called strict
and the class of all strict semigroups is denoted by SR (the modifier “regular” will
be generally omitted since we consider only regular semigroups). Strict semigroups
are precisely regular semigroups which are subdirect products of completely (0-)
simple semigroups according to a result due to Lallement [6]. This is the principal
characterization of strict semigroups; the main fact in the present context is that
SR is an e-variety.

When completely regular or inverse semigroups are considered as varieties they
include a (natural) unary operation. Stripped of this unary operation, the varieties
of completely regular and inverse semigroups coincide with e-varieties all of whose
members are either completely regular or inverse semigroups, respectively. Without
serious threat of ambiguity these may then be identified and the same notation
may employed for both concepts. It should be pointed out that the inverse unary
operation in the case of inverse semigroups is unique whereas this is generally not
the case for completely regular semigroups. In this context, we have sub-e-varieties
of SR : NBG—normal cryptogroups and SI—strict inverse semigroups. Hence
SR provides a common roof for quite disparate looking (e-) varieties.

The purpose of this work is to provide bases for a number of sub-e-varieties of
the e-variety SR. Section 2 contains most of the needed notation and terminology.
Here we list the notation for most of the e-varieties we shall study and depict them
in two diagrams. In Section 3 we state a number of auxiliary results to be used
throughout the paper. Section 4 comprises several bases for the e-variety SR as
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well as some structural properties of its members. Sections 5–11 contain bases for
e-varieties which are intersections of SR with completely simple semigroups, normal
cryptogroups, E-solid, orthodox, inverse, central, overabelian, combinatorial semi-
groups as well as with semigroups whose core is either overabelian or combinatorial.
We conclude the paper in Section 12 with a brief discussion of sub-e-variaties of SR
in general and suggest a few problems naturally arising in this context.

2 Terminology and notation

In addition to the concepts and symbolism introduced in Section 1, we will need a
great number of definitions and notation. Some of these can be found in books [2],
[9] and [12], others we now list.

Let S be a regular semigroup. Since we shall consider only regular semigroups,
the attribute “regular” will generally be omitted. We denote by E(S) the set of
all idempotents of S and by C(S) the core of S, that is the subsemigroup of S
generated by E(S). If a ∈ S and a has an inverse with which it commutes, then a
is completely regular; equivalently the H-class Ha is a group; if so a0 denotes the
identity of Ha. For a ∈ S, J(a) is the principal ideal generated by a, Ja and I(a)
are the sets of all generators and nongenerators of J(a) in J(a), and J(a)/I(a) is
the principal factor of a (or of S with J(a)/∅ = J(a)). The identity of a group is
denoted by e.

The semigroup S is: E-solid if for any e, f, g ∈ E(S) such that e L f R g,
there exists h ∈ E(S) such that e R h L g; orthodox if E(S) is a subsemigroup of
S; inverse if any two elements of E(S) commute; central if for any e, f ∈ E(S) and
a ∈ S such that ef H a H a2, we have efa = aef ; overabelian if all subgroups of S
are abelian; combinatorial if H is the equality relation on S; completely regular if
every element of S in completely regular; rectangular (abelian) group if S is a direct
product of a left zero semigroup, a (abelian) group and a right zero semigroup.

Only the definition of “central” above is new. It extends [1, Definition 6] for
E-solid semigroups which in turn generalizes the standard definition for the case of
completely regular semigroups.

If U ,V ,W, . . . are classes of semigroups, we write UVW . . . for their intersection
U ∩ V ∩ W ∩ . . .. The classes U ,V ,W, . . . may themselves be denoted by several
letters so caution must be exercised in reading this notation.

For a unary word w, we denote by w ∈ E the identity w = w2; by w ∈ G we
denote the identity w = w(w2)′w3 (w2)′w. Following Hall [3], for unary words u
and v, we denote by u CW v the identity uv = vu. We shall interpret the reason
for this notation in Section 3. For the moment, read these as w is idempotent , w is
completely regular (or is in a subgroup) and u commutes with v.

If u1 = v1, u2 = v2, . . . are unary identities which form a basis of an e-variety V ,
we write

V = [u1 = v1, u2 = v2, . . .].

In the terminology of [3], the identities u1 = v1, u2 = v2, . . . strongly determine the
e-variety V .

In order to prove that V = [u1 = v1, u2 = v2, . . .], we must show that:
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(i) for every S ∈ V and every inverse unary operation a→ a′ on S, (S, ′ ) satisfies
all the identities u1 = v1, u2 = v2, . . . ,

(ii) if S is a semigroup such that for some inverse unary operation a → a′ on
S, (S, ′ ) satisfies all the identities u1 = v1, u2 = v2, . . ., then S ∈ V .

Let V be a class of semigroups. A semigroup S is locally (in) V if eSe ∈ V
for all e ∈ E(S). Denote the class of all such semigroups by CV . If we restrict our
attention to regular semigroups and V is an e-variety, then according to [3, Theorem
4.6.3], CV is an e-variety.

We now give a list of classes of semigroups to be studied in the paper. They are
mostly, but not all, e-varieties. Those all of whose members are strict semigroups
are depicted in Diagram 1. An expansion of this diagram, including left and right
concepts, is presented in Diagram 2. This is followed by some results needed later.

The list of classes of semigroups which play an important role in our considera-
tions is too long to be stated in full. Instead, we define some of the typical symbols
and explain some of the situations which ought to suffice for an easy and unambigu-
ous reading of the notation.

RUS – regular unary semigroups,
RS – regular semigroups,
ES – E-solid semigroups,
O – orthodox semigroups,
I – inverse semigroups,
SR – strict semigroups,
Ce – central semigroups,
(AG) – (for abelian subgroups) overabelian semigroups,
Co – combinatorial semigroups,
(AC) – semigroups with overabelian core,
(CoC) – semigroups with combinatorial core,
RB – rectangular bands,
S – semilattices,
NB - normal bands,
G – groups,
ReG – rectangular groups,
SG – (for semilattices of groups) Clifford semigroups,
NBG – (for normal bands of groups) normal cryptogroups,
AG – abelian groups,
ReAG - rectangular abelian groups,
NBAG – normal bands of abelian groups.

For the remaining symbols in Diagram 1 we should point out that except in SR, we
write only S for strict for the e-varieties not contained in NBG. For example SICo
stands for strict, inverse, combinatorial. We shall discuss the e-varieties depicted in
Diagram 1 throughout the paper but shall not mention those in Diagram 2 which
do not appear in Diagram 1.

Briefly, in Diagram 2, L stands for left, R for right. In particular
LZ – left zero semigroups,
LAG – left abelian groups,
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LNO – left normal orthodox semigroups (also called generalized left inverse
semigroups) and their left-right duals.

3 Preliminaries

We state here a number of results which are either known or easy to prove and will
be needed in the sequel.

Result 3.1. The following conditions on a (arbitrary) semigroup S are equivalent.
(i) S is completely regular.
(ii) For every a ∈ S, a ∈ a2 Sa.
(iii) For every a ∈ S, a ∈ aSa2.

Proof: See [9, Theorem IV.1.6]. �

Result 3.2. Let T be a regular subsemigroup of a semigroup S and K ∈ {L,R,H}.
Then KS|T = KT .

Proof: By duality and conjunction, it suffices to consider the case K = L. Let
aLS |T b, a 6= b. Then a = xb and b = ya for some x, y ∈ S. For inverses a′ and b′

of a and b, respectively, we obtain

a = xb(b′b) = ab′b, b = ya(a′a) = ba′a

and thus aLT b. Therefore LS |T ⊆ LT and the opposite inclusion is trivial. �

We shall use the following symbolism extensively.

Notation 3.3. For S ∈ RUS and a ∈ S, let a+ = a(a2)′a.

Note that aa+a = a2.

Lemma 3.4. Let S ∈ RUS and a ∈ S.
(i) a is idempotent if and only if a = a+.
(ii) a is completely regular if and only if a = a+aa+.

Proof: (i) Easy, see the proof of [3, Theorem 4.3.3].
(ii) Necessity. Let x ∈ S be such that a = axa and ax = xa. Then

a = xa2 = xaa+a = (axa)(a2)′ a2 = a(a2)′a2 = a+a

and similarly a = aa+ so that a = a+aa+.

Sufficiency. By hypothesis, a = a+a = aa+ and thus

a = a(a2)′a2 = a2(a2)′a

which by [9, Proposition IV.1.2] yields that a is completely regular. �
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Diagram 1.
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Diagram 2.
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We can interpret the notation w ∈ G defined in Section 2 by means of Lemma
3.4 as w = w+ww+ which, as an element of S ∈ RUS, means that w is in a subgroup
of S. Similarly w ∈ E means that w is an idempotent in S and can be written as
a = a+.

Lemma 3.5. The following equalities hold.
(i) I = [a+ CW b+]
(ii) CR = [a = a+a] = [a = aa+].

Proof: (i) Easy, see [3, Remark 4.3.4].
(ii) By Lemma 3.4(ii), CR = [a = a+aa+]. If S ∈ RUS and a = a+a for all

a ∈ S, then a = a(a2)′a2 ∈ aSa2 and Result 3.1 implies that S ∈ CR. Similarly for
a = aa+. �

Lemma 3.6. Let S =M0(I, G, Λ; P ) ∈ RUS, a = (i, g, λ) and a′ ∈ V (a).
(i) a′ = (i′, p−1

λi′g
−1p−1

λ′i, λ
′) for some i′ ∈ I, λ′ ∈ Λ such that pλi′, pλ′i 6= 0.

(ii) aa′ = (i, p−1
λ′i, λ

′), a′a = (i′, p−1
λi′ , λ) with the notation of part (i).

(iii) a+ =

 a0 if pλi 6= 0

0 if pλi = 0
.

Proof: (i) If a′ = (i′, g′, λ′), then

(i, g, λ) = (i, g, λ)(i′, g′, λ′)(i, g, λ) = (i, gpλi′ g
′pλ′i g, λ)

whence the assertion.
(ii) This follows directly from part (ii).
(iii) If pλi 6= 0, then by part (i) for some i′ and λ′,

a+ = a(a2)′a = (i, g, λ)(i, gpλi g, λ)′(i, g, λ)

= (i, g, λ)(i′, p−1
λi′ g

−1p−1
λi g−1 p−1

λ′i, λ
′)(i, g, λ) = (i, p−1

λi , λ) = a0.

If pλi = 0, then clearly a+ = 0. �

We shall use the notation of Lemma 3.6(i) consistently generally without further
comments.

4 Strict semigroups

We give manifold characterizations of strict semigroups and several bases for the
e-variety they comprise. This is followed by a number of further properties of strict
semigroups.

The theorem here is one of the principal results of the paper. The first two
equalities in it are due to Lallement [6]. That SR = LSG was stated by Hall [3, p.
76]. We shall often use this equality as an alternative to the original definition of a
strict semigroup. In view of this, we include a short proof for it.
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The appelation “strict” for this class of semigroups stems from the fact that they
may be characterized among regular semigroups S as follows. For any a ∈ S, letting

Pa = {x ∈ S | Jx ≯ Ja}, Qa = {x ∈ S | Jx � Ja},

then the quotient semigroup S/Qa is a strict (ideal) extension of the semigroup
Pa/Qa; the latter is isomorphic to the principal factor J(a)/I(a). The proof of this
assertion is essentially the same as for inverse semigroups in [12, Theorem II.4.5].

Theorem 4.1. The following equalities hold.

SR = {S ∈ RS | S is a subdirect product of completely (0-) simple semigroups}
= {S ∈ RS | S is completely semisimple and a subdirect product

of its principal factors}
= LSG = [axa CW (aya)+] = [a+xa+ CW (aya)+]

= [axaya = (ay)+axaya(xa)+] = [axaya = ay(ay)′ axaya(xa)′xa].

Proof: Denote these eight classes by A,B, C,D, E,F ,G and H, respectively. The
equality A = B was proved in [6, Théorème 2.12]. The inclusion A ⊆ C follows from
the proof of [6, Théorème 2.17] whereas C ⊆ A is a consequence of the inclusion
B ⊆ A so that A = C.

Let S ∈ B. We assume that S ⊆ ∏
α∈A Sα where Sα is a completely (0-) simple

semigroup for every α ∈ A. Let e = (eα) ∈ E(S), f = (fα) ∈ E(eSe) and
a = (aα) ∈ eSe. Fix α ∈ A. It follows that fα ≤ eα and aα = aαeα = eαaα. If Sα
has no zero, then fα = eα and hence fαaα = aαfα. If Sα has a zero 0α, then either
eα = fα or eα 6= 0 = fα and either aα ∈ Heα or aα = 0α. The only nontrivial case
yields again fαaα = aαfα. Therefore fa = af which proves that eSe is a Clifford
semigroup so that S ∈ D. Therefore B ⊆ D.

Let S ∈ D and e, f, g ∈ E(S) be such that e ≥ f, e ≥ g and f D g. Then
f LaD g for some a ∈ S and hence

a = af = a(fe) = (af)e = ae

and similarly a = ga implies that a = ea. Hence a, f, g ∈ eSe which by Result
3.2 implies that f LeSe a ReSe g. But eSe is a Clifford semigroup and thus f = g.
Therefore S ∈ A which proves that D ⊆ A. Consequently A = B = C = D.

Using Lemma 3.6, straightforward checking shows that every Rees matrix semi-
group satisfies the defining identities of E,F ,G and H. In view of the inclusion
A ⊆ B, we conclude that A ⊆ E ∩ F ∩ G ∩ H. Let S ∈ E ∪ F ∪ G ∪ H. Letting
a ∈ E(S) and x, y ∈ aSa, we easily see that xy+ = y+x so that aSa ∈ SG. It follows
that S ∈ D. Therefore E ∪ F ∪ G ∪H ⊆ D. �

The first two bases in Theorem 4.1 reflect the fact that strict semigroups are
precisely regular semigroups which are locally Clifford semigroups since the latter
are characterized by having idempotents in the center. The last two bases have the
form of axaya being equal to a word which (precisely) ensures that the resulting
semigroups are strict. In the remainder of the paper, most bases represent variants
of the four bases in Theorem 4.1.
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In order to obtain further properties of strict semigroups, we must first recall of
some of their structural characteristics.

From [6, Théorème 2.12] and Theorem 4.1, a regular semigroup S is strict if and
only if for any a, b ∈ S such that J(a) ⊇ J(b) there exists a function ϕ : Ja → Jb
satisfying

(α) x ∈ Ja, y ∈ Jb : xy ∈ Jb ⇒ xy = (xϕ)y, yx ∈ Jb ⇒ yx = y(xϕ),

(β) E(Ja)ϕ ⊆ E(Jb).

Assuming that S is strict, for any a, b ∈ S such that J(a) ⊇ J(b), in view of the
above and [8, Theorem 3.4], there is a (unique) function ηJa,Jb : Ja → Jb satisfying
(α) and (β) above with ϕ = ηJa ,Jb and also the following:

(γ) if J(a) ⊇ J(c), J(b) ⊇ J(c) and ab ∈ Jc, then ab = (aηJa,Jc) (bηJb,Jc),

(δ) if J(a) ⊇ J(b) ⊇ J(c), then ηJa,Jb ηJb,Jc = ηJa,Jc .

Note that ηJa,Ja is the identity mapping on Ja.

Lemma 4.2. With the above notation, let a1, a2, . . . , an ∈ S, a = a1a2 . . . an, ϕi =
ηJai ,Ja for i = 1, 2, . . . , n. Then a = (a1ϕ1)(a2ϕ2) . . . (anϕn).

Proof: The argument is by induction on n. The case n = 2 is given by (γ).
Assuming the statement for n − 1 and letting b = a1a2 . . . an−1, we have b =(
a1ηJa1 ,Jb

)
. . .

(
an−1 ηJan−1 ,Jb

)
whence, using (γ) and (δ), we obtain

a = ban = (bηJb,Ja) (anϕn) = (a1ϕ1)(a2ϕ2) . . . (anϕn),

as required. �

Lemma 4.3. Let P ∈ {(AG), Co, Ce, (AC), (CoC)} and S be a strict semigroup.
Then S has property P if and only if every principal factor of S has property P.

Proof: The direct part and the converse for (AG) and Co require straightforward
arguments.

Suppose that every principal factor of S is central. Let e, f ∈ E(S) and a ∈ S be
such that ef ∈ Ha and Ha is a group. Then J(a) ⊆ J(e) ∩ J(f); let ϕ = ηJe,Ja and
ψ = ηJf ,Ja . By property (γ) above, we have ef = (eϕ)(fψ) and by (β), eϕ, fψ ∈
E(Ja). The hypothesis implies that (eϕ)(fψ)a = a(eϕ)(fψ) whence efa = aef .
Therefore S is central.

Assume next that every principal factor of S has overabelian core. Let e1, e2, . . . ,
em, f1, f2, . . . , fn ∈ E(S) be such that e1e2 . . . em, f1f2 . . . fn ∈ Ha where Ha is a
group (relative to S or C(S)). In view of Lemma 4.2, we may let ϕi = ηJei ,Ja , ψj =
ηJfj ,Ja and get eiϕi, fjψj ∈ E(Ja) by property (β) and

e1e2 . . . em = (e1ϕ1)(e2ϕ2) . . . (emϕm),

f1f2 . . . fn = (f1ψ1)(f2ψ2) . . . (fnψm).

The hypothesis implies that (e1ϕ1)(e2ϕ2) . . . (emϕm) and (f1ψ1)(f2ψ2) . . . (fnψn) com-
mute. But then also e1e2 . . . em and f1f2 . . . fn commute. Therefore S is central.

The case of (CoC) is treated similarly. �
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We shall discuss bases of virtually all e-varieties depicted in Diagram 1. Note
that Diagram 2 is an expansion of Diagram 1 including left and right variants of
those e-varieties in Diagram 1 which have them.

5 Normal Cryptogroups

A semigroup S is a normal cryptogroup if S is a cryptogroup, that is completely
regular with H a congruence, and S/H is a normal band, that is S/H satisfies
the identity axya = ayxa. Normal cryptogroups are precisely regular semigroups
which are subdirect products of completely simple semigroups with a zero possibly
adjoined. Their class is denoted by NBG (for normal bands of groups) even in the
case that they are considered as unary semigroups. It then follows easily that

NBG = CR ∩ SR.

In view of the above, verifying that a normal cryptogroup satisfies some iden-
tity reduces to checking this identity in Rees matrix semigroups with normalized
sandwich matrix.

We shall use the notation for varietites of normal cryptogroups to denote the
corresponding e-varieties of normal cryptogroups even though the former designate
unary semigroups and the latter do not. For the former we have bases in [11]. We
shall construct some bases for the latter by modifying the corresponding ones for the
former. The problem is to build into the identity the requirement that the resulting
semigroups must also be completely regular.

We have divided the material of this section into four theorems. The first two
treat completely simple semigroups, the latter two the rest. The second and the
fourth theorem handle the overabelian case. Compare the next result with [11,
Section 3].

Theorem 5.1. The following equalities hold.
(i) CS = [a = (axa)+ a] = [a = (axa) (axa)′ a].
(ii) CS(AC) = [a = (ax+a+y+a) (ay+a+x+a)′ a].
(iii) CeCS = [a = (a+x+a) (ax+a+)′ a].
(iv) ReG = [a = a+x+a].
(v) G = [x+ = y+] = [x′x = yy′].

Proof: (i) Denote these three classes by A,B and C, respectively. Let S ∈ A. Then
for a ∈ S, by Lemma 3.6(iii), we have a+ = a0 and hence, for any x ∈ S, a0 = (axa)0

implies that a = (axa)+ a. Therefore S ∈ B and thus A ⊆ B. Conversely, let S ∈ B.
For x = a′, the given identity yields a = a+a which by Lemma 3.5(ii) implies that
S ∈ CR. Again by Lemma 3.6(iii), we obtain that a = (axa)0 a which evidently
implies that S ∈ A. Therefore B ⊆ A.

Next let S ∈ A. We may set S = M(I, G, Λ; P ). Now for a = (i, g, λ), by
Lemma 3.6 (ii), we obtain

(axa)(axa)′ a = (i, p−1
λ′i, λ

′)(i, g, λ) = (i, g, λ) = a.
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Therefore S ∈ C and thus A ⊆ C. Conversely, let S ∈ C. For x = a in the given
identity, we deduce that a ∈ a2Sa which by Result 3.1 yields that S ∈ CR. But
then the given identity implies that S ∈ A. Hence C ⊆ A.

(ii) Let S ∈ CS(AC). By [14, Proposition 7.4], we may let S = M(I, G, Λ; P )
where P is normalized and its entries commute. By Lemma 3.6(i), we have a+ = a0

for any a ∈ S. Now let

a = (i, g, λ), x = (j, h, µ), y = (k, t, ν). (1)

Then

c = ax+a+y+a = (i, gpλj p−1
µj pµi p

−1
λi pλk p−1

νk pνig, λ),

d = (ay+a+x+a)′ =
(
i, pλk p−1

νk pνi p
−1
λi pλj p

−1
µj pµi g, λ

)′
=
(
i′, p−1

λi′ g
−1 p−1

µi pµj p−1
λj pλi p

−1
νi pνk p−1

λk p−1
λ′i, λ

′
)

and thus
cda =

(
i, p−1

λ′i, λ
′
)

(i, g, λ) = (i, g, λ) = a,

as required.
Conversely let S be in the e-variety on the right in part (ii). For any a ∈ S

and x = a in the given identity, we get a ∈ a2Sa which by Result 3.1 implies that
S ∈ CR and thus also S ∈ CS. Let S = M(I, G, Λ; P ) where P is normalized.
With the above notation and setting i = λ = 1, we get e = p−1

µj p−1
νk pµj pνk and thus

pνk pµj = pµj pνk. Now [14, Proposition 7.4] implies that S ∈ CS(AC).
(iii) Let S ∈ CeCS. By [14, Proposition 6.2], we may let S = M(I, G, Λ; P )

where P is normalized and entries of P are in the center of G. With the notation
in (1), we get

c = a+x+a =
(
i, p−1

λi pλj p
−1
µj pµi g, λ

)
,

d = (ax+a+)′ =
(
i, gpλj p

−1
µj pµi p

−1
λi , λ

)′
=
(
i′, p−1

λi′ pλi p
−1
µi pµj p−1

λj g−1 p−1
λ′i, λ

′
)

and thus
cda =

(
i, p−1

λ′i, λ
′
)

(i, g, λ) = (i, g, λ) = a,

as required.
Conversely, let S be in the e-variety on the right of part (iii). It follows that

for any a ∈ S, we have a = a+a which by Lemma 3.5(ii) yields that S ∈ CR and
thus also S ∈ CS. Hence let S = M(I, G, Λ; P ) where P is normalized. With the
above notation and calculation, for j = µ = 1, we get p−1

λi g pλig
−1g = g whence

gpλi = pλig. By [14, Proposition 6.2], we conclude that S ∈ Ce CS.
(iv) A rectangular group obviously satisfies the identity a = a+x+a. Conversely,

let S ∈ [a = a+x+a]. Then e = efe for all e, f ∈ E(S) whence all idempotents
are primitive and S is completely simple. But then ef = efef for all e, f ∈ E(S)
implies that S ∈ ReG.

(v) The first equality follows from the well-known fact that a regular semigroup
with a single idempotent is a group. A group trivially satisfies the identity x′x = yy′.
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Let S satisfy x′x = yy′. For any a ∈ S, we have

a = a(a′a)a′a = a(aa′)a′a ∈ a2Sa

and Result 3.1 implies that S ∈ CR. But then x = xyy′ implies that S ∈ CS. Hence
let S = M(I, G, Λ; P ). For x = (i, g, λ) and y = (j, h, µ) by Lemma 3.6(ii), the
hypothesis implies that (i′, p−1

λi′ , λ) = (j, p−1
µ′j , µ

′) whence i′ = j and λ = µ′. Since
this holds for arbitrary elements of S, we conclude that both I and Λ are trivial and
S is a group. �

We treat next overabelian completely simple semigroups. Again compare the
following result with [11, Section 3].

Theorem 5.2. The following equalities hold.
(i) CS(AG) = [a = (a+xa)(axa+)′ a].
(ii) ReAG = [a = (axya)(ayxa)′a].
(iii) AG = [a = x′ax].
(iv) RB = [a = axa].
(v) T = [x = y].

Proof: (i) Let S ∈ CS(AG). We may set =M(I, G, Λ; P ) where G in abelian. For
a = (i, g, λ) and x = (j, h, µ), we get

c = a+xa =
(
i, p−1

λi pλj hpµig, λ
)

,

d = (axa+)′ =
(
i, gpλjh pµi p

−1
λi , λ

)′
=
(
i′, p−1

λi′ pλi p
−1
µi h−1 p−1

λj g−1 p−1
λ′i, λ

′
)

and thus

cda =
(
i, p−1

λ′i, λ
′
)

(i, g, λ) = (i, g, λ) = a,

as required.
Conversely, let S be in the e-variety on the right in part (i). It follows that for

any a ∈ S, we have a = a+a which by Lemma 3.5(ii) yields that S ∈ CR and thus
also S ∈ CS. Hence let S =M(I, G, Λ; P ) where P is normalized. With the above
notation and calculation, for i = λ = 1, we get hg h−1g−1 g = g whence hg = gh
and G is abelian. Therefore S ∈ CS(AG).

(ii) A rectangular abelian group clearly satisfies the given identity. Conversely,
let S be in the e-variety on the right of part (ii). For any a ∈ S and x = a, we
get a ∈ a2Sa which by Lemma 3.5(ii) yields that S ∈ CR and thus also S ∈ CS.
Hence let S =M(I, G, Λ; P ) with P normalized. For a = (1, e, 1), x = (1, g, λ) and
y = (j, h, 1), we obtain

c = axya = (1, gpλjh, 1),

d = (ayxa)′ = (1, hg, 1)′ = (1′, g−1 h−1, 1′)

and the hypothesis a = cda yields e = gpλjhg−1h−1. For g = h = e, we get pλj = e
so S is a rectangular group. But then also gh = hg and G is abelian. Therefore
S ∈ ReAG.
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(iii) Any abelian group satisfies the given identity. Conversely, let S satisfy
a = x′ax. For any e, f ∈ E, we get e = f ′ef = ef so S is a left group. Let S = L×G
where L is a left zero semigroup and G is a group. For any (i, g), (j, h) ∈ S, we get
(j, h)′ = (j′, h−1) and thus

(i, g) = (j′, h−1)(i, g)(j, h)

where i = j′ and g = h−1gh. From the first equality, we deduce that L is trivial
since i and j are arbitrary. Hence S is a group and the second equality yields that
S is abelian.

(iv) This is well known.
(v) This is trivial. �

We now consider normal cryptogroups which are neither completely simple nor
overabelian. Compare the next theorem with [11, Section 4].

Theorem 5.3. The following equalities hold.

(i) NBG = [(axya)+ = (ayxa)+] = [axaya = (ay)+axaya(axa)+].

(ii) NBG(AC) = [a = a+a, ax+a+y+a = ay+a+x+a]
= [axaya = (ay+a+x+a)(ax+a+y+a)′axaya (axa)+].

(iii) CeNBG = [a = a+a, ax+a+ya = aya+x+a]
= [axaya = (aya+x+a)(ax+a+ya)′axaya (axa)+].

(iv) ONBG = [ax+y+b = ay+x+bb+] = [axaya = (ay+x+a)(ax+y+a)′axaya(axa)+].

(v) SG = [xy+ = y+x] = [x′xa = ax′x].

Proof: In each part, denote the classes by A,B and C, respectively. Recall from
Lemma 3.6(ii) that a+ = a0 if a is a completely regular element.

(i) The inclusion A ⊆ B follows from [11, Lemma 4.7]. Conversely, let S ∈ B.
The substitution a→ xx′, y → x′ yields (axya)+ = xx′ and (ayxa)+ = (xx′x′xxx′)+

and the hypothesis implies that x = (xx′x′xxx′)+x. Hence

x = (xx′x′xxx′)((xx′x′xxx′)2)′ xx′xx ∈ Sx2

which by Result 3.1 yields that S ∈ CR. But then [11, Lemma 4.7] implies that
S ∈ A. Therefore B ⊆ A.

Any M(I, G, Λ; P ) clearly satisfies the defining identity for C and thus A ⊆ C.
Let S ∈ C. For x = y = a′, the given identity yields a = (aa′)+ aa+ whence
a = aa+. Hence Result 3.1 implies that S ∈ CR. It follows that S satisfies the
identity axaya = (ay)0 axaya(axa)0. Let a ∈ E(S) and x, y ∈ aSa. The given
identity implies that xy = y0 xyx0. For f = x ∈ E(aSa), we then get fy = fyf
and for f = y ∈ E(aSa), yf = fyf . It follows that fx = xf for all x ∈ aSa
and f ∈ E(aSa). Therefore aSa ∈ SG and thus, by Theorem 4.1, S ∈ SR. This
together with S ∈ CR yields that S ∈ A. Therefore C ⊆ A.

(ii) The equality A = B follows from Lemma 3.5(ii) and [11, Lemma 4.6].
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Let S ∈ A. In view of [14, Proposition 7.4], to prove that S ∈ C, it suffices to
show that anyM(I, G, Λ; P ) with normalized P and whose entries commute satisfies
the defining identity of C with 0 replacing +. Hence let

a = (i, g, λ), x = (j, h, µ), y = (k, t, ν), c = axaya. (2)

Then

(ay0a0x0a)(ax0a0y0a)′ axaya (axa)0

= (ay0a0x0a)
(
i, gpλj p−1

µj pµi p
−1
λi pλk p−1

νk pνig, λ
)′

c

=
(
i, gpλk p−1

νk pνi p
−1
λi pλj p−1

µj pµig pλi′ p
−1
λi′g

−1p−1
νi pνk p−1

νk pλi p
−1
µi pµj p−1

λj g
−1p−1

λ′i, λ
′
)
c

=
(
i, p−1

λ′i, λ
′
)
c = c,

as required. Therefore A ⊆ C.
Now let S ∈ C. Let a ∈ E(S) and x, y ∈ aSa. The given identity implies

that xy = y+x+(x+y+)′ xyx+. For f = x ∈ E(aSa), we get fy = fyf and for
f = y ∈ E(aSa), we obtain xf = fxf . Thus xf = fx for all x ∈ aSa and
f ∈ E(aSa) so that aSa ∈ SG. But then S ∈ SR by Theorem 4.1.

For x = y = a′ in the given identity, we obtain a = ua+ for some u and thus
a = aa+ which by Lemma 3.5(ii) gives that S ∈ CR. Hence S ∈ NBG so that it
remains to show that the given identity with 0 instead of + on a completely simple
semigroup C implies that C ∈ AC. In view of [14, Proposition 7.4], it suffices to
let C =M(I, G, λ; P ) with P normalized and prove that the entries of P commute.
Hence let

a = (1, e, 1), x = (j, e, µ), y =
(
1, p−1

νk , µ
)
.

Then axaya =
(
1, p−1

νk , 1
)

and

(ay0a0x0a)(ax0a0y0a)′axaya(axa)0

=
(
1, p−1

νk p−1
µj , 1

)
(1′, pνkpµj, 1

′)
(
1, p−1

νk , 1
)

(1, e, 1)

=
(
1, p−1

νk p−1
µj pνk pµj p−1

νk , 1
)

and the hypothesis yields that p−1
νk pµj pνk pµj = e. Therefore the entries of P com-

mute. We conclude that C ⊆ A.
(iii) The equality A = B follows from Lemma 3.5(ii) and [11, Lemma 4.5].
Let S ∈ A. In view of [14, Proposition 6.2], to prove that S ∈ C, it suffices to

show that anyM(I, G, Λ; P ) with normalized P and whose entries lie in the center
of G satisfies the defining identities of C with 0 replacing +. Let the notation be as
in (2). Then

(aya0x0a)(ax0a0ya)′ axaya(axa)0

= (aya0x0a)
(
i, gpλj p

−1
µj pµi p

−1
λi pλkt pνig, λ

)′
c

=
(
i, gpλkt pνi p

−1
λi pλj p−1

µj pµig pλi′ p
−1
λi′g

−1p−1
νi t−1p−1

λk pλip
−1
µi pµj p−1

λj g−1 p−1
λ′i, λ

)
c

= c,

as required. Therefore A ⊆ C.
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Now let S ∈ C. Let a ∈ E(S) and x, y ∈ aSa. The given identity implies that
xy = yx+(x+y)′ xyx+. As above, this leads to S ∈ SR.

For x = y = a′ in the given identity, we obtain a = ua+ for some u and thus
a = aa+ which by Lemma 3.5(ii) gives S ∈ CR. Hence S ∈ NBG so that it
remains to show that the given identity with 0 instead of + on a completely simple
semigroup C implies that C ∈ Ce. In view of [14, Proposition 6.2], it suffices to let
C = M(I, G, Λ; P ) with P normalized and prove that the entries of P are in the
center of G. Hence let

a = (1, e, 1), x = (j, e, µ), y = (1, t−1, 1).

Then axaya = (1, t−1, 1) and

(aya0x0a)(ax0a0ya)′ axaya(axa)0 =
(
1, t−1p−1

µj , 1
) (

1, p−1
µj t, 1

)′
(1, t, 1)

=
(
1, t−1p−1

µj , 1
)

(1′, t′pµj , 1
′) (1, t−1, 1) =

(
1, t−1p−1

µj tpµj t−1, 1
)

and the hypothesis yields that t−1p−1
µj tpµj = e. Therefore the entries of P are in the

center of G. We conclude that C ⊆ A.
(iv) In view of [9, Corollary IV.4.6], in order to prove that A ⊆ B, it suffices to

show that a rectangular group satisfies the defining identity of B with 0 replacing +.
But this is trivial since a left zero semigroup, a group and a right zero semigroup
obviously satisfy this identity. Therefore A ⊆ B.

Let S ∈ B. The substitution x, y, a → bb′ in the given identity yields b = bb+

which by Lemma 3.5(ii) shows that S ∈ CR. For a = b, the given identity becomes
ax0y0a = ay0x0a which by [11, Lemma 4.3] yields that S ∈ A. Therefore B ⊆ A.

To see that A ⊆ C, it suffices to observe that every left zero semigroup, group
and right zero semigroup satisfies the defining identity of C with 0 and −1 replacing
+ and ′, respectively. Therefore A ⊆ C.

Now let S ∈ C. Let a ∈ E(S) and x, y ∈ aSa. The given identity implies that
xy = y+x+(x+y+)′xyx+. As above, this leads to S ∈ SR.

For x = y = a′ in the given identity, we obtain a = ua+ for some u and thus
a = aa+ which by Lemma 3.5(ii) gives S ∈ CR. Hence S ∈ NBG so that it remains
to show that the given identity with 0 replacing + on a completely simple semigroup
C implies that C ∈ O. Let C = M(I, G, Λ; P ) with P normalized satisfy the
defining identity for C. Hence let

a = (1, e, 1), x = (j, e, 1), y = (1, e, ν).

Then axaya = (1, e, 1) and

(ay0x0a)(ax0y0a)′ axaya(axa)0 = (1, pνj , 1) (1, e, 1)′(1, e, 1) = (1, pνj , 1)

and by hypothesis e = pνj . Therefore C is orthodox and C ⊆ A.
(v) That A = B follows from the characterization of Clifford semigroups as

regular semigroups with idempotents in the center. This also implies that A ⊆ C.
For a ∈ S and e ∈ E(S), we obtain

ea = e(e′ea) = e(ae′e) = eae.



Bases for existence varieties of strict regular semigroups 427

For e, f ∈ E(S), this gives that ef = efe and hence E(S) is a left regular band.
For any a ∈ S, we also have (a′a)a = a(a′a) and thus a = a′a2 = aa′a′a2 ∈ aSa2.
By Result 3.1, S ∈ CR and is thus a left regular orthogroup. Any D-class of S is a
left group, so we may consider L × G where L is a left zero semigroup and G is a
group. For any (i, g), (j, h) ∈ S, by hypothesis

(j′, h−1)(j, h)(i, g) = (i, g)(j′, h−1)(j, h)

so that j′ = i. Since i and j are arbitrary, L must be trivial so that S is a Clifford
semigroup. Therefore C ⊆ A. �

We finally treat overabelian normal cryptogroups which are not completely sim-
ple. Again compare the next result with [11, Section 4].

Theorem 5.4. The following equalities hold.
(i) NBAG = [axaya = ayaxaa+].
(ii) ONBAG = [axya = ayxa].
(iii) SAG = [xy = yx].
(iv) NB = [axya = ayxa2].
(v) S = [xy = yx2].

Proof: (i) If S ∈ NBAG, then [11, Lemma 4.4] directly implies that S satisfies the
identity axaya = ayaxaa+. Conversely, let S satisfy the last identity. Substituting
x, y → a′, we get a = aa+ and hence, by Lemma 3.5(ii), S ∈ CR. Now [11, Lemma
4.4] yields that S ∈ NBAG.

(ii) If S ∈ ONBAG, then [11, Lemma 4.2] directly implies that S satisfies the
identity axya = ayxa. Conversely, let S satisfy the last identity. Substituting
x → a′a, y → a′, we get a ∈ aSa2 which by Result 3.1 implies that S ∈ CR. Now
[11, Lemma 4.2] yields that S ∈ ONBAG.

(iii) This is trivial.
(iv) If S ∈ NB, then trivially S satisfies the identity axya = ayxa2. Conversely,

let S satisfy the last identity. Substituting x → a′, y → aa′ gives a = a2 which
evidently implies that S ∈ NB.

(v) Any semilattice satisfies the identity xy = yx2. Conversely, if S satisfies the
last identity, then for y = x′x, we get x ∈ xSx2 which by Result 3.1 gives that
S ∈ CR whence easily that S ∈ S. �

6 E-solid semigroups

We treat here the e-varieties of strict semigroups which are either E-solid, orthodox
or inverse. The basis we give for the first one is a slight variant of the first basis
in Theorem 4.1; indeed, it suffices to invert x+ in the right place. For the second
one we again have a variant of the first basis in Theorem 4.1 obtained by inserting
y+x+y+ in a suitable place. For the third case, we have a variant of the second basis
in Theorem 4.1. Two lemmas handle the Rees matrix semigroup case.

We start with a simple statement.



428 M. Petrich

Lemma 6.1. Let S be a regular semigroup with the property that for any a ∈
E(S), aSa is an inverse semigroup such that xf = fxf for all x ∈ aSa and f ∈
E(aSa). Then S is strict.

Proof: With the notation introduced, we get

x = x(x−1x) = (x−1x)x (x−1x) = x−1x2 = xx−1x−1x2

and Result 3.1 implies that aSa is completely regular. Hence aSa is a Clifford
semigroup which by Theorem 4.1 implies that S is strict. �

And now for the E-solid case.

Lemma 6.2. The following conditions on S =M0(I, G, Λ; P ) are equivalent.
(i) S is E-solid.
(ii) If any three of pλi, pλj, pµj , pµi are nonzero, so is the fourth one.
(iii) S ∈ [x2y2 = x2y2(xy)+].

Proof: (i) implies (ii). This follows easily from the definition of E-solidity.
(ii) implies (iii). Let x = (i, g, λ), y = (j, h, µ). If x2y2 = 0, then trivially

x2y2 = x2y2 (xy)+. Suppose that x2y2 6= 0. Then pλi, pλj, pµj 6= 0 and the hypothesis
implies that pµi 6= 0 whence (x2y2)2 6= 0 and thus x2y2 = x2y2(x2y2)+. But then
(x2y2)+ = (xy)+ whence x2y2 = x2y2(xy)+.

(iii) implies (i). Let e, f, g ∈ E(S) be such that eL f R g. Hence e = (i, p−1
λi , λ),

f = (j, p−1
λj , λ) and g = (j, p−1

µj , µ) and thus eg 6= 0. By hypothesis (eg)+ 6= 0 and

hence pµi 6= 0. But then eR (i, p−1
µi , µ)L g and thus S is E-solid. �

Theorem 6.3. S(ES) = SR∩[x2y2 = x2y2(xy)+] = [(axa)(aya)+ = (aya)+(ax+xa)].

Proof: Denote these three classes by A,B and C, respectively. The equality A = B
follows from Theorem 4.1 and Lemma 6.2.

In order to prove that A ⊆ C, first let S =M0(I, G, Λ; P ) be E-solid and let

a = (i, g, λ), x = (j, h, µ), y = (k, t, ν), (3)

c = (axa)(aya)+, d = (aya)+(ax+xa). (4)

Then

c 6= 0 ⇔ pλj, pµi, pλi, pλk, pνi 6= 0, (5)

d 6= 0 ⇔ pλk, pνi, pλi, pλj, pµi 6= 0,

pλj, pλi, pµi 6= 0⇒ pµj 6= 0

the last implication by E-solidity. Hence c 6= 0 if and only if d 6= 0. If c 6= 0, then
x+x = x and thus c = d follows from Theorem 4.1. In view of the last reference, we
deduce that A ⊆ C.

Conversely, let S ∈ C. Let a ∈ E(S) and x, y ∈ aSa. The given identity
implies that xy+ = y+x+x. For f = y ∈ E(aSa), we then obtain xf = fxf , and
for f = x, we get fy+ = y+f . Therefore idempotents of aSa commute so aSa is
an inverse semigroup in which xf = fxf for all x ∈ aSa and f ∈ E(aSa). By
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Lemma 6.1, we obtain S ∈ SR. In view of Theorem 4.1, it remains to prove that
C =M0(I, G, Λ; P ) ∈ C is E-solid.

In this case, let pλi, pλj, pµi 6= 0. With the notation (3) and (4) and x = y, we
get by (5) that c 6= 0. Hence also d 6= 0 so that x+ 6= 0 which yields pµj 6= 0. In
view of Lemma 6.2, we conclude that C is E-solid. Now Theorem 4.1 and the fact
that E-solidity in an e-varietal property imply that C ⊆ A. �

We turn next to the orthodox case.

Lemma 6.4. The following conditions on S =M0(I, G, Λ; P ) are equivalent.

(i) S is orthodox.

(ii) S ∈ [x+y+ = (x+y)+].
(iii) S ∈ [xx+y+y = xy+x+y].

Proof: Let x = (i, g, λ) and y = (j, h, µ).
(i) implies (ii). First

x+y+ 6= 0 ⇔ pλi, pλj , pµj 6= 0,

(x+y)+ 6= 0 ⇔ pλi, pλj , pµi 6= 0

and these two conditions are equivalent by orthodoxy. If a+b+ 6= 0, then by ortho-
doxy,

a+b+ =
(
i, p−1

λi pλjp
−1
µj , µ

)
=
(
i, p−1

µi , µ
)

= (a+b)+.

(ii) implies (i). Immediate.
(i) implies (iii). First

xx+y+y 6= 0 ⇔ pλi, pλj, pµj 6= 0,

xy+x+y 6= 0 ⇔ pλj, pµj , pµi, pλi 6= 0

and these two conditions are equivalent by orthodoxy. If xx+y+y 6= 0, then by
orthodoxy

xy+x+y =
(
i, gpλj p−1

µj pµi p
−1
λi pλjh, µ

)
= (i, gpλjh, µ) = ab = xx+y+y.

(iii) implies (i). Immediate. �

Note that Lemma 6.4(ii) has the dual x+y+ = (xy+)+ and that

xx+y+y = x+x y+y = xx+yy+ = x+xyy+

which provides variants of Lemma 6.2(iii).

Proposition 6.5. SO = SR ∩ [x+y+ = (x+y)+] = SR ∩ [xx+y+y = xy+x+y]
= [(axa)(aya)+ = (aya)+ y+x+y+ (axa))].
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Proof: Denote these four classes by A,B, C and D, respectively. The equalities
A = B = C follow from Theorem 4.1 and Lemma 6.4.

In order to prove that A ⊆ D, we first let S =M0(I, G, Λ; P ) be orthodox and
let

a = (i, g, λ), x = (j, h, µ), y = (k, t, ν),

c = (axa)(aya)+, d = (aya)+x+y+x+(axa).

Then

d 6= 0 ⇔ pλk, pνi, pλi, pλj, pµj , pµk, pνk, pνj , pµi 6= 0,

and by othodoxy, we have

pλj , pλi, pµi 6= 0 ⇒ pµj 6= 0,

pλk, pλi, pµi 6= 0 ⇒ pµk 6= 0,

pλk, pλi, pνi 6= 0 ⇒ pνk 6= 0,

pλj, pλi, pνi 6= 0 ⇒ pνj 6= 0,

and thus

d 6= 0 ⇔ pλj, pµi, pλi, pλk, pνi 6= 0⇔ c 6= 0.

Assume that c 6= 0. By Lemma 3.6(iii), we get c = (axa) a0 = axa, and also by
orthodoxy, we obtain

d = a0x0y0x0(axa) = (ax)0 (axa) = axa.

Therefore c = d and thus S ∈ D. Now Theorem 4.1 and the fact that orthodoxy is
an e-varietal property imply that A ⊆ D.

Conversely, let S ∈ D, a ∈ E(S) and x, y ∈ aSa. The given identity implies that
xy+ = y+x+y+x. For f = x ∈ E(aSa) and g = y+, we obtain fg = (gf)2 whence
fg = fgf = (fg)2 and aSa is orthodox. But then fg = (gf)2 = gf and aSa is an
inverse semigroup. In addition xf = fxf for all x ∈ aSa and f ∈ E(aSa). Now
Lemma 6.1 implies that S ∈ SR.

Next let C =M0(I, G, Λ; P ) ∈ D. Further let e, f ∈ E(C) be such that (ef)2 6=
0. From the given identity, by the substitution a, y → e, x → f , we obtain that
efe = (efe)2. Now letting

e =
(
i, p−1

λi , λ
)

, f =
(
j, p−1

µj , µ
)
, z = p−1

λi pλj p−1
µj pµi p

−1
λi ,

we get

efe = (i, z, λ), (efe)2 = (i, zpλiz, λ)

and thus z = zpλiz whence z = p−1
λi . It follows that p−1

λi pλj p−1
µj = p−1

µi so that
ef = (ef)2 and C is orthodox.

In view of Theorem 4.1, we conclude that D ⊆ A. �
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Finally we consider inverse semigroups.

Proposition 6.6. SI = SR ∩ [a+ CW b+] = [a+xa+ CW (byb)+].

Proof: Denote these three classes by A,B and C, respectively. The equality A = B
follows from Lemma 3.5(i) and Theorem 4.1.

In order to prove that A ⊆ C, first let S = B(G, I) be a Brandt semigroup. For
a, b, x, y ∈ S and

c = a+xa+ (byb)+, d = (byb)+a+xa+,

we easily see that c 6= 0 if and only if d 6= 0, and if c 6= 0, then c = x = d. Therefore
c = d and S ∈ D. Since being inverse is an e-varietal property, Theorem 4.1 implies
that A ⊆ C.

Conversely, let S ∈ C. For a = b ∈ E(S), x ∈ aSa and y ∈ E(aSa), the given
identity implies that xy = yx so that aSa is a Clifford semigroup. By Theorem
4.1, we deduce that S ∈ SR. Also for x = a+ and y = b′ in the given identity, we
obtain a+b+ = b+a+. Hence Lemma 3.5(i) implies that S is an inverse semigroup.
Therefore S ∈ C and thus C ⊆ A. �

7 Central semigroups

We consider here the e-varieties of strict semigroups which are either central or
central and E-solid. In each case, we need a lemma handling the Rees matrix
semigroups. In the first case, we have variants of the second and third bases in
Theorem 4.1. In the second case, we have a variant of the third basis in Theorem
4.1.

Lemma 7.1. The following conditions on S =M0(I, G, Λ; P ) are equivalent.
(i) S is central.
(ii) If pλi, pλj, pµj , pµi 6= 0 and g ∈ G, then(

p−1
λi pλj p

−1
µj

)
pµi g = gpµi

(
p−1
λi pλj p

−1
µj

)
.

(iii) S ∈ [ax+a+ = a+x+a].
(iv) S ∈ [ax+a+y+a = ay+a+xa].
(v) S ∈ [xy CW x+y+].

Proof: (i) implies (ii). Assume the antecedent of part (ii) and let e = (i, p−1
λi , λ), f =

(j, p−1
µj , µ). Then (ef)2 6= 0 and the hypothesis implies that

(i, p−1
λi , λ)(j, p−1

µj , µ)(i, g, λ) = (i, g, µ)(i, p−1
λi , λ)(j, p−1

µj , µ)

whence the desired conclusion.
(ii) and (iii) are equivalent. This can be verified by straightforward calculation.
(ii) implies (iv). Let

a = (i, g, λ), x = (j, h, µ), y = (k, t, ν), c = axa+y+a, d = ay+a+xa.
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It follows that c 6= 0 if and only if d 6= 0. If c 6= 0, then

c =
(
i, gpλjhpµi p

−1
λi pλk p−1

νk pνig, λ
)

,

d =
(
i, gpλk p−1

νk pνi p
−1
λi pλjhpµig, λ

)
and hence c = d is equivalent to

pλjh pµi p
−1
λi pλk p−1

νk pνi = pλk p−1
νk pνi p

−1
λi pλjh pµi.

Letting t = (pλjhpµi)
−1 and taking inverses, this becomes

p−1
νi pνk p−1

λk pλi t = tpλi p
−1
νi pνk p−1

λk

and the hypothesis implies that indeed c = d.
(iv) implies (v). First set x = a′ in the given identity. Then

x(yx+y+) = x(y+x+y) = (xy+x+)y = (x+y+x)y.

(v) implies (i). Let e = (i, p−1
λi , λ), f = (j, p−1

µj , µ) and assume that (ef)2 6= 0.
For g ∈ G, letting x = (i, p−1

λj , λ) and y = (j, g, µ), we get (i, g, µ) = xy, x+ = e and
y+ = f . The hypothesis implies that

(i, g, µ) ef = xyx+y+ = x+y+xy = ef(i, g, µ)

and S is central. �

Note that the condition in Lemma 7.1(iii) can be written as

pλj p−1
µj pµi p

−1
λi CW pλig pµi p

−1
λi .

Since we do not know whether Ce is an e-variety or not, we must use Lemma 4.3
when dealing with strict semigroups.

Theorem 7.2. CeS = SR ∩ [ax+a2 = a2x+a] = SR ∩ [ax+a+ = a+x+a]
= SR ∩ [xy CW x+y+]
= [axa+y+a = ay+a+xa] = [a+xa+ CW a+y+a+].

Proof: Denote these six classes by A,B, C,D, E and F , respectively. The equalities
A = B = C = D follow directly from Theorem 4.1 and Lemmas 4.3 and 7.1. Let
S ∈ A. By Theorem 4.1, S is a subdirect product of its principal factors, say
Sα, α ∈ A. Hence Sα is a central completely (0-)simple semigroup which by Lemma
7.1 implies that Sα ∈ E. Since this holds for every α ∈ A, it follows that S ∈ E.
Therefore A = E. The transition from the defining identity of D to that of E
is effected by premultiplying the former by a(a2)′ and postmultiplying by (a2)′a.
Therefore E ⊆ F .

It remains to prove that F ⊆ A. Hence let S ∈ F . Let a ∈ E(S) and x, y ∈ aSa.
The given identity implies that xy+ = y+x which shows that aSa ∈ SG. By Theorem
4.1, we have that S ∈ SR and that S is a subdirect product of completely (0-) simple
semigroups, say Sα, α ∈ A. But then Sα satisfies the identity a+xa+ CW a+y+a+

which by Lemma 7.1 yields that Sα is central; this holds for all α ∈ A. Returning
to S, we may suppose that S ⊆ ∏

α∈A Sα. Let e = (eα), f = (fα) ∈ E(S) and
a = (aα) ∈ S be such that ef H a H a2. For any α ∈ A, we get eα fα Hα aα Hα a2

α

with eα, fα ∈ E(Sα). Since Sα is central, we obtain eαfαaα = aαeαfα. But this holds
for all α ∈ A; it follows that efa = aef and S is central. Therefore S ∈ A which
proves that F ⊆ A. �
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We now consider the central E-solid case.

Lemma 7.3. Let S =M0(I, G, Λ; P ). Then S is central and E-solid if and only if
S ∈ [x+y+ = xy+x(x2)′(xy)+].

Proof: Necessity. Let

x = (i, g, λ), y = (j, h, µ), c = x+y+, d = xy+x(x2)′(xy)+.

Then

c 6= 0 ⇔ pλi, pλj , pµj 6= 0,

d 6= 0 ⇔ pλj, pµj , pµi, pλi 6= 0

and by E-solidity, we conclude that c 6= 0 if and only if d 6= 0.
Assume that c 6= 0. By Lemma 7.1(ii) and letting t = p−1

µj pµi g, we obtain

p−1
λi pλj t = p−1

µi pµj tpµi p
−1
λi pλj p−1

µj

whence
p−1
µj pµi p

−1
λi pλj t = tpµi p

−1
λi pλj p

−1
µj . (6)

Now

c =
(
i, p−1

λi pλjp
−1
µj , µ

)
,

d =
(
i, gpλjp

−1
µj pµi gpλi′p

−1
λi′g

−1p−1
λ′ipλ′ip

−1
µi , µ

)
and thus

c = d ⇔ p−1
λi pλjp

−1
µj = gpλj p−1

µj pµi p
−1
λi g−1 p−1

µi

⇔ p−1
λi pλjp

−1
µj pµig = gpλjp

−1
µj pµip

−1
λi . (7)

But writing g for t and interchanging i↔ j, λ↔ µ in (6) yields (7). Therefore c = d.

Sufficiency. The argument can be extracted from above by essentially reversing
the steps. �

Proposition 7.4.

CeS(ES) = SR ∩
[
x+y+ = xy+x(x2)′(xy)+

]
=
[
axa+y+a = ay+a+x+xa

]
.

Proof: Denote these three classes by A,B and C, respectively. That A = B is a
direct consequence of Theorem 4.1 and Lemmas 4.3 and 7.3.

Let S ∈ A. By Theorem 7.2, S satisfies the identity axa+y+a+ = ay+a+xa. By
Theorem 4.1, every principal factor Sα of S satisfies the last identity. Let a, x, y ∈ Sα
and

c = axa+y+a, d = ay+a+x+xa.



434 M. Petrich

The hypothesis implies that Sα is E-solid. If c 6= 0, then axa+ 6= 0 which by Lemma
6.2 yields that x+ 6= 0 which by Lemma 3.6(iii) gives x = x+x and thus c = d. If
d 6= 0, then clearly c 6= 0 and hence c = d. Therefore Sα satisfies the identity c = d
which proves that Sα ∈ C. By Theorem 4.1, S is a subdirect product of Sα’s and
hence S ∈ C. Therefore A ⊆ C.

Converesely, let S ∈ C. Let a ∈ E(S) and x, y ∈ aSa. The given identity implies
that x+y = yy+x+. For f = x ∈ E(aSa), we get fy = yy+f whence fy = fyf , and
for f = y ∈ E(aSa) we obtain x+f = fx+. Thus aSa is an inverse semigroup with
fx = fxf for all x ∈ aSa and f ∈ E(aSa). Hence by Lemma 6.1, we have S ∈ SR.

For y = a in the given identity, we get the identity

axa+a = aa+x+xa. (8)

This identity evidently implies that a+xa+ = a+x+xa+ which together with the
given identity yields a+xa+ CW a+y+a+. By Theorem 7.2, S is central.

Theorem 4.1 implies that S in a subdirect product of its principal factors, say
Sα, α ∈ A. Let Sα = M0(I, G, Λ; P ) and suppose that pλi, pλj, pµi 6= 0. For
a = (i, g, λ) and x = (j, h, µ), we get axa+a 6= 0 which by (8) yields that x+ 6= 0 so
that pµj 6= 0. By Lemma 6.2, Sα is solid. Since this holds for all α ∈ A, we conclude
that S is E-solid. Therefore C ⊆ A. �

8 Overabelian case

We treat here strict semigroups all of whose subgroups are abelian. For this e-variety,
we devise bases for identities some of which use the operation +, others only the
given operation ′ and yet some use neither. As special cases, we consider e-varieties
of E-solid, orthodox and inverse overabelian strict semigroups. We encounter here
variants of the second, third and fourth bases in Theorem 4.1. As before, lemmas
handle the Rees matrix semigroup cases.

Lemma 8.1. The following conditions on S =M0(I, G, Λ; P ) are equivalent
(i) S is overabelian.
(ii) S ∈ [axaya = ayaxa].
(iii) S ∈ [a+xa = axa+].

Proof: (i) implies (ii). Noting that then G is abelian, simple verification shows
that S satisfies the identity axaya = ayaxa.

(ii) implies (iii). It suffices to set y = (a2)′.
(iii) implies (i). Let pλi 6= 0. Then

(i, p−1
λi , λ)(i, h, λ)(i, g, λ) = (i, g, λ)(i, h, λ)(i, p−1

λi , λ)

whence hpλig = gpλih. For h = e, we get pλig = gpλi so that hgpλi = ghpλi whence
hg = gh. Therefore G in abelian and S is overabelian. �

Theorem 8.2. S(AG) = LSAG = SR ∩ [a+xa = axa+] = [axa CW aya]
= [a+xa+ CWa+ya+] = [axaya = ayaxa].
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Proof: Denote these six classes by A,B, C,D, E and F , respectively. The equality
A = B is an easy consequence of Theorem 4.1. The same reference and Lemmas 4.3
and 8.1 imply that A = C.

Let S ∈ A. By Theorem 4.1, S is a subdirect product of its principal factors,
say Sα, α ∈ A. The hypothesis also implies that Sα is overabelian for every α ∈ A.
For any a ∈ Sα, axa ∈ Ha ∪ {0} and hence axa CW aya since Ha is abelian if it is
a group. Therefore Sα ∈ D for every α ∈ A and thus also S ∈ D by Theorem 4.1.
Therefore A ⊆ D.

The substitution a→ a+ in the defining identity of D yields that of E. Thus D ⊆
E. The defining identity of E clearly implies the property of local commutativity.
Hence E ⊆ B. Let S ∈ A. As above, S is a subdirect product of overabelian
completely (0-) simple semigroups Sα, α ∈ A. Clearly Sα ∈ F for every α ∈ A and
hence S ∈ F . Therefore A ⊆ F . If S ∈ F , we see immediately that S is locally
commutative and hence S ∈ B. Thus F ⊆ B. �

We now consider E-solid overabelian semigroups.

Lemma 8.3. Let S = M0(I, G, Λ; P ). Then S is E-solid and overabelian if and
only if S ∈ [a+xa = ax+xa+].

Proof: Necessity. Let

a = (i, g, λ), x = (j, h, µ), c = a+xa, d = ax+xa+.

Then

c 6= 0 ⇔ pλi, pλj, pµi 6= 0,

d 6= 0 ⇔ pλj, pµj , pµi, pλi 6= 0.

Since S is E-solid, it follows that c 6= 0 if and only if d 6= 0. If c 6= 0, then

c =
(
i, p−1

λi pλjhpµig, λ
)

, d =
(
i, gpλjhpµip

−1
λi , λ

)
and since G is abelian, we get c = d.

Sufficiency. Reversing the above argument, we see that pλi, pλj, pµi 6= 0 implies
that pµj 6= 0 which by Lemma 6.2 yields that S is E-solid. Essentially the same
argument as in the proof of Lemma 8.1 shows that S is overabelian. �

Proposition 8.4. S(ES)(AG) = SR ∩ [a+xa = ax+xa+] = [axa+ya = ayax+xa+].

Proof: Denote these three classes by A,B and C, respectively. The equality A = B
follows directly from Theorem 4.1 and Lemmas 4.3 and 8.3.

To prove that A ⊆ C, we first let S =M0(I, G, Λ; P ) ∈ A and

a = (i, g, λ), x = (j, h, µ), y = (k, t, ν), (9)

c = axa+ya, d = ayax+xa+.

Then

c 6= 0 ⇔ pλj, pµi, pλi, pλk, pνi 6= 0,

d 6= 0 ⇔ pλk, pνi, pλj , pµj, pµi, pλi 6= 0,
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and the hypothesis implies that

pλj , pλi, pµi 6= 0 ⇒ pµj 6= 0.

Therefore c 6= 0 if and only if d 6= 0. If c 6= 0, then

c =
(
i, gpλjhpµip

−1
λi pλktpνig, λ

)
, d =

(
i, gpλktpνigpλjhpµip

−1
λi , λ

)
and thus, since G is abelian, we get c = d. In view of Theorem 4.1 and Lemmas 4.3
and 8.3, we conclude that A ⊆ C.

Conversely, let S ∈ C. Let a ∈ E(S) and x, y ∈ aSa. The defining identity im-
plies that xy = yx+x. For y = x′x, this yields x = x′xx+x so that x = xx′x′x(x2)′x2

and by Result 3.1, aSa ∈ CR. But then xy = yx and S ∈ SAG. Now Theorem
4.1 yields that S ∈ S(AG). For C = M0(I, G, Λ; P ) ∈ C, a and x as in (9) and
pµi, pλi, pλj 6= 0, we get axa+xa 6= 0 and thus x2 6= 0 so that pµj 6= 0. By Lemma
6.2 this implies that S is E-solid. By Theorem 4.1, we get that S ∈ A. Therefore
C ⊆ A. �

Next we treat orthodox overabelian semigroups.

Lemma 8.5. Let S =M0(I, G, Λ; P ). Then S is orthodox and overabelian if and
only if S ∈ [x+xyy+ = x+yxy+].

Proof: Necessity. Let

x = (i, g, λ), y = (j, h, µ), c = x+xyy+, d = x+yxy+.

Then

c 6= 0 ⇔ pλi, pλj , pµj 6= 0,

d 6= 0 ⇔ pλi, pλj, pµi, pµj 6= 0.

If c 6= 0, then 0 6= a+x+ and hence a+x+ = (a+x+)2 by orthodoxy which yields that
x+a+ 6= 0. It follows that c 6= 0 if and only if d 6= 0. If c 6= 0, then

c = (i, gpλjh, µ), d = (i, p−1
λi pλjhpµigpλjp

−1
µj , µ).

By orthodoxy, p−1
µi = p−1

λi pλjp
−1
µj whence it follows that c = d since G is abelian.

Sufficiency. For e, f ∈ E(S), the given identity yields ef = efef so S is
orthodox. For pλi 6= 0, we get

(i, g, λ)(i, h, λ) = (i, p−1
λi , λ)(i, h, λ)(i, g, λ)(i, p−1

λi , λ)

whence gpλih = hpλig which as in the proof of Lemma 8.1 implies that S is over-
abelian. �
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Proposition 8.6.

SO(AG) = SR ∩ [x+xyy+ = x+yxy+] = [axa+ya = aya+x+y+a+xa].

Proof: Denote these three classes by A,B and C, respectively. The equality A = B
follows directly from Theorem 4.1 and Lemmas 4.3 and 8.5.

To prove that A ⊆ C, we first let S =M0(I, G, Λ; P ) ∈ A and

a = (i, g, λ), x = (j, h, µ), y = (k, t, ν), c = axa+ya, d = aya+x+y+a+xa.

Then

c 6= 0 ⇔ pλj , pµi, pλi, pλk, pνi 6= 0,

d 6= 0 ⇔ pλk, pνi, pλi, pλj, pµj , pµk, pνk, pµi 6= 0,

and by orthodoxy,

pλj, pλi, pµi 6= 0 ⇒ pµj 6= 0,

pλk, pλi, pµi 6= 0 ⇒ pµk 6= 0,

pλk, pλi, pνi 6= 0 ⇒ pνk 6= 0,

so that c 6= 0 if and only if d 6= 0. If c 6= 0, by orthodoxy of S and commutativity
of G, we obtain

d =
(
i, gpλktpνip

−1
λi pλjp

−1
µj (pµkp

−1
νk pνi)p

−1
λi pλjhpµig, λ

)
=

(
i, gpλjhpµip

−1
λi pλktpνig, λ

) (
i, p−1

λi (p−1
λi pλjp

−1
µj )pµi, λ

)
= c

(
i, p−1

λi p
−1
µi pµi, λ

)
= c.

Therefore S ∈ C. Now Theorem 4.1 and Lemmas 4.3 and 8.5 imply that A ⊆ C.
Conversely, let S ∈ C. Let a ∈ E(S) and x, y ∈ aSa. The given identity implies

that xy = yx+y+x. For f = x ∈ E(aSa), we obtain fy = yfy+f whence fy = fyf ;
for f = y ∈ E(aSa), we get xf = fx+fx so that xf = fxf . It follows that xf = fx
for all x ∈ aSa and f ∈ E(aSa) and thus aSa ∈ SG. By Theorem 4.1, we have that
S ∈ SR. In a group, the given identity yields commutativity. Therefore S ∈ S(AG).

In view of Theorem 4.1, we may prove orthodoxy by showing it for
S =M0(I, G, λ; P ) ∈ C. Hence let pλi, pλk, pνk 6= 0. Recalling that G is abelian, we
obtain

(i, e, λ)(i, e, λ)(i, p−1
λi , λ)(k, e, ν)(i, e, λ) = (i, p2

λipλkpνi, λ),

(i, e, λ)(k, e, ν)(i, p−1
λi , λ)(i, p−1

λi , λ)(k, p−1
νk , ν)(i, p−1

λi , λ)(i, e, λ)(i, e, λ)

= (i, pλk pνip
−1
λi pλk p−1

νk pνi pλi, λ) = (i, p2
λk p−1

νk p2
νi pλi, λ)

which by hypothesis implies that p2
λi pλk pνi = p2

λk p−1
νk p2

νi pλi. But then p−1
νi =

p−1
λi pλkp

−1
νk and thus S is orthodox. �

Finally we handle inverse overabelian semigroups.

Lemma 8.7. Let S = M0(I, G, Λ; P ). Then S is inverse and overabelian if and
only if S ∈ [x+xy+y = y+yx+x].

Proof: Straightforward. �
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Note that the above S satisfies the identity x+x = xx+ which gives several
variants of the identity in Lemma 8.7.

Proposition 8.8. SI(AG) = SR ∩ [x+xy+y = y+yx+x] = [a+xa+ CW b+yb+].

Proof: Denote these three classes by A,B and C, respectively. The equality A = B
follows from Theorem 4.1 and Lemmas 4.3 and 8.7.

To prove that A ⊆ C, it suffices to show that any Brandt semigroup B(G, I)
with G abelian satisfies the defining identity of C. This consists of simple checking.
Therefore A ⊆ C.

Conversely, let S ∈ C. For a = b, by Theorem 8.2, we obtain S ∈ S(AG). For
x = a+ and y = b+, we get a+b+ = b+a+. Hence idempotents of S commute and S
is also an inverse semigroup. Thus S ∈ A and therefore C ⊆ A. �

9 Combinatorial case

For the e-variety of combinatorial strict semigroups we find several bases for its
identities. It is of some interest that none of these bases uses the unary operation of
+ and some of them do not use the given unary operation ′ either. We also treat the
special cases of orthodox and inverse combinatorial strict semigroups. These bases
are already rather distant variants of those in Theorem 4.1 even though there is
some resemblence left. Lemmas again take care of the Rees matrix semigroup case.

Lemma 9.1. The following conditions on S =M0(I, G, Λ; P ) are equivalent.
(i) S is combinatorial.
(ii) S ∈ [axaya = aya(xa)2].
(iii) S ∈ [axa = axaxa].
(iv) S ∈ [x2 = x3].

Proof: Straightforward. �

By [5, Theorem 3.3], the e-variety SCo is generated by the semigroupM0(2, {1}, 2; P )

with P =

[
1 1
1 0

]
. According to Trahtman [15], the semigroup variety generated

by this semigroup has {x2 = x3, axa = axaxa, axaya = ayaxa} as a basis. We
shall now see some variants of these identities.

Theorem 9.2. SCo = LS = SR ∩ [x2 = x3] = SR ∩ [axa = axaxa]
= [axaya = aya(xa)2] = [(axa)(aya) = (aya)(axa)2].

Proof: Denote these six classes by A,B, C,D, E and F , respectively. The equality
A = B follows easily from Theorem 4.1 and Lemma 4.3. From the same references
and Lemma 9.1 follow the equalities A = C = D.

Let S ∈ A. By Theorem 8.2, S satisfies the identity axaya = ayaxa. From D
we have that axa = axaxa and hence axaya = aya(xa)2. Therefore S ∈ E and thus
A ⊆ E.
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Assume the defining identity of E. The substitution x → ax yields a2xaya =
(aya)(axa)2 and the substitution y → ay gives axa2ya = a2ya(xa)2. Hence

(axa)(aya) = a2ya(xa)2 = a2xaya = (aya)(axa)2.

Therefore E ⊆ F .
Let S ∈ F . For a ∈ E(S) and x, y ∈ aSa, the defining identity implies that

xy = yx2. By Theorem 5.4(v), aSa is a semilattice. Therefore S ∈ B and thus
F ⊆ B. �

We consider next E-solid combinatorial semigroups. If G in S =M0(I, G, Λ; P )
is trivial, we write (i, λ) for (i, 1, λ).

Lemma 9.3. The following conditions on S =M0(I, G, Λ; P ) are equivalent.
(i) S is E-solid and combinatorial.
(ii) S is orthodox and combinatorial.
(iii) S ∈ [axa2 = ax2a].

Proof: (i) implies (ii). Straightforward.
(ii) implies (iii). Let a = (i, λ) and x = (j, h). Then

axa2 6= 0 ⇔ pλj, pµi, pλi 6= 0,

ax2a 6= 0 ⇔ pλj, pµj , pµi 6= 0

and by orthodoxy, we get that axa2 6= 0 if and only if ax2a 6= 0 whence axa2 = ax2a
by the combinatorial property.

(iii) implies (i). The given identity in a group implies triviality. If pλi, pλj, pµi 6=
0, then for a = (i, λ), x = (j, µ), axa2 6= 0 and thus x2 6= 0 so pµj 6= 0. By Lemma
6.2, S is E-solid. �

Proposition 9.4. S(ES)Co = SOCo = SR ∩ [axa2 = ax2a]
= [(axa)(aya) = (aya)(ax2a)] = [axa2ya = ayax2a].

Proof: Denote these five classes by A,B, C,D and E, respectively. Equalities A =
B = C follow directly from Theorem 4.1 and Lemmas 4.3 and 9.3. To show that
B ⊆ D, first let S =M0(I, {1}, Λ; P ) be orthodox and let

a = (i, λ), x = (j, µ), y = (k, ν).

Then

axa2ya 6= 0 ⇔ pλj, pµi, pλi, pλk, pνi 6= 0, (10)

aya2x2a 6= 0 ⇔ pλk, pνi, pλi, pλj, pµj , pµi 6= 0, (11)

ayax2a 6= 0 ⇔ pλk, pνi, pλj, pµj , pµi 6= 0, (12)

and by Lemma 6.2,

pλj, pλi, pµi 6= 0 ⇒ pµj 6= 0, (13)

pλj, pµj , pµi 6= 0 ⇒ pλi 6= 0. (14)
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Now (13) shows that (10) implies (11) and the converse is trivial. Also (13) shows
that (10) implies (12) and (14) shows that the converse holds.

In view of Theorem 4.1, it follows that B ⊆ D ∩ E.
Next let S ∈ D. Let a ∈ E(S) and x, y ∈ aSa. The defining identity implies

that xy = yx2 which by Theorem 5.4(v) yields that aSa is a semilattice. In view
of Theorem 9.2, we conclude that S ∈ SCo. Let C = M0(I, {1}, Λ; P ) ∈ D and
suppose that pλi, pλj, pµi 6= 0. Then ((i, λ)(j, µ)(i, λ))2 6= 0 and the hypothesis
implies that (i, λ)(j, µ)2(i, λ) 6= 0 whence pµj 6= 0. It follows that C is orthodox.
Since orthodoxy is an e-varietal property, by Theorem 4.1 we conclude that S is
orthodox. Therefore S ∈ B and thus D ⊆ B.

The proof that E ⊆ B is the same as for D ⊆ B. �

Finally we arrive at inverse combinatorial semigroups.

Lemma 9.5. Let S =M0(I, G, Λ; P ). Then S is inverse and combinatorial if and
only if S ∈ [x3y2 = y2x2].

Proof: Necessity . Straightforward.
Sufficiency . For e, f ∈ E(S), we get ef = fe so S is an inverse semigroup. For

x = (i, g, i) and y = (i, 1, i), we obtain from the given identity that g3 = g2 so that
g = 1. Therefore S is also combinatorial. �

Proposition 9.6. SICo = SR∩[x3y2 = y2x2] = [(a+xa+)(byb)+ = (byb)+(a+x2a+)].

Proof: Denote these three classes by A,B and C, respectively. The equality A =
B follows from Theorem 4.1 ad Lemma 9.5. Clearly any combinatorial Brandt
semigroup satisfies the defining identity for C. In view of Theorem 4.1, we conclude
that B ⊆ C.

Finally, let S ∈ C. For x = a+ and y = b′, we get a+ CW b+ and thus S is an
inverse semigroup by Lemma 3.5(i). Let a = b ∈ E(S) and x, y ∈ aSa. The given
identity yields xy+ = y+x2. For y = x′x, we obtain x = x′x3 whence x2 = x3. Hence

x = x′x3 = (x′x3)x = x2

and aSa is a semilattice. By Theorem 9.2, we obtain that S ∈ SCo and hence
S ∈ A. Therefore C ⊆ A. �

10 Overabelian core

We consider here the case of strict semigroups for which the core C(S) is overabelian,
that is, has all subgroups abelian. For bases of identities for this e-variety of regular
semigroups we obtain several versions, however, all countably infinite. To this end,
we need the following concept.

Definition 10.1. Let S =M0(I, G, Λ; P ). Following [7], we call the expressions of
the form

p−1
λ1i1

pλ1i2 p−1
λ2i2

pλ2i3 . . . pλn−1inp
−1
λninpλni1
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polygonal products where all pλki` 6= 0. In addition, we say that this polygonal
product has pivot (i1, λ1).

We shall also use the following notation. For the variables a, x1, x2, . . . , xn, y1, y2,
. . . , yn, let

Xn = a+x+
1 x+

2 . . . x+
na+, Yn = a+y+

1 y+
2 . . . y+

n a+,

for n ≥ 1.

Again we start with Rees matrix semigroups.

Lemma 10.2. The following conditions on S =M0(I, G, Λ; P ) are equivalent.
(i) C(S) is overabelian.
(ii) Any two polygonal products with the same pivot commute.
(iii)S ∈ [(axa)XmYn(ax′xa)(aya)+ = (aya)+(axa)YnXm (ax′xa)]m,n≥1.
(iv) S ∈ [XmCW Yn]m,n≥1.

Proof: (i) implies (ii). Let g and h be polygonal products with the same pivot, say

g = p−1
λi pλj1pµ1j2 . . . p−1

µmjm
pµmi, (15)

h = p−1
λi pλk1p

−1
ν1k1

pν1k2 . . . p−1
νnkn

pνni. (16)

For s = 1, 2, . . . , m and t = 1, 2, . . . , n, let

a = (i, g, λ), xs = (js, gs, µs), yt = (kt, ht, νt), (17)

c = a+x+
1 x+

2 . . . x+
ma+, d = a+y+

1 y+
2 . . . y+

n a+. (18)

Then cH dH c2 6= 0 and by hypothesis cd = dc. Moreover

c = (i, gp−1
λi , λ), d = (i, hp−1

λi ) (19)

and hence cd = dc implies that ghp−1
λi = hgp−1

λi whence gh = hg.
(ii) implies (iii). We show first that XmYn = YnXm. Let a ∈ C(S), a2 6= 0.

Then a = e1e2 . . . en for some e1, e2, . . . , en ∈ E(S). If a = (i, g, λ), then pλi 6= 0 and
hence a = a+e1e2 . . . ena

+. Let c, d ∈ C(S), cH dH c2 6= 0. Then c and d are of the
form (18). In the notation (17) we arrive at polygonal products (15) and (16). By
hypothesis gh = hg which implies that

cd = (i, gp−1
λi , λ)(i, hp−1

λi , λ) = (i, ghp−1
λi , λ)

= (i, hgp−1
λi , λ) = (i, hp−1

λi , λ)(i, gp−1
λi , λ) = dc.

Therefore S satisfies the identity XmYn = YnXm.
The identity in part (iii) holds trivially when (aya)2 = 0. If (aya)2 6= 0, then

(aya)+ = a0 and hence

axa = (aya)+(axa), (ax′xa)(aya)+ = ax′xa

which together with XmYn = YnXm implies that the identity in part (iii) holds.
(iii) implies (iv). The substitutions a → a+, x → a+, y → a′ in the given

identities yield Xm CW Yn.
(iv) implies (i). The steps in the proof above of “(ii) implies (iii)” leading to

Xm CW Yn may be reversed showing that the latter implies that any two polygonal
products with the same pivot comute. Now the steps of the proof of “(i) implies
(ii)” may be reversed showing that C(S) is overabelian. �
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We may illustruate two polygonal products A and B with the common pivot
(i, λ) as follows.

o

Theorem 10.3. S(AC) = SR ∩ [Xm CW Yn]m,n≥1

=
[
(axa)XmYn(ax′xa)(aya)+ = (aya)+(axa)YnXm(ax′xa)

]
m,n≥1

= [a+xXmYn x′xa+(aya)+ = (aya)+ a+xYnXmx′xa+]m,n≥1.

Proof: Denote these four classes by A,B, C and D, respectively. The equality
A = B and the inclusion A ⊆ C follow from Theorem 4.1 and lemmas 4.3 and 10.2.
The substitution a → a+ in the defining identity of C yields that of D. Therefore
C ⊆ D.

Let S ∈ D. Letting xi = yj = a for i = 1, 2, . . . , m and j = 1, 2, . . . , n, the given
identity yields

a+xa+x′xa+(aya)+ = (aya)+ a+xa+x′xa+.

Let a ∈ E(S) and x, y ∈ aSa. The last identity implies that xy+ = y+x which shows
that aSa ∈ SG. Hence Theorem 4.1 yields that S ∈ SR and that S is a subdirect
product of its principal factors, say Sα, α ∈ A. For the substitutions x → a+ and
y → a′ in the given identity, we easily get the identity Xm CW Yn. Now Theorem
4.1 and Lemmas 4.3 and 10.2, imply that S is a subdirect product of completely
(0-)simple semigroups, say Sα, α ∈ A, with C(Sα) overabelian. We may assume
that S ⊆ ∏α∈A Sα. Let e1, e2, . . . , em, f1, f2, . . . , fn, g ∈ E(S) be such that

e1e2 . . . em H f1f2 . . . fn H g.
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Let e1 = (eαi), fj = (fαj), g = (gα) for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Then for
every α ∈ A, we have

eα1, eα2 . . . eαm HSα fα1 fα2 . . . fαn HSα gα

and since C(Sα) is overabelian, it follows that eα1eα2 . . . eαm and fα1fα2 . . . fαn com-
mute. But then also e1e2 . . . em and f1f2 . . . fn commute. Therefore C(S) is over-
abelian and thus S ∈ A proving that D ⊆ A. �

We consider now the case of E-solid S and overabelian C(S).

Lemma 10.4. Let S =M0(I, G, Λ; P ). Then S is E-solid and C(S) is overabelian
if and only if S ∈ [XmYn z+ = YmXn z+(az)+]m,n≥1.

Proof: Necessity. By Lemma 10.2, S satisfies the identities XmYn = YnXm. Let

a = (i, g, λ), z = (j, h, µ), c = XmYn z+, d = YnXm z+(az)+.

Suppose that c 6= 0. Then XmYn = (i, t, λ) for some t ∈ G and hence

c = (i, t, λ)(j, p−1
µj , µ) = (i, tpλj p

−1
µj , µ).

Since pλi, pλj , pµj 6= 0, by Lemma 6.2, we get pµi 6= 0 and thus

d = (i, t, λ)(j, p−1
µj , µ) = (i, p−1

µi , µ) = c.

Conversely, if d 6= 0, then clearly c 6= 0. Therefore c = d.

Sufficiency. For z = a+, we get XmYn = YnXm and by Lemma 10.2, C(S)
is overabelian. For the substitutions xi → a and yj → a for i = 1, 2, . . . , m, j =
1, 2, . . . , n, we get a+z+ = a+z+(az)+(az)+. In the above notation, if pλi, pλj, pµj 6=
0, then a+z+ 6= 0 and hence (az)+ 6= 0 whence pµi 6= 0. Now Lemma 6.2 implies
that S is E-solid. �

Proposition 10.5. S(ES)(AC) = SR ∩ [XmYn z+ = YnXm z+(az)+]

=
[
(axa)XmYn z+(ax′xa)(aya)+ = (aya)+(axa)YnXmz+(az)+(ax′xa)

]
m,n≥1

.

Proof: Denote these three classes by A,B and C, respectively. The equality A = B
and the inclusion A ⊆ C follow by Theorem 4.1 and Lemmas 4.3 and 10.4.

Now let S ∈ C. For z = a+ in the given identity, by Theorem 10.3 we obtain
that S ∈ S(AC). For the substitutions xi → a and yj → a for i = 1, 2, . . . , m, j =
1, 2, . . . , n, we get a+z+ = a+z+(az)+. This identity then holds in every principal
factor of S. Now as in the last part of the proof of Lemma 10.4 we conclude that
every principal factor, and thus also S, is E-solid. Therefore S ∈ A and thus C ⊆ A.

�
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11 Combinatorial core

We consider here the case of strict semigroups S for which C(S) is combinatorial.
This case is similar to the one we studied in the preceding section. Polygonal prod-
ucts are again useful; indeed, they were introduced in [7] just to handle this situation.
In order to put the case under consideration in proper perspective, we digress some-
what by quoting in full the relevant result from [7]. The case of overabelian S with
combinatorial core concludes the section.

Lemma 11.1. The following conditions on S =M0(I, G, Λ; P ) are equivalent.

(i) C(S) is combinatorial.

(ii) All polygonal products are equal to e.

(iii) S ∈ [Xn axa = axa X2
n].

(iv) S ∈ [Xn ∈ E].

Proof: (i) implies (ii). Let (15) be a polygonal product and let a and xs be defined
as in (17) and c as in (18). Then cH aH a2 6= 0 and hence, by hypothesis, c = a.
Since c = (i, gp−1

λi , λ) and a = (i, p−1
λi , λ), we obtain g = e.

(ii) implies (iii). Starting with a ∈ C(S), a2 6= 0, as in the proof of Lemma 10.2,
we see that c in (18) is a general element of C(S) for which c2 6= 0. Now c gives rise
to the polygonal product g as in (15) with c = (i, gp−1

λi , λ) as in (19). By hypothesis
g = e so that c ∈ E(S). But then c = a0 which together with a0(axa) = (axa)a0

implies that S satisfies the identity in part (iii).
(iii) implies (iv). Set x = (a2)′.
(iv) implies (i). The steps in the proof above of “(ii) implies (iii)” leading to

c ∈ E(S), that is Xn ∈ E, may be reversed showing that the latter implies that any
polygonal product is equal to e. Now the steps of the proof of “(i) implies (ii)” may
be reversed showing that C(S) is combinatorial. �

A semigroup S is said to be rectangular if for any a, b, x, y ∈ S, ax = bx = ay =
m implies by = m. Hence a band is rectangular band if and only if it is rectangular
(as a semigroup). For the case when the semigroup S has a zero, these concepts
were generalized in [7] as follows.

A semigroup S with zero is 0-rectangular if for any ai, xi ∈ S, i = 1, 2, . . . , n,

a1x1 = a1x2 = a2x2 = . . . = an−1xn = anxn = m 6= 0

and anx1 6= 0 imply that anx1 = m. Also, a combinatorial completely 0-simple
semigroup is a rectangular 0-band .

The direct product can be adapted to the situation when one of the factors has
a zero. We state here only the special case which we require. Let S be a semigroup
with zero and T a semigroup without zero. Then

S ×0 T = (S × T )/({0} × T )

is the 0-product of S and T .
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We now combine [7, Corollaire 4.10 and Théorème 4.13] into the following result
part of which is crucial for the characterization of members of SR(CC). For general
edification we state it in full.

Result 11.2. The following condition on S =M0(I, G, Λ; P ) are equivalent.
(i) S ∼= C ×0 G where C is a rectangular 0-band.
(ii) There exist invertible I × I-matrix U and Λ × Λ-matrix V over G0 such

that Q = V PU is a regular matrix all of whose nonzero entries are equal to e.
(iii) There exist mappings α : I → G and β : Λ → G such that pλi = (λβ)(iα)

or pλi = 0.
(iv) S is 0-rectangular.
(v) All polygonal products are equal to e.
(vi) S has a subsemigroup which intersects every H-class of S exactly once.

We observe that Result 11.2 is the generalization of the theorem which says that
an orthodox completely simple semigroup is a rectangular group to the case of com-
pletely 0-simple semigroups. In part (i), we can clearly take C =M0(I, {e}, Λ; Q)
where qλi = e if pλi 6= 0 and qλi = 0 otherwise. In particular, S/H ∼= C . We are
now ready for the desired result.

Theorem 11.3. The following conditions on a regular semigroup S are equivalent.
(i) S is a subdirect product of a combinatorial strict semigroup and a Clifford

semigroup.
(ii) S is strict and C(S) is combinatorial.
(iii) S ∈ [Xn axa = axa X2

n]n≥1.

Proof: (i) implies (ii). We may suppose that S ⊆ A × B is a subdirect product
where A is a combinatorial strict semigroup and B is a Clifford semigroup. Since
also B is strict, we deduce that S is strict. Let e1, . . . , em, f1, . . . , fn ∈ E(S) be such
that e1 . . . emH f1 . . . fn. Then ei = (e′i, e

′′
i ) and fj = (f ′j , f

′′
j ) where e′i, f

′
j ∈ E(A)

and e′′i , f
′′
j ∈ E(B) for i = 1, . . . , m and j = 1, . . . , n, and

e′1 . . . e′m HA f ′1 . . . f ′n, e′′1 . . . e′′m HB f ′′1 . . . f ′′n .

Since A is combinatorial and B is orthodox, it follows that

e′1 . . . e′m = f ′1 . . . f ′n, e′′1 . . . e′′m = f ′′1 . . . f ′′n

and thus e1 . . . em = f1 . . . fn. Therefore C(S) is combinatorial.
(ii) implies (iii). By Theorem 4.1, S is a subdirect product of its principal

factors, say Sα, α ∈ A. Since C(S) is combinatorial, so are C(Sα) for all α ∈ A.
Hence by Lemma 11.1, Sα satisfies all the identities in part (iii) for all α ∈ A and
so does S.

(iii) implies (i). In particular, S satisfies the identity (a+y+a+) axa =
axa(a+y+a+)2. Letting a ∈ E(S) and x, y ∈ aSa, this identity implies that y+x =
xy+ and hence aSa ∈ SG. For x = (a2)′, the given identities yield that S satisfies
the identities Xn ∈ E.

In view of Theorem 4.1, we may assume that S ⊆ ∏α∈A Sα is a subdirect product
where Sα satisfies the identities Xn ∈ E for every α ∈ A. By Lemma 11.1 and Result
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11.2, we may also suppose that for every α ∈ A, we have either Sα ∼= Cα ×0 Gα

or Sα ∼= Cα × Gα where Cα is a rectangular (0-) band and Gα is a group. Let
C =

∏
α∈A Cα and G =

∏
α∈A Kα where Kα = G0

α if Sα = Cα ×0 Gα and Kα = Gα

otherwise. In the light of Theorem 4.1, we conclude that C is a combinatorial strict
semigroup whereas G in a Clifford semigroup.

Let

T = {(c, g) ∈ C ×G | c = (cα), g = (gα) and (cα, gα) ∈ S} .

The mapping

(cα, gα) −→ ((cα), (gα)) ((cα, gα) ∈ S)

is clearly an isomorphism of S onto T . Now T is a subdirect product of its projections
in C and G, the former is a combinatorial strict semigroup, in view of Theorem
4.1, and the latter in a Clifford semigroup. In fact, it is easy to verify that these
projections are equal to C and G, respectively. �

Corollary 11.4. S(CoC) = G ∨ SCo = SR∩ [Xn ∈ E]n≥1 = [Xn axa = axa X2
n]n≥1

= [Xn xa+ = a+xX2
n]n≥n.

Proof: Denote these five classes by A,B, C,D and E, respectively. Since G ∨SCo =
SG ∨ SCo, Theorem 11.3 implies that A = B. The equality A = C follows from
Theorem 11.3 and Lemmas 4.3 and 11.1. The equality A = D follows easily from
Theorem 11.3. The substitution a → a+ shows that D ⊆ E. Let S ∈ E. The
proof of “(iii) implies (i)” in Theorem 11.3 carries over to this case with the sole
modification that the substitution now is x→ a+. Hence Theorem 11.3 implies that
S ∈ D. Therefore E ⊆ D. �

Remark [1, p. 208] in our notation states that G ∨ SCo ⊆ S(CoC). We have one
more special case.

Lemma 11.5. Let S = M0(I, G, Λ; P ). Then S ∈ (AG)(CoC) if and only if S ∈[
axXn =

a+ xaX2
n

]
.

Proof: Necessity. By Lemmas 8.1 and 11.1, we have a+xa = axa+ and Xn ∈ E
whence

axXn = axa+Xn = a+xaX2
n.

Sufficiency. The substitution xi → a for i = 1, 2, . . . , n yields axa+ = a+xaa+

which in S implies that axa+ = a+xa and thus S ∈ (AG) by Lemma 8.1. The
substitution x, a→ a+ yields Xn ∈ E which by Lemma 11.1 gives S ∈ (CoC). �

Proposition 11.6.

S(AG)(CoC) = SR ∩
[
axXn = a+xaX2

n

]
n≥n

=
[
axXn ya = ay X2

n xa
]
n≥1

.
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Proof: Denote these three classes by A,B and C, respectively. Then A = B by
Theorem 4.1 and Lemmas 4.3 and 11.5.

For S ∈ A, we obtain

a+xXnya+ = (a+xa+)Xn(a
+ya+)

= (a+ya+)Xn (a+xa+) by Theorem 8.2

= (a+ya+)X2
n (a+xa+) by Corollary 11.4

= a+y X2
n xa+.

As in the proof of Lemma 11.5, the last identity implies that S ∈ C. Therefore
A ⊆ C.

Conversely, let S ∈ C. Substituting xi → a for i = 1, 2, . . . , n, we get axa+ya =
aya+xa. Multiplying on the left by a(a2)′ and by (a2)′a on the right yields the
identity a+xa+ CW a+ya+. Now Theorem 8.2 implies that S ∈ S(AG). Substituting
x, y → a′ in the given identity yields the identity Xn ∈ E so that, by Corollary 11.4,
we have S ∈ S(CoC). Therefore C ⊆ A. �

12 The lattice of sub- e-varieties of SR

We discuss here the fragmentary information available on this lattice. First we
deduce the following consequences of Theorems 7.2, 8.2, 9.2, 10.3 and Corollary
11.4.

Proposition 12.1. Let S be a strict semigroup and P ∈ {Ce, (AG), Co, (AC), (CoC)}.
Then S ∈ P if and only if S is a subdirect product of completely (0-)simple semi-
groups in P.

About the joins in Diagram 1, we have the following sporadic information.
From [1, Theorem 4.6 (2)(3)] and Corollary 11.4, we have

CS ∨ SCo = SR, CS ∨ SICo = S(ES), G ∨ SCo = S(CoC).

To this, we add the following statement.

Proposition 12.2. AG ∨ SCo = S(AG)(CoC).

Proof: Let S ∈ S(AG)(CoC). By Theorem 11.3, we know that S is a subdirect
product of a strict combinatorial semigroup A and a Clifford semigroup B. By
Proposition 11.6, S satisfies the identity axXn = a+xaX2

n for all n ≥ 1 and thus
so does B being a homomorphic image of S. For the substitution xi → a in this
identity, we obtain axa+ = a+xa which in a group implies commutativity. Hence
B ∈ SAG and is thus a subdirect product of abelian groups with a zero possibly
adjoined. It follows that B ∈ AG ∨ S and thus

S ∈ (AG ∨ S) ∨ SCo = AC ∨ SCo.

Therefore S(AG)(CoC) ⊆ AG ∨ SCo and the opposite inclusion is obvious. �
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The remainder of the joins in Diagram 1 will either follow from the results on
sub-e-varieties of SR discussed below or will be left as open problems at the end
of the section. As usual, the meets (intersections) are easier to handle so most of
them in Diagram 1 present no challenge. Nevertheless, we prove the following simple
statement.

Proposition 12.3. S(ES)(CoC) = SO.

Proof: Let S =M0(I, G, Λ; P ) ∈ (CS)(CoC). Then S ∈ (CoC) by Lemma 11.1 and
Result 11.2 imply that S ∼= C ×0 G where C ∼= S/H. Since S ∈ ES, we obtain that
C ∈ ES. But C is combinatorial and thus C ∈ O. Hence S ∈ O as well. In view of
Theorem 4.1 and Lemma 4.3, we conclude that S(ES)(CoC) ⊆ SO. The opposite
inclusion is trivial. �

Further meets will follow from the results on sub-e-varieties of SR or can be
verified without difficulty.

We denote by L(V) the lattice of all sub-e-varieties of an e-variety V . In order
to facilitate our review, we introduce the following concept.

Definition 12.4. Let A and B be e-varieties. Then (A,B) is a direct pair if the
mappings

V −→ (V ∩ A, V ∩ B), (U ,W) −→ U ∨W
are mutually inverse isomorphisms between L(A ∨ B) and L(A)×L(B).

We now summarize the highlights of the existing knowledge about the lattices
of sub-e-varieties of SR.

By [1, Theorem 5.14 and Corollary 5.15], we have a direct pair (Ce CS,SICo)
with Ce CS ∨ SICo = CeS(ES).

In [4, p. 110] we have a diagram of L(SCo) as the bottom of Diagram 2.
From [5, Theorem 4.4(ii)] we deduce that (RB,SI) is a direct pair with RB ∨

SI = SO.
Reference [10, Theorem 4.7] asserts that (CS,S) is a direct pair with CS ∨ S =

NBG within completely regular semigroups with the usual unary operation but the
result remains valid for e-varieties.

By [12, Theorem XII.4.16], we deduce that (G,SICo) is a direct pair with G ∨
SICo = SI in the same way as in the preceding case.

The reference [13, Theorem 3.11] describes L(Ce CS) in terms of L(RB),L(AG)
and L(G).

The above list, with a certain dose of wishful thinking, seems to be leading to a
complete determination of the lattice of sub-e-varieties of SR, possibly in the form
of a direct pair. This impression is quickly dispelled by the example in [1, Theorem
5.10] which implies that (CS,SICo) is not a direct pair and has further negative
consequences [1, Corollaries 5.11 and 5.12]. We deduce that the lattice L(SR) is
more complex than one would expect in view of the structure of L(V) for the above
e-varieties V .

In the definition of a direct pair, we can more generally substitute L(A ∨ B) by
the interval [A∩B,A∨B]. Also note that there are further examples of direct pairs
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of (e-)varieties in the literature. It is of interest here that the classes of overabelian
and of combinatorial regular semigroups are not closed under homomorphic images
as seen on the example of a free inverse semigroup on a set which is combinatorial,
see [12, Proposition VII.1.14]. Therefore these two classes do not form e-varieties.
Neretheless, Proposition 12.1 is valid for them.

Our discussion suggests a variety of problems a sample of which follows.
1. Are Ce, (AC), (CoC) e-varieties? If some of them are, find bases for them.
2. Note that if a strict semigroup S has a subsemigroup which intersects each

H-class of S exactly once, then C(S) is combinatorial. Is the converse true?
3. Are the following joins correct

CS(AC) ∨ SICo = S(ES)(AC),

CS(AC) ∨ SCo = S(AC),

Ce CS ∨ SCo = CeS?

4. Determine the lattice L(SR) of sub-e-varieties of the e-variety of inverse semi-
groups. One possible approach is through fully invariant congruences on a bifree
object.
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